mirror of
https://github.com/dalathegreat/Battery-Emulator.git
synced 2025-10-03 09:49:32 +02:00
Revert "Update Adafruit_NeoPixel library to commit fd74287"
This commit is contained in:
parent
6824f0633a
commit
6f59924b4e
3 changed files with 3945 additions and 4326 deletions
File diff suppressed because it is too large
Load diff
|
@ -33,390 +33,380 @@
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#ifndef ADAFRUIT_NEOPIXEL_H
|
#ifndef ADAFRUIT_NEOPIXEL_H
|
||||||
#define ADAFRUIT_NEOPIXEL_H
|
#define ADAFRUIT_NEOPIXEL_H
|
||||||
|
|
||||||
#ifdef ARDUINO
|
#ifdef ARDUINO
|
||||||
#if (ARDUINO >= 100)
|
#if (ARDUINO >= 100)
|
||||||
#include <Arduino.h>
|
#include <Arduino.h>
|
||||||
#else
|
#else
|
||||||
#include <WProgram.h>
|
#include <WProgram.h>
|
||||||
#include <pins_arduino.h>
|
#include <pins_arduino.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef USE_TINYUSB // For Serial when selecting TinyUSB
|
#ifdef USE_TINYUSB // For Serial when selecting TinyUSB
|
||||||
#include <Adafruit_TinyUSB.h>
|
#include <Adafruit_TinyUSB.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef TARGET_LPC1768
|
#ifdef TARGET_LPC1768
|
||||||
#include <Arduino.h>
|
#include <Arduino.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(ARDUINO_ARCH_RP2040)
|
#if defined(ARDUINO_ARCH_RP2040)
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include "hardware/pio.h"
|
#include "hardware/pio.h"
|
||||||
#include "hardware/clocks.h"
|
#include "hardware/clocks.h"
|
||||||
#include "rp2040_pio.h"
|
#include "rp2040_pio.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// The order of primary colors in the NeoPixel data stream can vary among
|
// The order of primary colors in the NeoPixel data stream can vary among
|
||||||
// device types, manufacturers and even different revisions of the same
|
// device types, manufacturers and even different revisions of the same
|
||||||
// item. The third parameter to the Adafruit_NeoPixel constructor encodes
|
// item. The third parameter to the Adafruit_NeoPixel constructor encodes
|
||||||
// the per-pixel byte offsets of the red, green and blue primaries (plus
|
// the per-pixel byte offsets of the red, green and blue primaries (plus
|
||||||
// white, if present) in the data stream -- the following #defines provide
|
// white, if present) in the data stream -- the following #defines provide
|
||||||
// an easier-to-use named version for each permutation. e.g. NEO_GRB
|
// an easier-to-use named version for each permutation. e.g. NEO_GRB
|
||||||
// indicates a NeoPixel-compatible device expecting three bytes per pixel,
|
// indicates a NeoPixel-compatible device expecting three bytes per pixel,
|
||||||
// with the first byte transmitted containing the green value, second
|
// with the first byte transmitted containing the green value, second
|
||||||
// containing red and third containing blue. The in-memory representation
|
// containing red and third containing blue. The in-memory representation
|
||||||
// of a chain of NeoPixels is the same as the data-stream order; no
|
// of a chain of NeoPixels is the same as the data-stream order; no
|
||||||
// re-ordering of bytes is required when issuing data to the chain.
|
// re-ordering of bytes is required when issuing data to the chain.
|
||||||
// Most of these values won't exist in real-world devices, but it's done
|
// Most of these values won't exist in real-world devices, but it's done
|
||||||
// this way so we're ready for it (also, if using the WS2811 driver IC,
|
// this way so we're ready for it (also, if using the WS2811 driver IC,
|
||||||
// one might have their pixels set up in any weird permutation).
|
// one might have their pixels set up in any weird permutation).
|
||||||
|
|
||||||
// Bits 5,4 of this value are the offset (0-3) from the first byte of a
|
// Bits 5,4 of this value are the offset (0-3) from the first byte of a
|
||||||
// pixel to the location of the red color byte. Bits 3,2 are the green
|
// pixel to the location of the red color byte. Bits 3,2 are the green
|
||||||
// offset and 1,0 are the blue offset. If it is an RGBW-type device
|
// offset and 1,0 are the blue offset. If it is an RGBW-type device
|
||||||
// (supporting a white primary in addition to R,G,B), bits 7,6 are the
|
// (supporting a white primary in addition to R,G,B), bits 7,6 are the
|
||||||
// offset to the white byte...otherwise, bits 7,6 are set to the same value
|
// offset to the white byte...otherwise, bits 7,6 are set to the same value
|
||||||
// as 5,4 (red) to indicate an RGB (not RGBW) device.
|
// as 5,4 (red) to indicate an RGB (not RGBW) device.
|
||||||
// i.e. binary representation:
|
// i.e. binary representation:
|
||||||
// 0bWWRRGGBB for RGBW devices
|
// 0bWWRRGGBB for RGBW devices
|
||||||
// 0bRRRRGGBB for RGB
|
// 0bRRRRGGBB for RGB
|
||||||
|
|
||||||
// RGB NeoPixel permutations; white and red offsets are always same
|
// RGB NeoPixel permutations; white and red offsets are always same
|
||||||
// Offset: W R G B
|
// Offset: W R G B
|
||||||
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B
|
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B
|
||||||
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G
|
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G
|
||||||
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B
|
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B
|
||||||
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R
|
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R
|
||||||
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G
|
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G
|
||||||
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R
|
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R
|
||||||
|
|
||||||
// RGBW NeoPixel permutations; all 4 offsets are distinct
|
// RGBW NeoPixel permutations; all 4 offsets are distinct
|
||||||
// Offset: W R G B
|
// Offset: W R G B
|
||||||
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B
|
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B
|
||||||
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G
|
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G
|
||||||
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B
|
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B
|
||||||
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R
|
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R
|
||||||
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G
|
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G
|
||||||
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R
|
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R
|
||||||
|
|
||||||
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B
|
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B
|
||||||
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G
|
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G
|
||||||
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B
|
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B
|
||||||
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W
|
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W
|
||||||
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G
|
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G
|
||||||
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W
|
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W
|
||||||
|
|
||||||
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B
|
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B
|
||||||
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R
|
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R
|
||||||
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B
|
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B
|
||||||
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W
|
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W
|
||||||
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R
|
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R
|
||||||
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W
|
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W
|
||||||
|
|
||||||
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G
|
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G
|
||||||
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R
|
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R
|
||||||
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G
|
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G
|
||||||
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W
|
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W
|
||||||
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R
|
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R
|
||||||
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W
|
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W
|
||||||
|
|
||||||
// Add NEO_KHZ400 to the color order value to indicate a 400 KHz device.
