- Added support for Dual CAN Bus Using MCP2515

- Added support for PWM on the contactors
- Added contactor on/off conrol from the inverter
- Moved #defines from Software.ino.ino to config.h to be able to use #ifdefs in SolAX-CAN.cpp
Author identity unknown
This commit is contained in:
RJSC 2023-08-15 20:18:05 +01:00
parent 42023b972e
commit 452a9ab439
4 changed files with 330 additions and 150 deletions

View file

@ -1,35 +1,61 @@
#include "SOLAX-CAN.h" #include "SOLAX-CAN.h"
#include "ESP32CAN.h"
#include "CAN_config.h"
/* Do not change code below unless you are sure what you are doing */ /* Do not change code below unless you are sure what you are doing */
static unsigned long previousMillis100ms = 0; // will store last time a 100ms CAN Message was sent
static const int interval100ms = 100; // interval (ms) at which send CAN Messages
static int temp = 0; //Temporary variable used for bitshifting
static int max_charge_rate_amp = 0; static int max_charge_rate_amp = 0;
static int max_discharge_rate_amp = 0; static int max_discharge_rate_amp = 0;
static int temperature_average = 0;
static int STATE = BATTERY_ANNOUNCE;
static unsigned long LastFrameTime = 0;
static unsigned short BatteryModuleFirmware = 2;
//CAN message translations from this amazing repository: https://github.com/rand12345/solax_can_bus //CAN message translations from this amazing repository: https://github.com/rand12345/solax_can_bus
CAN_frame_t SOLAX_1872 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1872,.data = {0x8A, 0xF, 0x52, 0xC, 0xCD, 0x0, 0x5E, 0x1}}; //BMS_Limits CAN_frame_t SOLAX_1801 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1801,.data = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}};
CAN_frame_t SOLAX_1873 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1873,.data = {0x6D, 0xD, 0x0, 0x0, 0x5D, 0x0, 0xA3, 0x1}}; //BMS_PackData CAN_frame_t SOLAX_1872 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1872,.data = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}; //BMS_Limits
CAN_frame_t SOLAX_1874 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1874,.data = {0xCE, 0x0, 0xBC, 0x0, 0x29, 0x0, 0x28, 0x0}}; //BMS_CellData CAN_frame_t SOLAX_1873 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1873,.data = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}; //BMS_PackData
CAN_frame_t SOLAX_1875 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1875,.data = {0x0, 0x0, 0x2, 0x0, 0x0, 0x0, 0x3A, 0x0}}; //BMS_Status CAN_frame_t SOLAX_1874 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1874,.data = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}; //BMS_CellData
CAN_frame_t SOLAX_1876 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1876,.data = {0x0, 0x0, 0xD4, 0x0F, 0x0, 0x0, 0xC9, 0x0F}}; //BMS_PackTemps CAN_frame_t SOLAX_1875 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1875,.data = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}; //BMS_Status
CAN_frame_t SOLAX_1877 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1877,.data = {0x0, 0x0, 0x0, 0x0, 0x53, 0x0, 0x1D, 0x10}}; CAN_frame_t SOLAX_1876 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1876,.data = {0x0, 0x0, 0xE2, 0x0C, 0x0, 0x0, 0xD7, 0x0C}}; //BMS_PackTemps
CAN_frame_t SOLAX_1878 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1878,.data = {0x6D, 0xD, 0x0, 0x0, 0xB0, 0x3, 0x4, 0x0}}; //BMS_PackStats CAN_frame_t SOLAX_1877 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1877,.data = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}};
CAN_frame_t SOLAX_1879 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1879,.data = {0x1, 0x8, 0x1, 0x2, 0x1, 0x2, 0x0, 0x3}}; CAN_frame_t SOLAX_1878 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1878,.data = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}; //BMS_PackStats
CAN_frame_t SOLAX_1801 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1801,.data = {0x2, 0x0, 0x1, 0x0, 0x1, 0x0, 0x0, 0x0}}; CAN_frame_t SOLAX_1879 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1879,.data = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}};
CAN_frame_t SOLAX_1881 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1881,.data = {0x0, 0x36, 0x53, 0x42, 0x4D, 0x53, 0x46, 0x41}}; // 0 6 S B M S F A CAN_frame_t SOLAX_1881 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1881,.data = {0x00, 0x36, 0x53, 0x42, 0x4D, 0x53, 0x46, 0x41}}; // E.g.: 0 6 S B M S F A
