Merge pull request #857 from M4GNV5/feat/daly-rs485

New Battery: Daly SmartBMS Support
This commit is contained in:
Daniel Öster 2025-02-12 17:49:55 +03:00 committed by GitHub
commit 641356622e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 284 additions and 21 deletions

View file

@ -210,7 +210,7 @@ void core_loop(void* task_time_us) {
// Input, Runs as fast as possible
receive_can(); // Receive CAN messages
#ifdef RS485_INVERTER_SELECTED
#if defined(RS485_INVERTER_SELECTED) || defined(RS485_BATTERY_SELECTED)
receive_RS485(); // Process serial2 RS485 interface
#endif // RS485_INVERTER_SELECTED
#if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER)
@ -255,6 +255,10 @@ void core_loop(void* task_time_us) {
// Output
transmit_can(); // Send CAN messages to all components
#ifdef RS485_BATTERY_SELECTED
transmit_rs485();
#endif // RS485_BATTERY_SELECTED
END_TIME_MEASUREMENT_MAX(cantx, datalayer.system.status.time_cantx_us);
END_TIME_MEASUREMENT_MAX(all, datalayer.system.status.core_task_10s_max_us);
#ifdef FUNCTION_TIME_MEASUREMENT

View file

@ -26,6 +26,7 @@
//#define MG_5_BATTERY
//#define NISSAN_LEAF_BATTERY
//#define PYLON_BATTERY
//#define DALY_BMS
//#define RJXZS_BMS
//#define RANGE_ROVER_PHEV_BATTERY
//#define RENAULT_KANGOO_BATTERY

View file

@ -86,6 +86,10 @@ void setup_can_shunt();
#include "PYLON-BATTERY.h"
#endif
#ifdef DALY_BMS
#include "DALY-BMS.h"
#endif
#ifdef RJXZS_BMS
#include "RJXZS-BMS.h"
#endif
@ -131,10 +135,16 @@ void setup_can_shunt();
#include "SERIAL-LINK-RECEIVER-FROM-BATTERY.h"
#endif
void handle_incoming_can_frame_battery(CAN_frame rx_frame);
void update_values_battery();
void transmit_can_battery();
void setup_battery(void);
void update_values_battery();
#ifdef RS485_BATTERY_SELECTED
void transmit_rs485();
void receive_RS485();
#else
void handle_incoming_can_frame_battery(CAN_frame rx_frame);
void transmit_can_battery();
#endif
#ifdef DOUBLE_BATTERY
void update_values_battery2();