|
// Add NEO_KHZ400 to the color order value to indicate a 400 KHz device.
|
||||||
// All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is
|
// All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is
|
||||||
// the default if unspecified. Because flash space is very limited on ATtiny
|
// the default if unspecified. Because flash space is very limited on ATtiny
|
||||||
// devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on
|
// devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on
|
||||||
// those chips, though it can be enabled by removing the ifndef/endif below,
|
// those chips, though it can be enabled by removing the ifndef/endif below,
|
||||||
// but code will be bigger. Conversely, can disable the NEO_KHZ400 line on
|
// but code will be bigger. Conversely, can disable the NEO_KHZ400 line on
|
||||||
// other MCUs to remove v1 support and save a little space.
|
// other MCUs to remove v1 support and save a little space.
|
||||||
|
|
||||||
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
|
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
|
||||||
#ifndef __AVR_ATtiny85__
|
#ifndef __AVR_ATtiny85__
|
||||||
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
|
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// If 400 KHz support is enabled, the third parameter to the constructor
|
// If 400 KHz support is enabled, the third parameter to the constructor
|
||||||
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
|
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
|
||||||
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
|
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
|
||||||
// is sufficient to encode pixel color order, saving some space.
|
// is sufficient to encode pixel color order, saving some space.
|
||||||
|
|
||||||
#ifdef NEO_KHZ400
|
#ifdef NEO_KHZ400
|
||||||
typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
|
typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
|
||||||
#else
|
#else
|
||||||
typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
|
typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// These two tables are declared outside the Adafruit_NeoPixel class
|
// These two tables are declared outside the Adafruit_NeoPixel class
|
||||||
// because some boards may require oldschool compilers that don't
|
// because some boards may require oldschool compilers that don't
|
||||||
// handle the C++11 constexpr keyword.
|
// handle the C++11 constexpr keyword.
|
||||||
|
|
||||||
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
|
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
|
||||||
Copy & paste this snippet into a Python REPL to regenerate:
|
Copy & paste this snippet into a Python REPL to regenerate:
|
||||||
import math
|
import math
|
||||||
for x in range(256):
|
for x in range(256):
|
||||||
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
|
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
|
||||||
if x&15 == 15: print
|
if x&15 == 15: print
|
||||||
*/
|
*/
|
||||||
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
|
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
|
||||||
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
|
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
|
||||||
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
|
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
|
||||||
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
|
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
|
||||||
241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
|
241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
|
||||||
254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251,
|
254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251,
|
||||||
250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
|
250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
|
||||||
230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198,
|
230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198,
|
||||||
196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
|
196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
|
||||||
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109,
|
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109,
|
||||||
106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
|
106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
|
||||||
62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29,
|
62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29,
|
||||||
27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
|
27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
|
||||||
5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
||||||
0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
|
0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
|
||||||
12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37,
|
12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37,
|
||||||
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
|
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
|
||||||
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
|
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
|
||||||
124};
|
124};
|
||||||
|
|
||||||
/* Similar to above, but for an 8-bit gamma-correction table.
|
/* Similar to above, but for an 8-bit gamma-correction table.
|
||||||
Copy & paste this snippet into a Python REPL to regenerate:
|
Copy & paste this snippet into a Python REPL to regenerate:
|
||||||
import math
|
import math
|
||||||
gamma=2.6
|
gamma=2.6
|
||||||
for x in range(256):
|
for x in range(256):
|
||||||
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
|
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
|
||||||
if x&15 == 15: print
|
if x&15 == 15: print
|
||||||
*/
|
*/
|
||||||
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
|
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
|
||||||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
|
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
|
||||||
3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
|
3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
|
||||||
6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
|
6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
|
||||||
11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17,
|
11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17,
|
||||||
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
|
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
|
||||||
25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35,
|
25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35,
|
||||||
36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48,
|
36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48,
|
||||||
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||||
64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81,
|
64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81,
|
||||||
82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102,
|
82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102,
|
||||||
103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125,
|
103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125,
|
||||||
127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152,
|
127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152,
|
||||||
154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182,
|
154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182,
|
||||||
184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215,
|
184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215,
|
||||||
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
|
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
|
||||||
255};
|
255};
|
||||||
|
|
||||||
/* Declare external methods required by the Adafruit_NeoPixel implementation
|
/*!
|
||||||
for specific hardware/library versions
|
@brief Class that stores state and functions for interacting with
|
||||||
*/
|
Adafruit NeoPixels and compatible devices.
|
||||||
#if defined(ESP32)
|
*/
|
||||||
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
|
class Adafruit_NeoPixel {
|
||||||
extern "C" void espInit();
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/*!
|
public:
|
||||||
@brief Class that stores state and functions for interacting with
|
// Constructor: number of LEDs, pin number, LED type
|
||||||
Adafruit NeoPixels and compatible devices.
|
Adafruit_NeoPixel(uint16_t n, int16_t pin = 6,
|
||||||
*/
|
neoPixelType type = NEO_GRB + NEO_KHZ800);
|
||||||
class Adafruit_NeoPixel {
|
Adafruit_NeoPixel(void);
|
||||||
|
~Adafruit_NeoPixel();
|
||||||
|
|
||||||
public:
|
void begin(void);
|
||||||
// Constructor: number of LEDs, pin number, LED type
|
void show(void);
|
||||||
Adafruit_NeoPixel(uint16_t n, int16_t pin = 6,
|
void setPin(int16_t p);
|
||||||
neoPixelType type = NEO_GRB + NEO_KHZ800);
|
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
|
||||||
Adafruit_NeoPixel(void);
|
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
|
||||||
~Adafruit_NeoPixel();
|
void setPixelColor(uint16_t n, uint32_t c);
|
||||||
|
void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0);
|
||||||
|
void setBrightness(uint8_t);
|
||||||
|
void clear(void);
|
||||||
|
void updateLength(uint16_t n);
|
||||||
|
void updateType(neoPixelType t);
|
||||||
|
/*!