CAN_frame_t SOLAX_1882 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1882,.data = {0x0, 0x32, 0x33, 0x41, 0x42, 0x30, 0x35, 0x32}}; // 0 2 3 A B 0 5 2 CAN_frame_t SOLAX_1882 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x1882,.data = {0x00, 0x32, 0x33, 0x41, 0x42, 0x30, 0x35, 0x32}}; // E.g.: 0 2 3 A B 0 5 2
CAN_frame_t SOLAX_100A001 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_ext,}},.MsgID = 0x100A001,.data = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}; CAN_frame_t SOLAX_100A001 = {.FIR = {.B = {.DLC = 0,.FF = CAN_frame_ext,}},.MsgID = 0x100A001,.data = {}};
// __builtin_bswap64 needed to convert to ESP32 little endian format
// Byte[4] defines the requested con-tactor state: 1 = Closed , 0 = Open
#define Contactor_Open_Payload __builtin_bswap64(0x0200010000000000)
#define Contactor_Close_Payload __builtin_bswap64(0x0200010001000000)
void CAN_WriteFrame(CAN_frame_t* tx_frame)
{
#ifdef DUAL_CAN
CANMessage MCP2515Frame; //Struct with ACAN2515 library format, needed to use the MCP2515 library
MCP2515Frame.id = tx_frame->MsgID;
MCP2515Frame.ext = tx_frame->FIR.B.FF;
MCP2515Frame.len = tx_frame->FIR.B.DLC;
for (uint8_t i=0 ; i<MCP2515Frame.len ; i++) {
MCP2515Frame.data[i] = tx_frame->data.u8[i];
}
can.tryToSend(MCP2515Frame);
//Serial.println("Solax CAN Frame sent in Bus 2");
#else
ESP32Can.CANWriteFrame(tx_frame);
//Serial.println("Solax CAN Frame sent in Bus 1");
#endif
}
void update_values_can_solax() void update_values_can_solax()
{ //This function maps all the values fetched from battery CAN to the correct CAN messages { //This function maps all the values fetched from battery CAN to the correct CAN messages
// If not receiveing any communication from the inverter, open contactos and return to announce stage
//SOC (100.00%) if (millis() - LastFrameTime >= SolaxTimeout)
temp = SOC/100; //Remove decimals, inverter takes only integer in a byte {
SOLAX_1873.data.u8[4] = temp; inverterAllowsContactorClosing = 0;
STATE = BATTERY_ANNOUNCE;
}
//Calculate the required values
temperature_average = ((temperature_max + temperature_min)/2);
//max_target_charge_power (30000W max) //max_target_charge_power (30000W max)
if(SOC > 9999) //99.99% if(SOC > 9999) //99.99%
@ -47,12 +73,6 @@ void update_values_can_solax()
max_charge_rate_amp = (max_target_charge_power/(battery_voltage*0.1)); // P/U = I max_charge_rate_amp = (max_target_charge_power/(battery_voltage*0.1)); // P/U = I
} }
} }
//Increase decimal amount
max_charge_rate_amp = max_charge_rate_amp*10;
//Write the calculated charge rate to the CAN message
SOLAX_1872.data.u8[4] = (uint8_t) max_charge_rate_amp; //TODO, test that values are OK
SOLAX_1872.data.u8[5] = (max_charge_rate_amp << 8);
//max_target_discharge_power (30000W max) //max_target_discharge_power (30000W max)
if(SOC < 100) //1.00% if(SOC < 100) //1.00%
@ -70,47 +90,129 @@ void update_values_can_solax()
max_discharge_rate_amp = (max_target_discharge_power/(battery_voltage*0.1)); // P/U = I max_discharge_rate_amp = (max_target_discharge_power/(battery_voltage*0.1)); // P/U = I
} }
} }
//Increase decimal amount
max_discharge_rate_amp = max_discharge_rate_amp*10;
//Write the calculated charge rate to the CAN message //Put the values into the CAN messages
SOLAX_1872.data.u8[6] = (uint8_t) max_discharge_rate_amp; //TODO, test that values are OK
SOLAX_1872.data.u8[7] = (max_discharge_rate_amp << 8);
//Todo (ranked in priority) //BMS_Limits
//Add current SOLAX_1872.data.u8[0] = (uint8_t) max_volt_solax_can; //Todo, scaling OK?
//Add voltage SOLAX_1872.data.u8[1] = (max_volt_solax_can >> 8);
//Add remaining kWh SOLAX_1872.data.u8[2] = (uint8_t) min_volt_solax_can; //Todo, scaling OK?
//Add temperature SOLAX_1872.data.u8[3] = (min_volt_solax_can >> 8);
//Add cell voltages SOLAX_1872.data.u8[4] = (uint8_t) (max_charge_rate_amp*10); //Todo, scaling OK?
//Add pack voltage min/max for alarms SOLAX_1872.data.u8[5] = ((max_charge_rate_amp*10) >> 8);
//Add cell voltage min/max for alarms SOLAX_1872.data.u8[6] = (uint8_t) (max_discharge_rate_amp*10); //Todo, scaling OK?
SOLAX_1872.data.u8[7] = ((max_discharge_rate_amp*10) >> 8);
//BMS_PackData
SOLAX_1873.data.u8[0] = (uint8_t) battery_voltage; //Todo, scaling OK?
SOLAX_1873.data.u8[1] = (battery_voltage >> 8);
SOLAX_1873.data.u8[2] = (int8_t) stat_batt_power; //Todo, scaling OK? Signed?