View file

@ -0,0 +1,201 @@
#include "DALY-BMS.h"
#include <cstdint>
#include "../include.h"
#include "RJXZS-BMS.h"
#ifdef DALY_BMS
#include "../datalayer/datalayer.h"
#include "../devboard/utils/events.h"
#include "RENAULT-TWIZY.h"
/* Do not change code below unless you are sure what you are doing */
static uint32_t lastPacket = 0;
static int16_t temperature_min_dC = 0;
static int16_t temperature_max_dC = 0;
static int16_t current_dA = 0;
static uint16_t voltage_dV = 0;
static uint32_t remaining_capacity_mAh = 0;
static uint16_t cellvoltages_mV[48] = {0};
static uint16_t cellvoltage_min_mV = 0;
static uint16_t cellvoltage_max_mV = 0;
static uint16_t SOC = 0;
static bool has_fault = false;
void update_values_battery() {
datalayer.battery.status.real_soc = SOC;
datalayer.battery.status.voltage_dV = voltage_dV; //value is *10 (3700 = 370.0)
datalayer.battery.status.current_dA = current_dA; //value is *10 (150 = 15.0)
datalayer.battery.status.remaining_capacity_Wh = (remaining_capacity_mAh * (uint32_t)voltage_dV) / 10000;
datalayer.battery.status.max_charge_power_W = (BATTERY_MAX_CHARGE_AMP * voltage_dV) / 100;
datalayer.battery.status.max_discharge_power_W = (BATTERY_MAX_DISCHARGE_AMP * voltage_dV) / 100;
uint32_t adaptive_power_limit = 999999;
if (SOC < 2000)
adaptive_power_limit = ((uint32_t)SOC * POWER_PER_PERCENT) / 100;
else if (SOC > 8000)
adaptive_power_limit = ((10000 - (uint32_t)SOC) * POWER_PER_PERCENT) / 100;
if (adaptive_power_limit < datalayer.battery.status.max_charge_power_W)
datalayer.battery.status.max_charge_power_W = adaptive_power_limit;
if (adaptive_power_limit < datalayer.battery.status.max_discharge_power_W)
datalayer.battery.status.max_discharge_power_W = adaptive_power_limit;
memcpy(datalayer.battery.status.cell_voltages_mV, cellvoltages_mV, sizeof(cellvoltages_mV));
datalayer.battery.status.cell_min_voltage_mV = cellvoltage_min_mV;
datalayer.battery.status.cell_max_voltage_mV = cellvoltage_max_mV;
datalayer.battery.status.temperature_min_dC = temperature_min_dC;
datalayer.battery.status.temperature_max_dC = temperature_max_dC;
datalayer.battery.status.real_bms_status = has_fault ? BMS_FAULT : BMS_ACTIVE;
}
void setup_battery(void) { // Performs one time setup at startup
strncpy(datalayer.system.info.battery_protocol, "DALY RS485", 63);
datalayer.system.info.battery_protocol[63] = '\0';
datalayer.battery.info.number_of_cells = CELL_COUNT;
datalayer.battery.info.max_design_voltage_dV = MAX_PACK_VOLTAGE_DV;
datalayer.battery.info.min_design_voltage_dV = MIN_PACK_VOLTAGE_DV;
datalayer.battery.info.max_cell_voltage_mV = MAX_CELL_VOLTAGE_MV;
datalayer.battery.info.min_cell_voltage_mV = MIN_CELL_VOLTAGE_MV;
datalayer.battery.info.total_capacity_Wh = BATTERY_WH_MAX;
}
uint8_t calculate_checksum(uint8_t buff[12]) {
uint8_t check = 0;
for (uint8_t i = 0; i < 12; i++) {
check += buff[i];
}
return check;
}
uint16_t decode_uint16be(uint8_t data[8], uint8_t offset) {
uint16_t upper = data[offset];
uint16_t lower = data[offset + 1];
return (upper << 8) | lower;
}
int16_t decode_int16be(uint8_t data[8], uint8_t offset) {
int16_t upper = data[offset];
int16_t lower = data[offset + 1];
return (upper << 8) | lower;
}
uint32_t decode_uint32be(uint8_t data[8], uint8_t offset) {
return (((uint32_t)data[offset]) << 24) | (((uint32_t)data[offset + 1]) << 16) | (((uint32_t)data[offset + 2]) << 8) |
((uint32_t)data[offset + 3]);
}
#ifdef DEBUG_VIA_USB
void dump_buff(const char* msg, uint8_t* buff, uint8_t len) {
Serial.print("[DALY-BMS] ");
Serial.print(msg);
for (int i = 0; i < len; i++) {
Serial.print(buff[i] >> 4, HEX);
Serial.print(buff[i] & 0xf, HEX);
Serial.print(" ");
}
Serial.println();
}
#endif
void decode_packet(uint8_t command, uint8_t data[8]) {
datalayer.battery.status.CAN_battery_still_alive = CAN_STILL_ALIVE;
switch (command) {
case 0x90:
voltage_dV = decode_uint16be(data, 0);
current_dA = decode_int16be(data, 4) - 30000;
SOC = decode_uint16be(data, 6) * 10;
break;
case 0x91:
cellvoltage_max_mV = decode_uint16be(data, 0);
cellvoltage_min_mV = decode_uint16be(data, 3);
break;
case 0x92:
temperature_max_dC = (data[0] - 40) * 10;
temperature_min_dC = (data[1] - 40) * 10;
break;
case 0x93:
remaining_capacity_mAh = decode_uint32be(data, 4);
break;
case 0x94:
break;
case 0x95:
if (data[0] > 0 && data[0] <= 16) {
uint8_t frame_index = (data[0] - 1) * 3;
cellvoltages_mV[frame_index + 0] = decode_uint16be(data, 1);
cellvoltages_mV[frame_index + 1] = decode_uint16be(data, 3);
cellvoltages_mV[frame_index + 2] = decode_uint16be(data, 5);
}
break;
case 0x96:
break;
case 0x97:
break;
case 0x98:
// for now we do not handle individual faults. All of them are 0 when ok, and 1 when a fault occurs
has_fault = false;
for (int i = 0; i < 8; i++) {
if (data[i] != 0x00) {
has_fault = true;
}
}
break;
}
}
void transmit_rs485() {
static uint32_t lastSend = 0;
static uint8_t nextCommand = 0x90;
if (millis() - lastSend > 100) {
uint8_t tx_buff[13] = {0};
tx_buff[0] = 0xA5;
tx_buff[1] = 0x40;
tx_buff[2] = nextCommand;
tx_buff[3] = 8;
tx_buff[12] = calculate_checksum(tx_buff);
#ifdef DEBUG_VIA_USB
dump_buff("transmitting: ", tx_buff, 13);
#endif
Serial2.write(tx_buff, 13);
lastSend = millis();
nextCommand++;
if (nextCommand > 0x98)
nextCommand = 0x90;
}
}
void receive_RS485() {
static uint8_t recv_buff[13] = {0};
static uint8_t recv_len = 0;
while (Serial2.available()) {
recv_buff[recv_len] = Serial2.read();
recv_len++;
if (recv_len > 0 && recv_buff[0] != 0xA5 || recv_len > 1 && recv_buff[1] != 0x01 ||
recv_len > 2 && (recv_buff[2] < 0x90 || recv_buff[2] > 0x98) || recv_len > 3 && recv_buff[3] != 8 ||
recv_len > 12 && recv_buff[12] != calculate_checksum(recv_buff)) {
#ifdef DEBUG_VIA_USB
dump_buff("dropping partial rx: ", recv_buff, recv_len);
#endif
recv_len = 0;
}
if (recv_len > 12) {
#ifdef DEBUG_VIA_USB
dump_buff("decoding successfull rx: ", recv_buff, recv_len);
#endif
decode_packet(recv_buff[2], &recv_buff[4]);
recv_len = 0;
}
}
}
#endif