|
||||||
|
@brief Check whether a call to show() will start sending data
|
||||||
|
immediately or will 'block' for a required interval. NeoPixels
|
||||||
|
require a short quiet time (about 300 microseconds) after the
|
||||||
|
last bit is received before the data 'latches' and new data can
|
||||||
|
start being received. Usually one's sketch is implicitly using
|
||||||
|
this time to generate a new frame of animation...but if it
|
||||||
|
finishes very quickly, this function could be used to see if
|
||||||
|
there's some idle time available for some low-priority
|
||||||
|
concurrent task.
|
||||||
|
@return 1 or true if show() will start sending immediately, 0 or false
|
||||||
|
if show() would block (meaning some idle time is available).
|
||||||
|
*/
|
||||||
|
bool canShow(void) {
|
||||||
|
// It's normal and possible for endTime to exceed micros() if the
|
||||||
|
// 32-bit clock counter has rolled over (about every 70 minutes).
|
||||||
|
// Since both are uint32_t, a negative delta correctly maps back to
|
||||||
|
// positive space, and it would seem like the subtraction below would
|
||||||
|
// suffice. But a problem arises if code invokes show() very
|
||||||
|
// infrequently...the micros() counter may roll over MULTIPLE times in
|
||||||
|
// that interval, the delta calculation is no longer correct and the
|
||||||
|
// next update may stall for a very long time. The check below resets
|
||||||
|
// the latch counter if a rollover has occurred. This can cause an
|
||||||
|
// extra delay of up to 300 microseconds in the rare case where a
|
||||||
|
// show() call happens precisely around the rollover, but that's
|
||||||
|
// neither likely nor especially harmful, vs. other code that might
|
||||||
|
// stall for 30+ minutes, or having to document and frequently remind
|
||||||
|
// and/or provide tech support explaining an unintuitive need for
|
||||||
|
// show() calls at least once an hour.
|
||||||
|
uint32_t now = micros();
|
||||||
|
if (endTime > now) {
|
||||||
|
endTime = now;
|
||||||
|
}
|
||||||
|
return (now - endTime) >= 300L;
|
||||||
|
}
|
||||||
|
/*!
|
||||||
|
@brief Get a pointer directly to the NeoPixel data buffer in RAM.
|
||||||
|
Pixel data is stored in a device-native format (a la the NEO_*
|
||||||
|
constants) and is not translated here. Applications that access
|
||||||
|
this buffer will need to be aware of the specific data format
|
||||||
|
and handle colors appropriately.
|
||||||
|
@return Pointer to NeoPixel buffer (uint8_t* array).
|
||||||
|
@note This is for high-performance applications where calling
|
||||||
|
setPixelColor() on every single pixel would be too slow (e.g.
|
||||||
|
POV or light-painting projects). There is no bounds checking
|
||||||
|
on the array, creating tremendous potential for mayhem if one
|
||||||
|
writes past the ends of the buffer. Great power, great
|
||||||
|
responsibility and all that.
|
||||||
|
*/
|
||||||
|
uint8_t *getPixels(void) const { return pixels; };
|
||||||
|
uint8_t getBrightness(void) const;
|
||||||
|
/*!
|
||||||
|
@brief Retrieve the pin number used for NeoPixel data output.
|
||||||
|
@return Arduino pin number (-1 if not set).
|
||||||
|
*/
|
||||||
|
int16_t getPin(void) const { return pin; };
|
||||||
|
/*!
|
||||||
|
@brief Return the number of pixels in an Adafruit_NeoPixel strip object.
|
||||||
|
@return Pixel count (0 if not set).
|
||||||
|
*/
|
||||||
|
uint16_t numPixels(void) const { return numLEDs; }
|
||||||
|
uint32_t getPixelColor(uint16_t n) const;
|
||||||
|
/*!
|
||||||
|
@brief An 8-bit integer sine wave function, not directly compatible
|
||||||
|
with standard trigonometric units like radians or degrees.
|
||||||
|
@param x Input angle, 0-255; 256 would loop back to zero, completing
|
||||||
|
the circle (equivalent to 360 degrees or 2 pi radians).
|
||||||
|
One can therefore use an unsigned 8-bit variable and simply
|
||||||
|
add or subtract, allowing it to overflow/underflow and it
|
||||||
|
still does the expected contiguous thing.
|
||||||
|
@return Sine result, 0 to 255, or -128 to +127 if type-converted to
|
||||||
|
a signed int8_t, but you'll most likely want unsigned as this
|
||||||
|
output is often used for pixel brightness in animation effects.
|
||||||
|
*/
|
||||||
|
static uint8_t sine8(uint8_t x) {
|
||||||
|
return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
|
||||||
|
}
|
||||||
|
/*!
|
||||||
|
@brief An 8-bit gamma-correction function for basic pixel brightness
|
||||||
|
adjustment. Makes color transitions appear more perceptially
|
||||||
|
correct.
|
||||||
|
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
|
||||||
|
@return Gamma-adjusted brightness, can then be passed to one of the
|
||||||
|
setPixelColor() functions. This uses a fixed gamma correction
|
||||||
|
exponent of 2.6, which seems reasonably okay for average
|
||||||
|
NeoPixels in average tasks. If you need finer control you'll
|
||||||
|
need to provide your own gamma-correction function instead.
|
||||||
|
*/
|
||||||
|
static uint8_t gamma8(uint8_t x) {
|
||||||
|
return pgm_read_byte(&_NeoPixelGammaTable[x]); // 0-255 in, 0-255 out
|
||||||
|
}
|
||||||
|
/*!
|
||||||
|
@brief Convert separate red, green and blue values into a single
|
||||||
|
"packed" 32-bit RGB color.
|
||||||
|
@param r Red brightness, 0 to 255.
|
||||||
|
@param g Green brightness, 0 to 255.
|
||||||
|
@param b Blue brightness, 0 to 255.
|
||||||
|
@return 32-bit packed RGB value, which can then be assigned to a
|
||||||
|
variable for later use or passed to the setPixelColor()
|
||||||
|
function. Packed RGB format is predictable, regardless of
|
||||||
|
LED strand color order.
|
||||||
|
*/
|
||||||
|
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
|
||||||
|
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||||||
|
}
|
||||||
|
/*!
|
||||||
|
@brief Convert separate red, green, blue and white values into a
|
||||||
|
single "packed" 32-bit WRGB color.
|
||||||
|
@param r Red brightness, 0 to 255.
|
||||||
|
@param g Green brightness, 0 to 255.
|
||||||
|
@param b Blue brightness, 0 to 255.