SOLAX_1873.data.u8[3] = (stat_batt_power >> 8);
SOLAX_1873.data.u8[4] = (uint8_t) (SOC/100); //SOC (100.00%)
//SOLAX_1873.data.u8[5] = //Seems like this is not required? Or shall we put SOC decimals here?
SOLAX_1873.data.u8[6] = (uint8_t) (remaining_capacity_Wh/100); //Todo, scaling OK?
SOLAX_1873.data.u8[7] = ((remaining_capacity_Wh/100) >> 8);
//BMS_CellData
SOLAX_1874.data.u8[0] = (uint8_t) temperature_max;
SOLAX_1874.data.u8[1] = (temperature_max >> 8);
SOLAX_1874.data.u8[2] = (uint8_t) temperature_min;
SOLAX_1874.data.u8[3] = (temperature_min >> 8);
SOLAX_1874.data.u8[4] = (uint8_t) (cell_max_voltage); //Todo, scaling OK? Supposed to be alarm trigger absolute cell max?
SOLAX_1874.data.u8[5] = (cell_max_voltage >> 8);
SOLAX_1874.data.u8[6] = (uint8_t) (cell_min_voltage); //Todo, scaling OK? Supposed to be alarm trigger absolute cell min?
SOLAX_1874.data.u8[7] = (cell_min_voltage >> 8);
//BMS_Status
SOLAX_1875.data.u8[0] = (uint8_t) temperature_average;
SOLAX_1875.data.u8[1] = (temperature_average >> 8);
SOLAX_1875.data.u8[2] = (uint8_t) 0; // Number of slave batteries
SOLAX_1875.data.u8[4] = (uint8_t) 0; // Contactor Status 0=off, 1=on.
//BMS_PackTemps (strange name, since it has voltages?)
SOLAX_1876.data.u8[2] = (uint8_t) cell_max_voltage; //Todo, scaling OK?
SOLAX_1876.data.u8[3] = (cell_min_voltage >> 8);
SOLAX_1876.data.u8[6] = (uint8_t) cell_min_voltage; //Todo, scaling OK?
SOLAX_1876.data.u8[7] = (cell_min_voltage >> 8);
//Unknown
SOLAX_1877.data.u8[4] = (uint8_t) 0x53;
SOLAX_1877.data.u8[6] = (BatteryModuleFirmware >> 8);
SOLAX_1877.data.u8[7] = (uint8_t) BatteryModuleFirmware;
//BMS_PackStats
SOLAX_1878.data.u8[0] = (uint8_t) (battery_voltage/10); //TODO, should this be max or current voltage?
SOLAX_1878.data.u8[1] = ((battery_voltage/10) >> 8);
SOLAX_1878.data.u8[4] = (uint8_t) capacity_Wh; //TODO, scaling OK?
SOLAX_1878.data.u8[5] = (capacity_Wh >> 8);
// BMS_Answer
SOLAX_1801.data.u8[0] = 2;
SOLAX_1801.data.u8[2] = 1;
SOLAX_1801.data.u8[4] = 1;
} }
void send_can_solax() void send_can_solax() {
{ // Deprecated - All transmissions should be initiated in response to inverter polling.
unsigned long currentMillis = millis();
// Send 100ms CAN Message
if (currentMillis - previousMillis100ms >= interval100ms)
{
previousMillis100ms = currentMillis;
ESP32Can.CANWriteFrame(&SOLAX_1872);
ESP32Can.CANWriteFrame(&SOLAX_1873);
ESP32Can.CANWriteFrame(&SOLAX_1874);
ESP32Can.CANWriteFrame(&SOLAX_1875);
ESP32Can.CANWriteFrame(&SOLAX_1876);
ESP32Can.CANWriteFrame(&SOLAX_1877);
ESP32Can.CANWriteFrame(&SOLAX_1878);
//Todo, how often should the messages be sent? And the other messages, only on bootup?
}
} }
void receive_can_solax(CAN_frame_t rx_frame) void receive_can_solax(CAN_frame_t rx_frame)
{ {
//Serial.println("Inverter sending CAN message"); if (rx_frame.MsgID == 0x1871) {
//0x1871 [0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00] LastFrameTime = millis();
//Todo, should we respond with something once the inverter sends a message? switch(STATE)
{
case(BATTERY_ANNOUNCE):
Serial.println("Solax Battery State: Announce");
inverterAllowsContactorClosing = 0;
SOLAX_1875.data.u8[4] = (0x00); // Inform Inverter: Contactor 0=off, 1=on.