View file

@ -0,0 +1,17 @@
#ifndef DALY_BMS_H
#define DALY_BMS_H
/* Tweak these according to your battery build */
#define CELL_COUNT 14
#define MAX_PACK_VOLTAGE_DV 588 //588 = 58.8V
#define MIN_PACK_VOLTAGE_DV 518 //518 = 51.8V
#define MAX_CELL_VOLTAGE_MV 4250 //Battery is put into emergency stop if one cell goes over this value
#define MIN_CELL_VOLTAGE_MV 2700 //Battery is put into emergency stop if one cell goes below this value
#define POWER_PER_PERCENT 50 // below 20% and above 80% limit power to 50W * SOC (i.e. 150W at 3%, 500W at 10%, ...)
/* Do not modify any rows below*/
#define BATTERY_SELECTED
#define RS485_BATTERY_SELECTED
#define RS485_BAUDRATE 9600
#endif

View file

@ -109,7 +109,9 @@ void transmit_can() {
return; //Global block of CAN messages
}
#ifndef RS485_BATTERY_SELECTED
transmit_can_battery();
#endif
#ifdef CAN_INVERTER_SELECTED
transmit_can_inverter();
@ -302,7 +304,9 @@ void map_can_frame_to_variable(CAN_frame* rx_frame, int interface) {
#endif
if (interface == can_config.battery) {
#ifndef RS485_BATTERY_SELECTED
handle_incoming_can_frame_battery(*rx_frame);
#endif
#ifdef CHADEMO_BATTERY
ISA_handleFrame(rx_frame);
#endif