|
||||||
|
@param w White brightness, 0 to 255.
|
||||||
|
@return 32-bit packed WRGB value, which can then be assigned to a
|
||||||
|
variable for later use or passed to the setPixelColor()
|
||||||
|
function. Packed WRGB format is predictable, regardless of
|
||||||
|
LED strand color order.
|
||||||
|
*/
|
||||||
|
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
|
||||||
|
return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||||||
|
}
|
||||||
|
static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
|
||||||
|
/*!
|
||||||
|
@brief A gamma-correction function for 32-bit packed RGB or WRGB
|
||||||
|
colors. Makes color transitions appear more perceptially
|
||||||
|
correct.
|
||||||
|
@param x 32-bit packed RGB or WRGB color.
|
||||||
|
@return Gamma-adjusted packed color, can then be passed in one of the
|
||||||
|
setPixelColor() functions. Like gamma8(), this uses a fixed
|
||||||
|
gamma correction exponent of 2.6, which seems reasonably okay
|
||||||
|
for average NeoPixels in average tasks. If you need finer
|
||||||
|
control you'll need to provide your own gamma-correction
|
||||||
|
function instead.
|
||||||
|
*/
|
||||||
|
static uint32_t gamma32(uint32_t x);
|
||||||
|
|
||||||
void begin(void);
|
void rainbow(uint16_t first_hue = 0, int8_t reps = 1,
|
||||||
void show(void);
|
uint8_t saturation = 255, uint8_t brightness = 255,
|
||||||
void setPin(int16_t p);
|
bool gammify = true);
|
||||||
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
|
|
||||||
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
|
|
||||||
void setPixelColor(uint16_t n, uint32_t c);
|
|
||||||
void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0);
|
|
||||||
void setBrightness(uint8_t);
|
|
||||||
void clear(void);
|
|
||||||
void updateLength(uint16_t n);
|
|
||||||
void updateType(neoPixelType t);
|
|
||||||
/*!
|
|
||||||
@brief Check whether a call to show() will start sending data
|
|
||||||
immediately or will 'block' for a required interval. NeoPixels
|
|
||||||
require a short quiet time (about 300 microseconds) after the
|
|
||||||
last bit is received before the data 'latches' and new data can
|
|
||||||
start being received. Usually one's sketch is implicitly using
|
|
||||||
this time to generate a new frame of animation...but if it
|
|
||||||
finishes very quickly, this function could be used to see if
|
|
||||||
there's some idle time available for some low-priority
|
|
||||||
concurrent task.
|
|
||||||
@return 1 or true if show() will start sending immediately, 0 or false
|
|
||||||
if show() would block (meaning some idle time is available).
|
|
||||||
*/
|
|
||||||
bool canShow(void) {
|
|
||||||
// It's normal and possible for endTime to exceed micros() if the
|
|
||||||
// 32-bit clock counter has rolled over (about every 70 minutes).
|
|
||||||
// Since both are uint32_t, a negative delta correctly maps back to
|
|
||||||
// positive space, and it would seem like the subtraction below would
|
|
||||||
// suffice. But a problem arises if code invokes show() very
|
|
||||||
// infrequently...the micros() counter may roll over MULTIPLE times in
|
|
||||||
// that interval, the delta calculation is no longer correct and the
|
|
||||||
// next update may stall for a very long time. The check below resets
|
|
||||||
// the latch counter if a rollover has occurred. This can cause an
|
|
||||||
// extra delay of up to 300 microseconds in the rare case where a
|
|
||||||
// show() call happens precisely around the rollover, but that's
|
|
||||||
// neither likely nor especially harmful, vs. other code that might
|
|
||||||
// stall for 30+ minutes, or having to document and frequently remind
|
|
||||||
// and/or provide tech support explaining an unintuitive need for
|
|
||||||
// show() calls at least once an hour.
|
|
||||||
uint32_t now = micros();
|
|
||||||
if (endTime > now) {
|
|
||||||
endTime = now;
|
|
||||||
}
|
|
||||||
return (now - endTime) >= 300L;
|
|
||||||
}
|
|
||||||
/*!
|
|
||||||
@brief Get a pointer directly to the NeoPixel data buffer in RAM.
|
|
||||||
Pixel data is stored in a device-native format (a la the NEO_*
|
|
||||||
constants) and is not translated here. Applications that access
|
|
||||||
this buffer will need to be aware of the specific data format
|
|
||||||
and handle colors appropriately.
|
|
||||||
@return Pointer to NeoPixel buffer (uint8_t* array).
|
|
||||||
@note This is for high-performance applications where calling
|
|
||||||
setPixelColor() on every single pixel would be too slow (e.g.
|
|
||||||
POV or light-painting projects). There is no bounds checking
|
|
||||||
on the array, creating tremendous potential for mayhem if one
|
|
||||||
writes past the ends of the buffer. Great power, great
|
|
||||||
responsibility and all that.
|
|
||||||
*/
|
|
||||||
uint8_t *getPixels(void) const { return pixels; };
|
|
||||||
uint8_t getBrightness(void) const;
|
|
||||||
/*!
|
|
||||||
@brief Retrieve the pin number used for NeoPixel data output.
|
|
||||||
@return Arduino pin number (-1 if not set).
|
|
||||||
*/
|
|
||||||
int16_t getPin(void) const { return pin; };
|
|
||||||
/*!
|
|
||||||
@brief Return the number of pixels in an Adafruit_NeoPixel strip object.
|
|
||||||
@return Pixel count (0 if not set).
|
|
||||||
*/
|
|
||||||
uint16_t numPixels(void) const { return numLEDs; }
|
|
||||||
uint32_t getPixelColor(uint16_t n) const;
|
|
||||||
/*!
|
|
||||||
@brief An 8-bit integer sine wave function, not directly compatible
|
|
||||||
with standard trigonometric units like radians or degrees.
|
|
||||||
@param x Input angle, 0-255; 256 would loop back to zero, completing
|
|
||||||
the circle (equivalent to 360 degrees or 2 pi radians).
|
|
||||||
One can therefore use an unsigned 8-bit variable and simply
|
|
||||||
add or subtract, allowing it to overflow/underflow and it
|
|
||||||
still does the expected contiguous thing.
|
|
||||||
@return Sine result, 0 to 255, or -128 to +127 if type-converted to
|
|
||||||
a signed int8_t, but you'll most likely want unsigned as this
|
|
||||||
output is often used for pixel brightness in animation effects.