CAN_WriteFrame(&SOLAX_100A001); //BMS Announce
CAN_WriteFrame(&SOLAX_1872);
CAN_WriteFrame(&SOLAX_1873);
CAN_WriteFrame(&SOLAX_1874);
CAN_WriteFrame(&SOLAX_1875);
CAN_WriteFrame(&SOLAX_1876);
CAN_WriteFrame(&SOLAX_1877);
CAN_WriteFrame(&SOLAX_1878);
// Message from the inverter to proceed to contactor closing
// Byte 4 changes from 0 to 1
if (rx_frame.data.u64 == Contactor_Close_Payload)
STATE = WAITING_FOR_CONTACTOR;
break;
case(WAITING_FOR_CONTACTOR):
SOLAX_1875.data.u8[4] = (0x00); // Inform Inverter: Contactor 0=off, 1=on.
CAN_WriteFrame(&SOLAX_1872);
CAN_WriteFrame(&SOLAX_1873);
CAN_WriteFrame(&SOLAX_1874);
CAN_WriteFrame(&SOLAX_1875);
CAN_WriteFrame(&SOLAX_1876);
CAN_WriteFrame(&SOLAX_1877);
CAN_WriteFrame(&SOLAX_1878);
CAN_WriteFrame(&SOLAX_1801); // Announce that the battery will be connected
STATE = CONTACTOR_CLOSED; // Jump to Contactor Closed State
Serial.println("Solax Battery State: Contactor Closed");
break;
case(CONTACTOR_CLOSED):
inverterAllowsContactorClosing = 1;
SOLAX_1875.data.u8[4] = (0x01); // Inform Inverter: Contactor 0=off, 1=on.
CAN_WriteFrame(&SOLAX_1872);
CAN_WriteFrame(&SOLAX_1873);
CAN_WriteFrame(&SOLAX_1874);
CAN_WriteFrame(&SOLAX_1875);
CAN_WriteFrame(&SOLAX_1876);
CAN_WriteFrame(&SOLAX_1877);
CAN_WriteFrame(&SOLAX_1878);
// Message from the inverter to open contactor
// Byte 4 changes from 1 to 0
if (rx_frame.data.u64 == Contactor_Open_Payload)
STATE = BATTERY_ANNOUNCE;
break;
}
}
} }

View file

@ -2,6 +2,11 @@
#define SOLAX_CAN_H #define SOLAX_CAN_H
#include <Arduino.h> #include <Arduino.h>
#include "ESP32CAN.h" #include "ESP32CAN.h"
#include "config.h"
#ifdef DUAL_CAN
#include "ACAN2515.h"
extern ACAN2515 can;
#endif
extern uint16_t SOC; extern uint16_t SOC;
extern uint16_t StateOfHealth; extern uint16_t StateOfHealth;
@ -17,15 +22,21 @@ extern uint16_t stat_batt_power;
extern uint16_t temperature_min; extern uint16_t temperature_min;
extern uint16_t temperature_max; extern uint16_t temperature_max;
extern uint16_t CANerror; extern uint16_t CANerror;
extern uint16_t min_volt_byd_can; extern uint16_t min_volt_solax_can;
extern uint16_t max_volt_byd_can; extern uint16_t max_volt_solax_can;
// Definitions for BMS status extern uint16_t cell_max_voltage;
#define STANDBY 0 extern uint16_t cell_min_voltage;
#define INACTIVE 1 extern uint8_t inverterAllowsContactorClosing;
#define DARKSTART 2
#define ACTIVE 3 // Timeout in milliseconds
#define FAULT 4 #define SolaxTimeout 2000
#define UPDATING 5
//SOLAX BMS States Definition
#define BATTERY_ANNOUNCE 0
#define WAITING_FOR_CONTACTOR 1
#define CONTACTOR_CLOSED 2
#define FAULT 3
#define UPDATING_FW 4
void update_values_can_solax(); void update_values_can_solax();
void send_can_solax(); void send_can_solax();

View file

@ -1,21 +1,5 @@
/* Select battery used */
#define BATTERY_TYPE_LEAF // See NISSAN-LEAF-BATTERY.h for more LEAF battery settings
//#define TESLA_MODEL_3_BATTERY // See TESLA-MODEL-3-BATTERY.h for more Tesla battery settings
//#define RENAULT_ZOE_BATTERY // See RENAULT-ZOE-BATTERY.h for more Zoe battery settings
//#define BMW_I3_BATTERY // See BMW-I3-BATTERY.h for more i3 battery settings
//#define IMIEV_ION_CZERO_BATTERY // See IMIEV-CZERO-ION-BATTERY.h for more triplet battery settings
//#define KIA_HYUNDAI_64_BATTERY // See KIA-HYUNDAI-64-BATTERY.h for more battery settings
//#define CHADEMO // See CHADEMO.h for more Chademo related settings
/* Select inverter communication protocol. See Wiki for which to use with your inverter: https://github.com/dalathegreat/BYD-Battery-Emulator-For-Gen24/wiki */
#define MODBUS_BYD //Enable this line to emulate a "BYD 11kWh HVM battery" over Modbus RTU
//#define CAN_BYD //Enable this line to emulate a "BYD Battery-Box Premium HVS" over CAN Bus
//#define SOLAX_CAN //Enable this line to emulate a "SolaX Triple Power LFP" over CAN bus
//#define PYLON_CAN //Enable this line to emulate a "Pylontech battery" over CAN bus