View file

@ -29,9 +29,9 @@ void init_rs485() {
pinMode(PIN_5V_EN, OUTPUT);
digitalWrite(PIN_5V_EN, HIGH);
#endif // PIN_5V_EN
#ifdef RS485_INVERTER_SELECTED
Serial2.begin(57600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
#endif // RS485_INVERTER_SELECTED
#if defined(RS485_INVERTER_SELECTED) || defined(RS485_BATTERY_SELECTED)
Serial2.begin(RS485_BAUDRATE, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
#endif // RS485_INVERTER_SELECTED || RS485_BATTERY_SELECTED
#ifdef MODBUS_INVERTER_SELECTED
#ifdef BYD_MODBUS
// Init Static data to the RTU Modbus

View file

@ -4,6 +4,7 @@
#include "../include.h"
#define RS485_INVERTER_SELECTED
#define RS485_BAUDRATE 57600
//#define DEBUG_KOSTAL_RS485_DATA // Enable this line to get TX / RX printed out via logging
#if defined(DEBUG_KOSTAL_RS485_DATA) && !defined(DEBUG_LOG)

View file

@ -39,12 +39,25 @@ CAN_frame PYLON_35E = {.FD = false,
MANUFACTURER_NAME[7],
}};
// when e.g. the min temperature is 0, max is 100 and the warning percent is 80%
// a warning should be generated at 20 (i.e. at 20% of the value range)
// this function calculates this 20% point for a given min/max
int16_t warning_threshold_of_min(int16_t min_val, int16_t max_val) {
int16_t diff = max_val - min_val;
return min_val + (diff * (100 - WARNINGS_PERCENT)) / 100;
}
void update_values_can_inverter() {
// This function maps all the values fetched from battery CAN to the correct CAN messages
// TODO: officially this value is "battery charge voltage". Do we need to add something here to the actual voltage?
PYLON_351.data.u8[0] = datalayer.battery.status.voltage_dV & 0xff;
PYLON_351.data.u8[1] = datalayer.battery.status.voltage_dV >> 8;
// Set "battery charge voltage" to volts + 1 or user supplied value
uint16_t charge_voltage_dV = datalayer.battery.status.voltage_dV + 1;
if (datalayer.battery.settings.user_set_voltage_limits_active)
charge_voltage_dV = datalayer.battery.settings.max_user_set_charge_voltage_dV;
if (charge_voltage_dV > datalayer.battery.info.max_design_voltage_dV)
charge_voltage_dV = datalayer.battery.info.max_design_voltage_dV;
PYLON_351.data.u8[0] = charge_voltage_dV & 0xff;
PYLON_351.data.u8[1] = charge_voltage_dV >> 8;
PYLON_351.data.u8[2] = datalayer.battery.status.max_charge_current_dA & 0xff;
PYLON_351.data.u8[3] = datalayer.battery.status.max_charge_current_dA >> 8;
PYLON_351.data.u8[4] = datalayer.battery.status.max_discharge_current_dA & 0xff;
@ -55,12 +68,14 @@ void update_values_can_inverter() {
PYLON_355.data.u8[2] = (datalayer.battery.status.soh_pptt / 10) & 0xff;
PYLON_355.data.u8[3] = (datalayer.battery.status.soh_pptt / 10) >> 8;
PYLON_356.data.u8[0] = datalayer.battery.status.voltage_dV & 0xff;
PYLON_356.data.u8[1] = datalayer.battery.status.voltage_dV >> 8;
int16_t voltage_cV = datalayer.battery.status.voltage_dV * 10;
int16_t temperature = (datalayer.battery.status.temperature_min_dC + datalayer.battery.status.temperature_max_dC) / 2;
PYLON_356.data.u8[0] = voltage_cV & 0xff;
PYLON_356.data.u8[1] = voltage_cV >> 8;
PYLON_356.data.u8[2] = datalayer.battery.status.current_dA & 0xff;
PYLON_356.data.u8[3] = datalayer.battery.status.current_dA >> 8;
PYLON_356.data.u8[4] = datalayer.battery.status.temperature_max_dC & 0xff;