|
|
||||||
*/
|
|
||||||
static uint8_t sine8(uint8_t x) {
|
|
||||||
return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
|
|
||||||
}
|
|
||||||
/*!
|
|
||||||
@brief An 8-bit gamma-correction function for basic pixel brightness
|
|
||||||
adjustment. Makes color transitions appear more perceptially
|
|
||||||
correct.
|
|
||||||
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
|
|
||||||
@return Gamma-adjusted brightness, can then be passed to one of the
|
|
||||||
setPixelColor() functions. This uses a fixed gamma correction
|
|
||||||
exponent of 2.6, which seems reasonably okay for average
|
|
||||||
NeoPixels in average tasks. If you need finer control you'll
|
|
||||||
need to provide your own gamma-correction function instead.
|
|
||||||
*/
|
|
||||||
static uint8_t gamma8(uint8_t x) {
|
|
||||||
return pgm_read_byte(&_NeoPixelGammaTable[x]); // 0-255 in, 0-255 out
|
|
||||||
}
|
|
||||||
/*!
|
|
||||||
@brief Convert separate red, green and blue values into a single
|
|
||||||
"packed" 32-bit RGB color.
|
|
||||||
@param r Red brightness, 0 to 255.
|
|
||||||
@param g Green brightness, 0 to 255.
|
|
||||||
@param b Blue brightness, 0 to 255.
|
|
||||||
@return 32-bit packed RGB value, which can then be assigned to a
|
|
||||||
variable for later use or passed to the setPixelColor()
|
|
||||||
function. Packed RGB format is predictable, regardless of
|
|
||||||
LED strand color order.
|
|
||||||
*/
|
|
||||||
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
|
|
||||||
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
|
||||||
}
|
|
||||||
/*!
|
|
||||||
@brief Convert separate red, green, blue and white values into a
|
|
||||||
single "packed" 32-bit WRGB color.
|
|
||||||
@param r Red brightness, 0 to 255.
|
|
||||||
@param g Green brightness, 0 to 255.
|
|
||||||
@param b Blue brightness, 0 to 255.
|
|
||||||
@param w White brightness, 0 to 255.
|
|
||||||
@return 32-bit packed WRGB value, which can then be assigned to a
|
|
||||||
variable for later use or passed to the setPixelColor()
|
|
||||||
function. Packed WRGB format is predictable, regardless of
|
|
||||||
LED strand color order.
|
|
||||||
*/
|
|
||||||
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
|
|
||||||
return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
|
||||||
}
|
|
||||||
static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
|
|
||||||
/*!
|
|
||||||
@brief A gamma-correction function for 32-bit packed RGB or WRGB
|
|
||||||
colors. Makes color transitions appear more perceptially
|
|
||||||
correct.
|
|
||||||
@param x 32-bit packed RGB or WRGB color.
|
|
||||||
@return Gamma-adjusted packed color, can then be passed in one of the
|
|
||||||
setPixelColor() functions. Like gamma8(), this uses a fixed
|
|
||||||
gamma correction exponent of 2.6, which seems reasonably okay
|
|
||||||
for average NeoPixels in average tasks. If you need finer
|
|
||||||
control you'll need to provide your own gamma-correction
|
|
||||||
function instead.
|
|
||||||
*/
|
|
||||||
static uint32_t gamma32(uint32_t x);
|
|
||||||
|
|
||||||
void rainbow(uint16_t first_hue = 0, int8_t reps = 1,
|
static neoPixelType str2order(const char *v);
|
||||||
uint8_t saturation = 255, uint8_t brightness = 255,
|
|
||||||
bool gammify = true);
|
|
||||||
|
|
||||||
static neoPixelType str2order(const char *v);
|
private:
|
||||||
|
#if defined(ARDUINO_ARCH_RP2040)
|
||||||
|
void rp2040Init(uint8_t pin, bool is800KHz);
|
||||||
|
void rp2040Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz);
|
||||||
|
#endif
|
||||||
|
|
||||||
private:
|
protected:
|
||||||
#if defined(ARDUINO_ARCH_RP2040)
|
#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled...
|
||||||
void rp2040Init(uint8_t pin, bool is800KHz);
|
bool is800KHz; ///< true if 800 KHz pixels
|
||||||
void rp2040Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz);
|
#endif
|
||||||
#endif
|
bool begun; ///< true if begin() previously called
|
||||||
|
uint16_t numLEDs; ///< Number of RGB LEDs in strip
|
||||||
protected:
|
uint16_t numBytes; ///< Size of 'pixels' buffer below
|
||||||
#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled...
|
int16_t pin; ///< Output pin number (-1 if not yet set)
|
||||||
bool is800KHz; ///< true if 800 KHz pixels
|
uint8_t brightness; ///< Strip brightness 0-255 (stored as +1)
|
||||||
#endif
|
uint8_t *pixels; ///< Holds LED color values (3 or 4 bytes each)
|
||||||
bool begun; ///< true if begin() previously called
|
uint8_t rOffset; ///< Red index within each 3- or 4-byte pixel
|
||||||
uint16_t numLEDs; ///< Number of RGB LEDs in strip
|
uint8_t gOffset; ///< Index of green byte
|
||||||
uint16_t numBytes; ///< Size of 'pixels' buffer below
|
uint8_t bOffset; ///< Index of blue byte
|
||||||
int16_t pin; ///< Output pin number (-1 if not yet set)
|
uint8_t wOffset; ///< Index of white (==rOffset if no white)
|
||||||
uint8_t brightness; ///< Strip brightness 0-255 (stored as +1)
|
uint32_t endTime; ///< Latch timing reference
|
||||||
uint8_t *pixels; ///< Holds LED color values (3 or 4 bytes each)
|
#ifdef __AVR__
|
||||||
uint8_t rOffset; ///< Red index within each 3- or 4-byte pixel
|
volatile uint8_t *port; ///< Output PORT register
|
||||||
uint8_t gOffset; ///< Index of green byte
|
uint8_t pinMask; ///< Output PORT bitmask
|
||||||
uint8_t bOffset; ///< Index of blue byte
|
#endif
|
||||||
uint8_t wOffset; ///< Index of white (==rOffset if no white)
|
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32)
|
||||||
uint32_t endTime; ///< Latch timing reference
|
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT
|
||||||
#ifdef __AVR__
|
uint32_t gpioPin; ///< Output GPIO PIN
|
||||||
volatile uint8_t *port; ///< Output PORT register
|
#endif
|
||||||
uint8_t pinMask; ///< Output PORT bitmask
|
#if defined(ARDUINO_ARCH_RP2040)
|
||||||
#endif
|
PIO pio = pio0;
|
||||||
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32) || defined(ARDUINO_ARCH_CH32)
|
int sm = 0;
|
||||||
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT
|
bool init = true;
|
||||||
uint32_t gpioPin; ///< Output GPIO PIN
|
#endif
|
||||||
#endif
|
};
|
||||||
#if defined(ARDUINO_ARCH_RP2040)
|
|
||||||
PIO pio = pio0;
|
|
||||||
int sm = 0;
|
|
||||||
bool init = true;
|
|
||||||
#endif
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif // ADAFRUIT_NEOPIXEL_H
|
|
||||||
|
|
||||||
|
#endif // ADAFRUIT_NEOPIXEL_H
|
||||||
|
|
|
@ -17,256 +17,147 @@
|
||||||
* limitations under the License.