/* Do not change any code below this line unless you are sure what you are doing */ /* Do not change any code below this line unless you are sure what you are doing */
/* Only change battery specific settings and limits in their respective .h files */ /* Only change battery specific settings and limits in their respective .h files */
#include <Arduino.h> #include <Arduino.h>
#include "HardwareSerial.h" #include "HardwareSerial.h"
#include "config.h" #include "config.h"
@ -27,12 +11,21 @@
#include "Adafruit_NeoPixel.h" #include "Adafruit_NeoPixel.h"
#include "BATTERIES.h" #include "BATTERIES.h"
#include "INVERTERS.h" #include "INVERTERS.h"
#ifdef DUAL_CAN
#include <ACAN2515.h>
static const uint32_t QUARTZ_FREQUENCY = 8UL * 1000UL * 1000UL ; // 8 MHz
ACAN2515 can(MCP2515_CS, SPI, MCP2515_INT);
static ACAN2515_Buffer16 gBuffer;
#endif
//CAN parameters //CAN parameters
#define MAX_CAN_FAILURES 5000 //Amount of malformed CAN messages to allow before raising a warning
CAN_device_t CAN_cfg; // CAN Config CAN_device_t CAN_cfg; // CAN Config
const int rx_queue_size = 10; // Receive Queue size const int rx_queue_size = 10; // Receive Queue size
//Interval settings //Interval settings
const int intervalInverterTask = 4800; //Interval at which to refresh modbus registers / inverter values const int intervalInverterTask = 800; //Interval at which to refresh modbus registers / inverter values
const int interval10 = 10; //Interval for 10ms tasks const int interval10 = 10; //Interval for 10ms tasks
unsigned long previousMillis10ms = 50; unsigned long previousMillis10ms = 50;
@ -72,6 +65,8 @@ uint16_t temperature_min = 60; //reads from battery later
uint16_t bms_char_dis_status; //0 idle, 1 discharging, 2, charging uint16_t bms_char_dis_status; //0 idle, 1 discharging, 2, charging
uint16_t bms_status = ACTIVE; //ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING] uint16_t bms_status = ACTIVE; //ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
uint16_t stat_batt_power = 0; //power going in/out of battery uint16_t stat_batt_power = 0; //power going in/out of battery
uint16_t cell_max_voltage = 3700; //Stores the highest cell voltage value in the system
uint16_t cell_min_voltage = 3700; //Stores the minimum cell voltage value in the system
// Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout // Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout
ModbusServerRTU MBserver(Serial2, 2000); ModbusServerRTU MBserver(Serial2, 2000);
@ -83,12 +78,12 @@ ModbusServerRTU MBserver(Serial2, 2000);
Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800); Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800);
static uint8_t brightness = 0; static uint8_t brightness = 0;
static bool rampUp = true; static bool rampUp = true;
const uint8_t maxBrightness = 255; const uint8_t maxBrightness = 100;
uint8_t LEDcolor = GREEN; uint8_t LEDcolor = GREEN;
//Contactor parameters //Contactor parameters
enum State { enum State {
WAITING_FOR_BATTERY, DISCONNECTED,
PRECHARGE, PRECHARGE,
NEGATIVE, NEGATIVE,
POSITIVE, POSITIVE,
@ -96,19 +91,32 @@ enum State {
COMPLETED, COMPLETED,
SHUTDOWN_REQUESTED SHUTDOWN_REQUESTED
}; };
State contactorStatus = WAITING_FOR_BATTERY; State contactorStatus = DISCONNECTED;
#define PRECHARGE_TIME_MS 160 #define PRECHARGE_TIME_MS 160
#define NEGATIVE_CONTACTOR_TIME_MS 1000 #define NEGATIVE_CONTACTOR_TIME_MS 1000
#define POSITIVE_CONTACTOR_TIME_MS 2000 #define POSITIVE_CONTACTOR_TIME_MS 2000
#define PWM_Freq 20000 // 20 kHz frequency, beyond audible range
#define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100%
#define PWM_Hold_Duty 250
#define POSITIVE_PWM_Ch 0
#define NEGATIVE_PWM_Ch 1
unsigned long prechargeStartTime = 0; unsigned long prechargeStartTime = 0;
unsigned long negativeStartTime = 0; unsigned long negativeStartTime = 0;
unsigned long timeSpentInFaultedMode = 0; unsigned long timeSpentInFaultedMode = 0;
uint8_t batteryAllowsContactorClosing = 0; uint8_t batteryAllowsContactorClosing = 0;