PYLON_356.data.u8[5] = datalayer.battery.status.temperature_max_dC >> 8;
PYLON_356.data.u8[4] = temperature & 0xff;
PYLON_356.data.u8[5] = temperature >> 8;
// initialize all errors and warnings to 0
PYLON_359.data.u8[0] = 0x00;
@ -78,20 +93,23 @@ void update_values_can_inverter() {
PYLON_359.data.u8[0] |= 0x10;
if (datalayer.battery.status.temperature_max_dC >= BATTERY_MAXTEMPERATURE)
PYLON_359.data.u8[0] |= 0x0C;
if (datalayer.battery.status.voltage_dV * 100 <= datalayer.battery.info.min_cell_voltage_mV)
if (datalayer.battery.status.voltage_dV <= datalayer.battery.info.min_design_voltage_dV)
PYLON_359.data.u8[0] |= 0x04;
// we never set PYLON_359.data.u8[1] |= 0x80 called "BMS internal"
if (datalayer.battery.status.bms_status == FAULT)
PYLON_359.data.u8[1] |= 0x80;
if (datalayer.battery.status.current_dA <= -1 * datalayer.battery.status.max_charge_current_dA)
PYLON_359.data.u8[1] |= 0x01;
// WARNINGS (using same rules as errors but reporting earlier)
if (datalayer.battery.status.current_dA >= datalayer.battery.status.max_discharge_current_dA * WARNINGS_PERCENT / 100)
PYLON_359.data.u8[2] |= 0x80;
if (datalayer.battery.status.temperature_min_dC <= BATTERY_MINTEMPERATURE * WARNINGS_PERCENT / 100)
if (datalayer.battery.status.temperature_min_dC <=
warning_threshold_of_min(BATTERY_MINTEMPERATURE, BATTERY_MAXTEMPERATURE))
PYLON_359.data.u8[2] |= 0x10;
if (datalayer.battery.status.temperature_max_dC >= BATTERY_MAXTEMPERATURE * WARNINGS_PERCENT / 100)
PYLON_359.data.u8[2] |= 0x0C;
if (datalayer.battery.status.voltage_dV * 100 <= datalayer.battery.info.min_cell_voltage_mV + 100)
if (datalayer.battery.status.voltage_dV <= warning_threshold_of_min(datalayer.battery.info.min_design_voltage_dV,
datalayer.battery.info.max_design_voltage_dV))
PYLON_359.data.u8[2] |= 0x04;
// we never set PYLON_359.data.u8[3] |= 0x80 called "BMS internal"
if (datalayer.battery.status.current_dA <=
@ -99,10 +117,17 @@ void update_values_can_inverter() {
PYLON_359.data.u8[3] |= 0x01;
PYLON_35C.data.u8[0] = 0xC0; // enable charging and discharging
PYLON_35C.data.u8[1] = 0x00;
if (datalayer.battery.status.real_soc <= datalayer.battery.settings.min_percentage)
if (datalayer.battery.status.bms_status == FAULT)
PYLON_35C.data.u8[1] = 0x00; // disable all
else if (datalayer.battery.settings.user_set_voltage_limits_active &&
datalayer.battery.status.voltage_dV > datalayer.battery.settings.max_user_set_charge_voltage_dV)
PYLON_35C.data.u8[1] = 0x40; // only allow discharging
else if (datalayer.battery.settings.user_set_voltage_limits_active &&
datalayer.battery.status.voltage_dV < datalayer.battery.settings.max_user_set_discharge_voltage_dV)
PYLON_35C.data.u8[1] = 0xA0; // enable charing, set charge immediately
else if (datalayer.battery.status.real_soc <= datalayer.battery.settings.min_percentage)
PYLON_35C.data.u8[0] = 0xA0; // enable charing, set charge immediately
if (datalayer.battery.status.real_soc >= datalayer.battery.settings.max_percentage)
else if (datalayer.battery.status.real_soc >= datalayer.battery.settings.max_percentage)
PYLON_35C.data.u8[0] = 0x40; // enable discharging only
// PYLON_35E is pre-filled with the manufacturer name