|
* limitations under the License.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#if defined(ESP32)
|
#if defined(ESP32)
|
||||||
|
|
||||||
#include <Arduino.h>
|
#include <Arduino.h>
|
||||||
|
#include "driver/rmt.h"
|
||||||
|
|
||||||
#if defined(ESP_IDF_VERSION)
|
#if defined(ESP_IDF_VERSION)
|
||||||
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
|
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
|
||||||
#define HAS_ESP_IDF_4
|
#define HAS_ESP_IDF_4
|
||||||
#endif
|
#endif
|
||||||
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
|
#endif
|
||||||
#define HAS_ESP_IDF_5
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered
|
||||||
|
// to work with the Arduino version of the ESP-IDF (3.2)
|
||||||
|
|
||||||
#ifdef HAS_ESP_IDF_5
|
#define WS2812_T0H_NS (400)
|
||||||
|
#define WS2812_T0L_NS (850)
|
||||||
|
#define WS2812_T1H_NS (800)
|
||||||
|
#define WS2812_T1L_NS (450)
|
||||||
|
|
||||||
static SemaphoreHandle_t show_mutex = NULL;
|
#define WS2811_T0H_NS (500)
|
||||||
|
#define WS2811_T0L_NS (2000)
|
||||||
|
#define WS2811_T1H_NS (1200)
|
||||||
|
#define WS2811_T1L_NS (1300)
|
||||||
|
|
||||||
void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
|
static uint32_t t0h_ticks = 0;
|
||||||
// Note: Because rmtPin is shared between all instances, we will
|
static uint32_t t1h_ticks = 0;
|
||||||
// end up releasing/initializing the RMT channels each time we
|
static uint32_t t0l_ticks = 0;
|
||||||
// invoke on different pins. This is probably ok, just not
|
static uint32_t t1l_ticks = 0;
|
||||||
// efficient. led_data is shared between all instances but will
|
|
||||||
// be allocated with enough space for the largest instance; data
|
|
||||||
// is not used beyond the mutex lock so this should be fine.
|
|
||||||
|
|
||||||
#define SEMAPHORE_TIMEOUT_MS 50
|
// Limit the number of RMT channels available for the Neopixels. Defaults to all
|
||||||
|
// channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free
|
||||||
|
// any channels with a higher number for other uses, such as IR send-and-recieve
|
||||||
|
// libraries. Redefine as 1 to restrict Neopixels to only a single channel.
|
||||||
|
#define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX
|
||||||
|
|
||||||
static rmt_data_t *led_data = NULL;
|
#define RMT_LL_HW_BASE (&RMT)
|
||||||
static uint32_t led_data_size = 0;
|
|
||||||
static int rmtPin = -1;
|
|
||||||
|
|
||||||
if (show_mutex && xSemaphoreTake(show_mutex, SEMAPHORE_TIMEOUT_MS / portTICK_PERIOD_MS) == pdTRUE) {
|
bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX];
|
||||||
uint32_t requiredSize = numBytes * 8;
|
|
||||||
if (requiredSize > led_data_size) {
|
|
||||||
free(led_data);
|
|
||||||
if (led_data = (rmt_data_t *)malloc(requiredSize * sizeof(rmt_data_t))) {
|
|
||||||
led_data_size = requiredSize;
|
|
||||||
} else {
|
|
||||||
led_data_size = 0;
|
|
||||||
}
|
|
||||||
} else if (requiredSize == 0) {
|
|
||||||
// To release RMT resources (RMT channels and led_data), call
|
|
||||||
// .updateLength(0) to set number of pixels/bytes to zero,
|
|
||||||
// then call .show() to invoke this code and free resources.