uint8_t inverterAllowsContactorClosing = 1; //Startup with always allowing closing from inverter side. Only a few inverters disallow it uint8_t inverterAllowsContactorClosing = 0;
// Setup() - initialization happens here // Setup() - initialization happens here
void setup() void setup()
{ {
// Init Serial monitor
Serial.begin(9600);
while (!Serial)
{
}
Serial.println("__ OK __");
//CAN pins //CAN pins
pinMode(CAN_SE_PIN, OUTPUT); pinMode(CAN_SE_PIN, OUTPUT);
digitalWrite(CAN_SE_PIN, LOW); digitalWrite(CAN_SE_PIN, LOW);
@ -120,20 +128,29 @@ void setup()
ESP32Can.CANInit(); ESP32Can.CANInit();
Serial.println(CAN_cfg.speed); Serial.println(CAN_cfg.speed);
#ifdef DUAL_CAN
gBuffer.initWithSize(25);
SPI.begin(MCP2515_SCK, MCP2515_MISO, MCP2515_MOSI);
Serial.println ("Configure ACAN2515") ;
ACAN2515Settings settings (QUARTZ_FREQUENCY, 500UL * 1000UL) ; // CAN bit rate 500 kb/s
settings.mRequestedMode = ACAN2515Settings::NormalMode ; // Select loopback mode
can.begin (settings, [] { can.isr (); });
#endif
//Init contactor pins //Init contactor pins
pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW); ledcAttachPin(POSITIVE_CONTACTOR_PIN, POSITIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT); ledcAttachPin(NEGATIVE_CONTACTOR_PIN, NEGATIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
ledcSetup(POSITIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
ledcSetup(NEGATIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
ledcWrite(POSITIVE_PWM_Ch, 0); // Set Positive PWM to 0%
ledcWrite(NEGATIVE_PWM_Ch, 0); // Set Negative PWM to 0%
pinMode(PRECHARGE_PIN, OUTPUT); pinMode(PRECHARGE_PIN, OUTPUT);
digitalWrite(PRECHARGE_PIN, LOW); digitalWrite(PRECHARGE_PIN, LOW);
// Init Serial monitor
Serial.begin(9600);
while (!Serial)
{
}
Serial.println("__ OK __");
//Set up Modbus RTU Server //Set up Modbus RTU Server
pinMode(RS485_EN_PIN, OUTPUT); pinMode(RS485_EN_PIN, OUTPUT);
@ -166,18 +183,11 @@ void setup()
pixels.setPixelColor(0, pixels.Color(0, 0, 255)); // Blue LED full brightness while battery and CAN is starting. pixels.setPixelColor(0, pixels.Color(0, 0, 255)); // Blue LED full brightness while battery and CAN is starting.
pixels.show(); // Incase of crash due to CAN polarity / termination, LED will remain BLUE pixels.show(); // Incase of crash due to CAN polarity / termination, LED will remain BLUE
//Inverter Setup
#ifdef SOLAX_CAN
inverterAllowsContactorClosing = 0; //The inverter needs to allow first!
Serial.println("SOLAX CAN protocol selected");
#endif
#ifdef MODBUS_BYD
Serial.println("BYD Modbus RTU protocol selected");
#endif
#ifdef CAN_BYD
Serial.println("BYD CAN protocol selected");
#endif
//Inform user what setup is used //Inform user what setup is used
#ifdef DUAL_CAN
Serial.println("Dual CAN Bus (ESP32+MCP2515) selected");
#endif
#ifdef BATTERY_TYPE_LEAF #ifdef BATTERY_TYPE_LEAF
Serial.println("Nissan LEAF battery selected"); Serial.println("Nissan LEAF battery selected");
#endif #endif
@ -187,15 +197,9 @@ void setup()
#ifdef RENAULT_ZOE_BATTERY #ifdef RENAULT_ZOE_BATTERY
Serial.println("Renault Zoe / Kangoo battery selected"); Serial.println("Renault Zoe / Kangoo battery selected");
#endif #endif
#ifdef BMW_I3_BATTERY
Serial.println("BMW i3 battery selected");
#endif
#ifdef IMIEV_ION_CZERO_BATTERY #ifdef IMIEV_ION_CZERO_BATTERY
Serial.println("Mitsubishi i-MiEV / Citroen C-Zero / Peugeot Ion battery selected"); Serial.println("Mitsubishi i-MiEV / Citroen C-Zero / Peugeot Ion battery selected");
#endif #endif
#ifdef KIA_HYUNDAI_64_BATTERY
Serial.println("Kia Niro / Hyundai Kona 64kWh battery selected");
#endif
} }
// perform main program functions // perform main program functions
@ -203,6 +207,10 @@ void loop()
{ {
handle_can(); //runs as fast as possible, handle CAN routines handle_can(); //runs as fast as possible, handle CAN routines
#ifdef DUAL_CAN
handle_can2();
#endif
if (millis() - previousMillis10ms >= interval10) //every 10ms if (millis() - previousMillis10ms >= interval10) //every 10ms
{ {
previousMillis10ms = millis(); previousMillis10ms = millis();
@ -235,15 +243,9 @@ void handle_can()
#ifdef RENAULT_ZOE_BATTERY #ifdef RENAULT_ZOE_BATTERY
receive_can_zoe_battery(rx_frame); receive_can_zoe_battery(rx_frame);
#endif #endif
#ifdef BMW_I3_BATTERY
receive_can_i3_battery(rx_frame);
#endif
#ifdef IMIEV_ION_CZERO_BATTERY #ifdef IMIEV_ION_CZERO_BATTERY
receive_can_imiev_battery(rx_frame); receive_can_imiev_battery(rx_frame);
#endif #endif
#ifdef KIA_HYUNDAI_64_BATTERY
receive_can_kiaHyundai_64_battery(rx_frame);
#endif
#ifdef CAN_BYD #ifdef CAN_BYD
receive_can_byd(rx_frame); receive_can_byd(rx_frame);
#endif #endif
@ -281,20 +283,62 @@ void handle_can()
#ifdef RENAULT_ZOE_BATTERY #ifdef RENAULT_ZOE_BATTERY
send_can_zoe_battery(); send_can_zoe_battery();
#endif #endif
#ifdef BMW_I3_BATTERY
send_can_i3_battery();
#endif
#ifdef IMIEV_ION_CZERO_BATTERY #ifdef IMIEV_ION_CZERO_BATTERY
send_can_imiev_battery(); send_can_imiev_battery();
#endif #endif
#ifdef KIA_HYUNDAI_64_BATTERY
send_can_kiaHyundai_64_battery();
#endif
#ifdef CHADEMO #ifdef CHADEMO
send_can_chademo_battery(); send_can_chademo_battery();
#endif #endif
} }
#ifdef DUAL_CAN
void handle_can2()
{ //This function is similar to handle_can, but just takes care of inverters in the 2nd bus.
//Depending on which inverter is selected, we forward this to their respective CAN routines
CAN_frame_t rx_frame2; //Struct with ESP32Can library format, compatible with the rest of the program
CANMessage MCP2515Frame; //Struct with ACAN2515 library format, needed to use thw MCP2515 library
if ( can.available() )
{
can.receive(MCP2515Frame);
rx_frame2.MsgID = MCP2515Frame.id;
rx_frame2.FIR.B.FF = MCP2515Frame.ext ? CAN_frame_ext : CAN_frame_std;
rx_frame2.FIR.B.RTR = MCP2515Frame.rtr ? CAN_RTR : CAN_no_RTR;
rx_frame2.FIR.B.DLC = MCP2515Frame.len;
for (uint8_t i=0 ; i<MCP2515Frame.len ; i++) {
rx_frame2.data.u8[i] = MCP2515Frame.data[i] ;
}
if (rx_frame2.FIR.B.FF == CAN_frame_std)
{
//Serial.println("New standard frame");
#ifdef CAN_BYD
receive_can_byd(rx_frame2);
#endif
}
else
{
//Serial.println("New extended frame");
#ifdef SOLAX_CAN
receive_can_solax(rx_frame2);
#endif
#ifdef PYLON_CAN
receive_can_pylon(rx_frame2);
#endif
}
}
//When we are done checking if a CAN message has arrived, we can focus on sending CAN messages
//Inverter sending
#ifdef CAN_BYD
send_can_byd();
#endif
#ifdef SOLAX_CAN
send_can_solax();
#endif
}
#endif
void handle_inverter() void handle_inverter()
{ {
#ifdef BATTERY_TYPE_LEAF #ifdef BATTERY_TYPE_LEAF
@ -306,15 +350,9 @@ void handle_inverter()
#ifdef RENAULT_ZOE_BATTERY #ifdef RENAULT_ZOE_BATTERY
update_values_zoe_battery(); //Map the values to the correct registers update_values_zoe_battery(); //Map the values to the correct registers
#endif #endif
#ifdef BMW_I3_BATTERY
update_values_i3_battery(); //Map the values to the correct registers
#endif
#ifdef IMIEV_ION_CZERO_BATTERY #ifdef IMIEV_ION_CZERO_BATTERY
update_values_imiev_battery(); //Map the values to the correct registers update_values_imiev_battery(); //Map the values to the correct registers
#endif #endif
#ifdef KIA_HYUNDAI_64_BATTERY
update_values_kiaHyundai_64_battery(); //Map the values to the correct registers
#endif
#ifdef SOLAX_CAN #ifdef SOLAX_CAN
update_values_can_solax(); update_values_can_solax();
#endif #endif
@ -335,12 +373,12 @@ void handle_inverter()
void handle_contactors() void handle_contactors()
{ {
//First check if we have any active errors, incase we do, turn off the battery after 15 seconds //First check if we have any active errors, incase we do, turn off the battery after 5 seconds
if(bms_status == FAULT) if(bms_status == FAULT)
{ {
timeSpentInFaultedMode++; timeSpentInFaultedMode++;
} }
if(timeSpentInFaultedMode > 1500) if(timeSpentInFaultedMode > 500)
{ {
contactorStatus = SHUTDOWN_REQUESTED; contactorStatus = SHUTDOWN_REQUESTED;
} }
@ -353,8 +391,12 @@ void handle_contactors()
} }