|
|
||||||
free(led_data);
|
|
||||||
led_data = NULL;
|
|
||||||
if (rmtPin >= 0) {
|
|
||||||
rmtDeinit(rmtPin);
|
|
||||||
rmtPin = -1;
|
|
||||||
}
|
|
||||||
led_data_size = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (led_data_size > 0 && requiredSize <= led_data_size) {
|
static void IRAM_ATTR ws2812_rmt_adapter(const void* src, rmt_item32_t* dest, size_t src_size, size_t wanted_num,
|
||||||
if (pin != rmtPin) {
|
size_t* translated_size, size_t* item_num) {
|
||||||
if (rmtPin >= 0) {
|
if (src == NULL || dest == NULL) {
|
||||||
rmtDeinit(rmtPin);
|
*translated_size = 0;
|
||||||
rmtPin = -1;
|
*item_num = 0;
|
||||||
}
|
return;
|
||||||
if (!rmtInit(pin, RMT_TX_MODE, RMT_MEM_NUM_BLOCKS_1, 10000000)) {
|
}
|
||||||
log_e("Failed to init RMT TX mode on pin %d", pin);
|
const rmt_item32_t bit0 = {{{t0h_ticks, 1, t0l_ticks, 0}}}; //Logical 0
|
||||||
return;
|
const rmt_item32_t bit1 = {{{t1h_ticks, 1, t1l_ticks, 0}}}; //Logical 1
|
||||||
}
|
size_t size = 0;
|
||||||
rmtPin = pin;
|
size_t num = 0;
|
||||||
}
|
uint8_t* psrc = (uint8_t*)src;
|
||||||
|
rmt_item32_t* pdest = dest;
|
||||||
|
while (size < src_size && num < wanted_num) {
|
||||||
|
for (int i = 0; i < 8; i++) {
|
||||||
|
// MSB first
|
||||||
|
if (*psrc & (1 << (7 - i))) {
|
||||||
|
pdest->val = bit1.val;
|
||||||
|
} else {
|
||||||
|
pdest->val = bit0.val;
|
||||||
|
}
|
||||||
|
num++;
|
||||||
|
pdest++;
|
||||||
|
}
|
||||||
|
size++;
|
||||||
|
psrc++;
|
||||||
|
}
|
||||||
|
*translated_size = size;
|
||||||
|
*item_num = num;
|
||||||
|
}
|
||||||
|
|
||||||
if (rmtPin >= 0) {
|
static bool rmt_initialized = false;
|
||||||
int i=0;
|
static bool rmt_adapter_initialized = false;
|
||||||
for (int b=0; b < numBytes; b++) {
|
|
||||||
for (int bit=0; bit<8; bit++){
|
|
||||||
if ( pixels[b] & (1<<(7-bit)) ) {
|
|
||||||
led_data[i].level0 = 1;
|
|
||||||
led_data[i].duration0 = 8;
|
|
||||||
led_data[i].level1 = 0;
|
|
||||||
led_data[i].duration1 = 4;
|
|
||||||
} else {
|
|
||||||
led_data[i].level0 = 1;
|
|
||||||
led_data[i].duration0 = 4;
|
|
||||||
led_data[i].level1 = 0;
|
|
||||||
led_data[i].duration1 = 8;
|
|
||||||
}
|
|
||||||
i++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
rmtWrite(pin, led_data, numBytes * 8, RMT_WAIT_FOR_EVER);
|
void espShow(uint8_t pin, uint8_t* pixels, uint32_t numBytes, boolean is800KHz) {
|
||||||
}
|
if (rmt_initialized == false) {
|
||||||
}
|
// Reserve channel
|
||||||
|
rmt_channel_t channel = 0;
|
||||||
|
|
||||||
xSemaphoreGive(show_mutex);
|
#if defined(HAS_ESP_IDF_4)
|
||||||
}
|
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel);
|
||||||
}
|
config.clk_div = 2;
|
||||||
|
#else
|
||||||
|
// Match default TX config from ESP-IDF version 3.4
|
||||||
|
rmt_config_t config = {.rmt_mode = RMT_MODE_TX,
|
||||||
|
.channel = channel,
|
||||||
|
.gpio_num = pin,
|
||||||
|
.clk_div = 2,
|
||||||
|
.mem_block_num = 1,
|
||||||
|
.tx_config = {
|
||||||
|
.carrier_freq_hz = 38000,
|
||||||
|
.carrier_level = RMT_CARRIER_LEVEL_HIGH,
|
||||||
|
.idle_level = RMT_IDLE_LEVEL_LOW,
|
||||||
|
.carrier_duty_percent = 33,
|
||||||
|
.carrier_en = false,
|
||||||
|
.loop_en = false,
|
||||||
|
.idle_output_en = true,
|
||||||
|
}};
|
||||||
|
#endif
|
||||||
|
rmt_config(&config);
|
||||||
|
rmt_driver_install(config.channel, 0, 0);
|
||||||
|
|
||||||
// To avoid race condition initializing the mutex, all instances of
|
// Convert NS timings to ticks
|
||||||
// Adafruit_NeoPixel must be constructed before launching and child threads
|
uint32_t counter_clk_hz = 0;
|
||||||
void espInit() {
|
|
||||||
if (!show_mutex) {
|
|
||||||
show_mutex = xSemaphoreCreateMutex();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#else
|
#if defined(HAS_ESP_IDF_4)
|
||||||
|
rmt_get_counter_clock(channel, &counter_clk_hz);
|
||||||
|
#else
|
||||||
|
// this emulates the rmt_get_counter_clock() function from ESP-IDF 3.4
|
||||||
|
if (RMT_LL_HW_BASE->conf_ch[config.channel].conf1.ref_always_on == RMT_BASECLK_REF) {
|
||||||
|
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
|
||||||
|
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
|
||||||
|
counter_clk_hz = REF_CLK_FREQ / (div);
|
||||||
|
} else {
|
||||||
|
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
|
||||||
|
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
|
||||||
|
counter_clk_hz = APB_CLK_FREQ / (div);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#include "driver/rmt.h"
|
// NS to tick converter
|
||||||
|
float ratio = (float)counter_clk_hz / 1e9;
|
||||||
|
|
||||||
|
if (is800KHz) {
|
||||||
|
t0h_ticks = (uint32_t)(ratio * WS2812_T0H_NS);
|
||||||
|
t0l_ticks = (uint32_t)(ratio * WS2812_T0L_NS);
|
||||||
|
t1h_ticks = (uint32_t)(ratio * WS2812_T1H_NS);
|
||||||
|
t1l_ticks = (uint32_t)(ratio * WS2812_T1L_NS);
|
||||||
|
} else {
|
||||||
|
t0h_ticks = (uint32_t)(ratio * WS2811_T0H_NS);
|
||||||
|
t0l_ticks = (uint32_t)(ratio * WS2811_T0L_NS);
|
||||||
|
t1h_ticks = (uint32_t)(ratio * WS2811_T1H_NS);
|
||||||
|
t1l_ticks = (uint32_t)(ratio * WS2811_T1L_NS);
|
||||||
|
}
|
||||||
|
|
||||||
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered
|
// Initialize automatic timing translator
|
||||||
// to work with the Arduino version of the ESP-IDF (3.2)
|
rmt_translator_init(0, ws2812_rmt_adapter);
|
||||||
|
rmt_initialized = true;
|
||||||
|
}
|
||||||
|
|
||||||
#define WS2812_T0H_NS (400)
|
// Write and wait to finish
|
||||||
#define WS2812_T0L_NS (850)
|
rmt_write_sample(0, pixels, (size_t)numBytes, false);
|
||||||
#define WS2812_T1H_NS (800)
|
}
|
||||||
#define WS2812_T1L_NS (450)
|
|
||||||
|
|
||||||
#define WS2811_T0H_NS (500)
|
|
||||||
#define WS2811_T0L_NS (2000)
|
|
||||||
#define WS2811_T1H_NS (1200)
|
|
||||||
#define WS2811_T1L_NS (1300)
|
|
||||||
|
|
||||||
static uint32_t t0h_ticks = 0;
|
|
||||||
static uint32_t t1h_ticks = 0;
|
|
||||||
static uint32_t t0l_ticks = 0;
|
|
||||||
static uint32_t t1l_ticks = 0;
|
|
||||||
|
|
||||||
// Limit the number of RMT channels available for the Neopixels. Defaults to all
|
|
||||||
// channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free
|
|
||||||
// any channels with a higher number for other uses, such as IR send-and-recieve
|
|
||||||
// libraries. Redefine as 1 to restrict Neopixels to only a single channel.