//After that, check if we are OK to start turning on the battery //After that, check if we are OK to start turning on the battery
if(contactorStatus == WAITING_FOR_BATTERY) if(contactorStatus == DISCONNECTED)
{ {
digitalWrite(PRECHARGE_PIN, LOW);
ledcWrite(POSITIVE_PWM_Ch, 0);
ledcWrite(NEGATIVE_PWM_Ch, 0);
if(batteryAllowsContactorClosing && inverterAllowsContactorClosing) if(batteryAllowsContactorClosing && inverterAllowsContactorClosing)
{ {
contactorStatus = PRECHARGE; contactorStatus = PRECHARGE;
@ -362,7 +404,9 @@ void handle_contactors()
} }
if(contactorStatus == COMPLETED) if(contactorStatus == COMPLETED)
{ //Skip running the state machine below if it has already completed {
if (!inverterAllowsContactorClosing) contactorStatus = DISCONNECTED;
//Skip running the state machine below if it has already completed
return; return;
} }
@ -377,7 +421,7 @@ void handle_contactors()
case NEGATIVE: case NEGATIVE:
if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) { if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) {
digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH); ledcWrite(NEGATIVE_PWM_Ch, 1023);
negativeStartTime = currentTime; negativeStartTime = currentTime;
contactorStatus = POSITIVE; contactorStatus = POSITIVE;
} }
@ -385,7 +429,7 @@ void handle_contactors()
case POSITIVE: case POSITIVE:
if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) { if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) {
digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH); ledcWrite(POSITIVE_PWM_Ch, 1023);
contactorStatus = PRECHARGE_OFF; contactorStatus = PRECHARGE_OFF;
} }
break; break;
@ -393,6 +437,8 @@ void handle_contactors()
case PRECHARGE_OFF: case PRECHARGE_OFF:
if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) { if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) {
digitalWrite(PRECHARGE_PIN, LOW); digitalWrite(PRECHARGE_PIN, LOW);
ledcWrite(NEGATIVE_PWM_Ch, PWM_Hold_Duty);
ledcWrite(POSITIVE_PWM_Ch, PWM_Hold_Duty);
contactorStatus = COMPLETED; contactorStatus = COMPLETED;
} }
break; break;

View file

@ -1,6 +1,21 @@
#ifndef __CONFIG_H__ #ifndef __CONFIG_H__
#define __CONFIG_H__ #define __CONFIG_H__
/* Select battery used */
#define BATTERY_TYPE_LEAF // See NISSAN-LEAF-BATTERY.h for more LEAF battery settings
//#define TESLA_MODEL_3_BATTERY // See TESLA-MODEL-3-BATTERY.h for more Tesla battery settings
//#define RENAULT_ZOE_BATTERY // See RENAULT-ZOE-BATTERY.h for more Zoe battery settings
//#define IMIEV_ION_CZERO_BATTERY // See IMIEV-CZERO-ION-BATTERY.h for more triplet battery settings
//#define CHADEMO // See CHADEMO.h for more Chademo related settings
/* Select inverter communication protocol. See Wiki for which to use with your inverter: https://github.com/dalathegreat/BYD-Battery-Emulator-For-Gen24/wiki */
//#define MODBUS_BYD //Enable this line to emulate a "BYD 11kWh HVM battery" over Modbus RTU
//#define CAN_BYD //Enable this line to emulate a "BYD Battery-Box Premium HVS" over CAN Bus
#define SOLAX_CAN //Enable this line to emulate a "SolaX Triple Power LFP" over CAN bus
//#define PYLON_CAN //Enable this line to emulate a "Pylontech battery" over CAN bus
#define DUAL_CAN //Enable this line to activate an isolated secondary CAN Bus using MCP2515 controller (Needed for FoxESS inverts)
// PIN // PIN
#define PIN_5V_EN 16 #define PIN_5V_EN 16
@ -8,6 +23,12 @@
#define CAN_RX_PIN 26 #define CAN_RX_PIN 26
#define CAN_SE_PIN 23 #define CAN_SE_PIN 23
#define MCP2515_SCK 12 // SCK input of MCP2515
#define MCP2515_MOSI 5 // SDI input of MCP2515
#define MCP2515_MISO 34 // SDO output of MCP2515 | Pin 34 is input only, without pullup/down resistors
#define MCP2515_CS 18 // CS input of MCP2515
#define MCP2515_INT 35 // INT output of MCP2515 | | Pin 35 is input only, without pullup/down resistors
#define RS485_EN_PIN 17 // 17 /RE #define RS485_EN_PIN 17 // 17 /RE
#define RS485_TX_PIN 22 // 21 #define RS485_TX_PIN 22 // 21
#define RS485_RX_PIN 21 // 22 #define RS485_RX_PIN 21 // 22