|
|
||||||
#define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX
|
|
||||||
|
|
||||||
#define RMT_LL_HW_BASE (&RMT)
|
|
||||||
|
|
||||||
bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX];
|
|
||||||
|
|
||||||
static void IRAM_ATTR ws2812_rmt_adapter(const void *src, rmt_item32_t *dest, size_t src_size,
|
|
||||||
size_t wanted_num, size_t *translated_size, size_t *item_num)
|
|
||||||
{
|
|
||||||
if (src == NULL || dest == NULL) {
|
|
||||||
*translated_size = 0;
|
|
||||||
*item_num = 0;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
const rmt_item32_t bit0 = {{{ t0h_ticks, 1, t0l_ticks, 0 }}}; //Logical 0
|
|
||||||
const rmt_item32_t bit1 = {{{ t1h_ticks, 1, t1l_ticks, 0 }}}; //Logical 1
|
|
||||||
size_t size = 0;
|
|
||||||
size_t num = 0;
|
|
||||||
uint8_t *psrc = (uint8_t *)src;
|
|
||||||
rmt_item32_t *pdest = dest;
|
|
||||||
while (size < src_size && num < wanted_num) {
|
|
||||||
for (int i = 0; i < 8; i++) {
|
|
||||||
// MSB first
|
|
||||||
if (*psrc & (1 << (7 - i))) {
|
|
||||||
pdest->val = bit1.val;
|
|
||||||
} else {
|
|
||||||
pdest->val = bit0.val;
|
|
||||||
}
|
|
||||||
num++;
|
|
||||||
pdest++;
|
|
||||||
}
|
|
||||||
size++;
|
|
||||||
psrc++;
|
|
||||||
}
|
|
||||||
*translated_size = size;
|
|
||||||
*item_num = num;
|
|
||||||
}
|
|
||||||
|
|
||||||
static bool rmt_initialized = false;
|
|
||||||
static bool rmt_adapter_initialized = false;
|
|
||||||
|
|
||||||
void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
|
|
||||||
if (rmt_initialized == false) {
|
|
||||||
// Reserve channel
|
|
||||||
rmt_channel_t channel = 0;
|
|
||||||
#if defined(HAS_ESP_IDF_4)
|
|
||||||
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel);
|
|
||||||
config.clk_div = 2;
|
|
||||||
#else
|
|
||||||
// Match default TX config from ESP-IDF version 3.4
|
|
||||||
rmt_config_t config = {
|
|
||||||
.rmt_mode = RMT_MODE_TX,
|
|
||||||
.channel = channel,
|
|
||||||
.gpio_num = pin,
|
|
||||||
.clk_div = 2,
|
|
||||||
.mem_block_num = 1,
|
|
||||||
.tx_config = {
|
|
||||||
.carrier_freq_hz = 38000,
|
|
||||||
.carrier_level = RMT_CARRIER_LEVEL_HIGH,
|
|
||||||
.idle_level = RMT_IDLE_LEVEL_LOW,
|
|
||||||
.carrier_duty_percent = 33,
|
|
||||||
.carrier_en = false,
|
|
||||||
.loop_en = false,
|
|
||||||
.idle_output_en = true,
|
|
||||||
}
|
|
||||||
};
|
|
||||||
#endif
|
|
||||||
rmt_config(&config);
|
|
||||||
rmt_driver_install(config.channel, 0, 0);
|
|
||||||
|
|
||||||
// Convert NS timings to ticks
|
|
||||||
uint32_t counter_clk_hz = 0;
|
|
||||||
|
|
||||||
#if defined(HAS_ESP_IDF_4)
|
|
||||||
rmt_get_counter_clock(channel, &counter_clk_hz);
|
|
||||||
#else
|
|
||||||
// this emulates the rmt_get_counter_clock() function from ESP-IDF 3.4
|
|
||||||
if (RMT_LL_HW_BASE->conf_ch[config.channel].conf1.ref_always_on == RMT_BASECLK_REF) {
|
|
||||||
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
|
|
||||||
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
|
|
||||||
counter_clk_hz = REF_CLK_FREQ / (div);
|
|
||||||
} else {
|
|
||||||
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
|
|
||||||
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
|
|
||||||
counter_clk_hz = APB_CLK_FREQ / (div);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// NS to tick converter
|
|
||||||
float ratio = (float)counter_clk_hz / 1e9;
|
|
||||||
|
|
||||||
if (is800KHz) {
|
|
||||||
t0h_ticks = (uint32_t)(ratio * WS2812_T0H_NS);
|
|
||||||
t0l_ticks = (uint32_t)(ratio * WS2812_T0L_NS);
|
|
||||||
t1h_ticks = (uint32_t)(ratio * WS2812_T1H_NS);
|
|
||||||
t1l_ticks = (uint32_t)(ratio * WS2812_T1L_NS);
|
|
||||||
} else {
|
|
||||||
t0h_ticks = (uint32_t)(ratio * WS2811_T0H_NS);
|
|
||||||
t0l_ticks = (uint32_t)(ratio * WS2811_T0L_NS);
|
|
||||||
t1h_ticks = (uint32_t)(ratio * WS2811_T1H_NS);
|
|
||||||
t1l_ticks = (uint32_t)(ratio * WS2811_T1L_NS);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initialize automatic timing translator
|
|
||||||
rmt_translator_init(0, ws2812_rmt_adapter);
|
|
||||||
rmt_initialized = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Write and wait to finish
|
|
||||||
rmt_write_sample(0, pixels, (size_t)numBytes, false);
|
|
||||||
//rmt_wait_tx_done(config.channel, pdMS_TO_TICKS(100));
|
|
||||||
|
|
||||||
// Free channel again
|
|
||||||
//rmt_driver_uninstall(config.channel);
|
|
||||||
//rmt_reserved_channels[channel] = false;
|
|
||||||
|
|
||||||
//gpio_set_direction(pin, GPIO_MODE_OUTPUT);
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif // ifndef IDF5
|
|
||||||
|
|
||||||
|
|
||||||
#endif // ifdef(ESP32)
|
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue