Revert "Update Adafruit_NeoPixel library to commit fd74287"

This commit is contained in:
Daniel Öster 2025-03-26 23:55:28 +02:00 committed by GitHub
parent 6824f0633a
commit 6f59924b4e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 3945 additions and 4326 deletions

View file

@ -33,134 +33,134 @@
*
*/
#ifndef ADAFRUIT_NEOPIXEL_H
#define ADAFRUIT_NEOPIXEL_H
#ifndef ADAFRUIT_NEOPIXEL_H
#define ADAFRUIT_NEOPIXEL_H
#ifdef ARDUINO
#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#include <pins_arduino.h>
#endif
#ifdef ARDUINO
#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#include <pins_arduino.h>
#endif
#ifdef USE_TINYUSB // For Serial when selecting TinyUSB
#include <Adafruit_TinyUSB.h>
#endif
#ifdef USE_TINYUSB // For Serial when selecting TinyUSB
#include <Adafruit_TinyUSB.h>
#endif
#endif
#endif
#ifdef TARGET_LPC1768
#include <Arduino.h>
#endif
#ifdef TARGET_LPC1768
#include <Arduino.h>
#endif
#if defined(ARDUINO_ARCH_RP2040)
#include <stdlib.h>
#include "hardware/pio.h"
#include "hardware/clocks.h"
#include "rp2040_pio.h"
#endif
#if defined(ARDUINO_ARCH_RP2040)
#include <stdlib.h>
#include "hardware/pio.h"
#include "hardware/clocks.h"
#include "rp2040_pio.h"
#endif
// The order of primary colors in the NeoPixel data stream can vary among
// device types, manufacturers and even different revisions of the same
// item. The third parameter to the Adafruit_NeoPixel constructor encodes
// the per-pixel byte offsets of the red, green and blue primaries (plus
// white, if present) in the data stream -- the following #defines provide
// an easier-to-use named version for each permutation. e.g. NEO_GRB
// indicates a NeoPixel-compatible device expecting three bytes per pixel,
// with the first byte transmitted containing the green value, second
// containing red and third containing blue. The in-memory representation
// of a chain of NeoPixels is the same as the data-stream order; no
// re-ordering of bytes is required when issuing data to the chain.
// Most of these values won't exist in real-world devices, but it's done
// this way so we're ready for it (also, if using the WS2811 driver IC,
// one might have their pixels set up in any weird permutation).
// The order of primary colors in the NeoPixel data stream can vary among
// device types, manufacturers and even different revisions of the same
// item. The third parameter to the Adafruit_NeoPixel constructor encodes
// the per-pixel byte offsets of the red, green and blue primaries (plus
// white, if present) in the data stream -- the following #defines provide
// an easier-to-use named version for each permutation. e.g. NEO_GRB
// indicates a NeoPixel-compatible device expecting three bytes per pixel,
// with the first byte transmitted containing the green value, second
// containing red and third containing blue. The in-memory representation
// of a chain of NeoPixels is the same as the data-stream order; no
// re-ordering of bytes is required when issuing data to the chain.
// Most of these values won't exist in real-world devices, but it's done
// this way so we're ready for it (also, if using the WS2811 driver IC,
// one might have their pixels set up in any weird permutation).
// Bits 5,4 of this value are the offset (0-3) from the first byte of a
// pixel to the location of the red color byte. Bits 3,2 are the green
// offset and 1,0 are the blue offset. If it is an RGBW-type device
// (supporting a white primary in addition to R,G,B), bits 7,6 are the
// offset to the white byte...otherwise, bits 7,6 are set to the same value
// as 5,4 (red) to indicate an RGB (not RGBW) device.
// i.e. binary representation:
// 0bWWRRGGBB for RGBW devices
// 0bRRRRGGBB for RGB
// Bits 5,4 of this value are the offset (0-3) from the first byte of a
// pixel to the location of the red color byte. Bits 3,2 are the green
// offset and 1,0 are the blue offset. If it is an RGBW-type device
// (supporting a white primary in addition to R,G,B), bits 7,6 are the
// offset to the white byte...otherwise, bits 7,6 are set to the same value
// as 5,4 (red) to indicate an RGB (not RGBW) device.
// i.e. binary representation:
// 0bWWRRGGBB for RGBW devices
// 0bRRRRGGBB for RGB
// RGB NeoPixel permutations; white and red offsets are always same
// Offset: W R G B
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R
// RGB NeoPixel permutations; white and red offsets are always same
// Offset: W R G B
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R
// RGBW NeoPixel permutations; all 4 offsets are distinct
// Offset: W R G B
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R
// RGBW NeoPixel permutations; all 4 offsets are distinct
// Offset: W R G B
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W
// Add NEO_KHZ400 to the color order value to indicate a 400 KHz device.
// All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is
// the default if unspecified. Because flash space is very limited on ATtiny
// devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on
// those chips, though it can be enabled by removing the ifndef/endif below,
// but code will be bigger. Conversely, can disable the NEO_KHZ400 line on
// other MCUs to remove v1 support and save a little space.
// Add NEO_KHZ400 to the color order value to indicate a 400 KHz device.
// All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is
// the default if unspecified. Because flash space is very limited on ATtiny
// devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on
// those chips, though it can be enabled by removing the ifndef/endif below,
// but code will be bigger. Conversely, can disable the NEO_KHZ400 line on
// other MCUs to remove v1 support and save a little space.
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
#ifndef __AVR_ATtiny85__
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
#endif
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
#ifndef __AVR_ATtiny85__
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
#endif
// If 400 KHz support is enabled, the third parameter to the constructor
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
// is sufficient to encode pixel color order, saving some space.
// If 400 KHz support is enabled, the third parameter to the constructor
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
// is sufficient to encode pixel color order, saving some space.
#ifdef NEO_KHZ400
typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#else
typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#endif
#ifdef NEO_KHZ400
typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#else
typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#endif
// These two tables are declared outside the Adafruit_NeoPixel class
// because some boards may require oldschool compilers that don't
// handle the C++11 constexpr keyword.
// These two tables are declared outside the Adafruit_NeoPixel class
// because some boards may require oldschool compilers that don't
// handle the C++11 constexpr keyword.
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
Copy & paste this snippet into a Python REPL to regenerate:
import math
for x in range(256):
import math
for x in range(256):
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
if x&15 == 15: print
*/
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
*/
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
@ -180,15 +180,15 @@
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
124};
/* Similar to above, but for an 8-bit gamma-correction table.
/* Similar to above, but for an 8-bit gamma-correction table.
Copy & paste this snippet into a Python REPL to regenerate:
import math
gamma=2.6
for x in range(256):
import math
gamma=2.6
for x in range(256):
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
if x&15 == 15: print
*/
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
*/
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
@ -208,22 +208,13 @@
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
255};
/* Declare external methods required by the Adafruit_NeoPixel implementation
for specific hardware/library versions
*/
#if defined(ESP32)
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
extern "C" void espInit();
#endif
#endif
/*!
/*!
@brief Class that stores state and functions for interacting with
Adafruit NeoPixels and compatible devices.
*/
class Adafruit_NeoPixel {
*/
class Adafruit_NeoPixel {
public:
public:
// Constructor: number of LEDs, pin number, LED type
Adafruit_NeoPixel(uint16_t n, int16_t pin = 6,
neoPixelType type = NEO_GRB + NEO_KHZ800);
@ -382,16 +373,16 @@
static neoPixelType str2order(const char *v);
private:
#if defined(ARDUINO_ARCH_RP2040)
private:
#if defined(ARDUINO_ARCH_RP2040)
void rp2040Init(uint8_t pin, bool is800KHz);
void rp2040Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz);
#endif
#endif
protected:
#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled...
protected:
#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled...
bool is800KHz; ///< true if 800 KHz pixels
#endif
#endif
bool begun; ///< true if begin() previously called
uint16_t numLEDs; ///< Number of RGB LEDs in strip
uint16_t numBytes; ///< Size of 'pixels' buffer below
@ -403,20 +394,19 @@
uint8_t bOffset; ///< Index of blue byte
uint8_t wOffset; ///< Index of white (==rOffset if no white)
uint32_t endTime; ///< Latch timing reference
#ifdef __AVR__
#ifdef __AVR__
volatile uint8_t *port; ///< Output PORT register
uint8_t pinMask; ///< Output PORT bitmask
#endif
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32) || defined(ARDUINO_ARCH_CH32)
#endif
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32)
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT
uint32_t gpioPin; ///< Output GPIO PIN
#endif
#if defined(ARDUINO_ARCH_RP2040)
#endif
#if defined(ARDUINO_ARCH_RP2040)
PIO pio = pio0;
int sm = 0;
bool init = true;
#endif
};
#endif // ADAFRUIT_NEOPIXEL_H
#endif
};
#endif // ADAFRUIT_NEOPIXEL_H

View file

@ -17,155 +17,58 @@
* limitations under the License.
*/
#if defined(ESP32)
#if defined(ESP32)
#include <Arduino.h>
#include <Arduino.h>
#include "driver/rmt.h"
#if defined(ESP_IDF_VERSION)
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
#define HAS_ESP_IDF_4
#endif
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
#define HAS_ESP_IDF_5
#endif
#endif
#if defined(ESP_IDF_VERSION)
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
#define HAS_ESP_IDF_4
#endif
#endif
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered
// to work with the Arduino version of the ESP-IDF (3.2)
#ifdef HAS_ESP_IDF_5
#define WS2812_T0H_NS (400)
#define WS2812_T0L_NS (850)
#define WS2812_T1H_NS (800)
#define WS2812_T1L_NS (450)
static SemaphoreHandle_t show_mutex = NULL;
#define WS2811_T0H_NS (500)
#define WS2811_T0L_NS (2000)
#define WS2811_T1H_NS (1200)
#define WS2811_T1L_NS (1300)
void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
// Note: Because rmtPin is shared between all instances, we will
// end up releasing/initializing the RMT channels each time we
// invoke on different pins. This is probably ok, just not
// efficient. led_data is shared between all instances but will
// be allocated with enough space for the largest instance; data
// is not used beyond the mutex lock so this should be fine.
static uint32_t t0h_ticks = 0;
static uint32_t t1h_ticks = 0;
static uint32_t t0l_ticks = 0;
static uint32_t t1l_ticks = 0;
#define SEMAPHORE_TIMEOUT_MS 50
// Limit the number of RMT channels available for the Neopixels. Defaults to all
// channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free
// any channels with a higher number for other uses, such as IR send-and-recieve
// libraries. Redefine as 1 to restrict Neopixels to only a single channel.
#define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX
static rmt_data_t *led_data = NULL;
static uint32_t led_data_size = 0;
static int rmtPin = -1;
#define RMT_LL_HW_BASE (&RMT)
if (show_mutex && xSemaphoreTake(show_mutex, SEMAPHORE_TIMEOUT_MS / portTICK_PERIOD_MS) == pdTRUE) {
uint32_t requiredSize = numBytes * 8;
if (requiredSize > led_data_size) {
free(led_data);
if (led_data = (rmt_data_t *)malloc(requiredSize * sizeof(rmt_data_t))) {
led_data_size = requiredSize;
} else {
led_data_size = 0;
}
} else if (requiredSize == 0) {
// To release RMT resources (RMT channels and led_data), call
// .updateLength(0) to set number of pixels/bytes to zero,
// then call .show() to invoke this code and free resources.
free(led_data);
led_data = NULL;
if (rmtPin >= 0) {
rmtDeinit(rmtPin);
rmtPin = -1;
}
led_data_size = 0;
}
bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX];
if (led_data_size > 0 && requiredSize <= led_data_size) {
if (pin != rmtPin) {
if (rmtPin >= 0) {
rmtDeinit(rmtPin);
rmtPin = -1;
}
if (!rmtInit(pin, RMT_TX_MODE, RMT_MEM_NUM_BLOCKS_1, 10000000)) {
log_e("Failed to init RMT TX mode on pin %d", pin);
return;
}
rmtPin = pin;
}
if (rmtPin >= 0) {
int i=0;
for (int b=0; b < numBytes; b++) {
for (int bit=0; bit<8; bit++){
if ( pixels[b] & (1<<(7-bit)) ) {
led_data[i].level0 = 1;
led_data[i].duration0 = 8;
led_data[i].level1 = 0;
led_data[i].duration1 = 4;
} else {
led_data[i].level0 = 1;
led_data[i].duration0 = 4;
led_data[i].level1 = 0;
led_data[i].duration1 = 8;
}
i++;
}
}
rmtWrite(pin, led_data, numBytes * 8, RMT_WAIT_FOR_EVER);
}
}
xSemaphoreGive(show_mutex);
}
}
// To avoid race condition initializing the mutex, all instances of
// Adafruit_NeoPixel must be constructed before launching and child threads
void espInit() {
if (!show_mutex) {
show_mutex = xSemaphoreCreateMutex();
}
}
#else
#include "driver/rmt.h"
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered
// to work with the Arduino version of the ESP-IDF (3.2)
#define WS2812_T0H_NS (400)
#define WS2812_T0L_NS (850)
#define WS2812_T1H_NS (800)
#define WS2812_T1L_NS (450)
#define WS2811_T0H_NS (500)
#define WS2811_T0L_NS (2000)
#define WS2811_T1H_NS (1200)
#define WS2811_T1L_NS (1300)
static uint32_t t0h_ticks = 0;
static uint32_t t1h_ticks = 0;
static uint32_t t0l_ticks = 0;
static uint32_t t1l_ticks = 0;
// Limit the number of RMT channels available for the Neopixels. Defaults to all
// channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free
// any channels with a higher number for other uses, such as IR send-and-recieve
// libraries. Redefine as 1 to restrict Neopixels to only a single channel.
#define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX
#define RMT_LL_HW_BASE (&RMT)
bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX];
static void IRAM_ATTR ws2812_rmt_adapter(const void *src, rmt_item32_t *dest, size_t src_size,
size_t wanted_num, size_t *translated_size, size_t *item_num)
{
static void IRAM_ATTR ws2812_rmt_adapter(const void* src, rmt_item32_t* dest, size_t src_size, size_t wanted_num,
size_t* translated_size, size_t* item_num) {
if (src == NULL || dest == NULL) {
*translated_size = 0;
*item_num = 0;
return;
}
const rmt_item32_t bit0 = {{{ t0h_ticks, 1, t0l_ticks, 0 }}}; //Logical 0
const rmt_item32_t bit1 = {{{ t1h_ticks, 1, t1l_ticks, 0 }}}; //Logical 1
const rmt_item32_t bit0 = {{{t0h_ticks, 1, t0l_ticks, 0}}}; //Logical 0
const rmt_item32_t bit1 = {{{t1h_ticks, 1, t1l_ticks, 0}}}; //Logical 1
size_t size = 0;
size_t num = 0;
uint8_t *psrc = (uint8_t *)src;
rmt_item32_t *pdest = dest;
uint8_t* psrc = (uint8_t*)src;
rmt_item32_t* pdest = dest;
while (size < src_size && num < wanted_num) {
for (int i = 0; i < 8; i++) {
// MSB first
@ -182,22 +85,22 @@
}
*translated_size = size;
*item_num = num;
}
}
static bool rmt_initialized = false;
static bool rmt_adapter_initialized = false;
static bool rmt_initialized = false;
static bool rmt_adapter_initialized = false;
void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
void espShow(uint8_t pin, uint8_t* pixels, uint32_t numBytes, boolean is800KHz) {
if (rmt_initialized == false) {
// Reserve channel
rmt_channel_t channel = 0;
#if defined(HAS_ESP_IDF_4)
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel);
config.clk_div = 2;
#else
// Match default TX config from ESP-IDF version 3.4
rmt_config_t config = {
.rmt_mode = RMT_MODE_TX,
rmt_config_t config = {.rmt_mode = RMT_MODE_TX,
.channel = channel,
.gpio_num = pin,
.clk_div = 2,
@ -210,8 +113,7 @@
.carrier_en = false,
.loop_en = false,
.idle_output_en = true,
}
};
}};
#endif
rmt_config(&config);
rmt_driver_install(config.channel, 0, 0);
@ -256,17 +158,6 @@
// Write and wait to finish
rmt_write_sample(0, pixels, (size_t)numBytes, false);
//rmt_wait_tx_done(config.channel, pdMS_TO_TICKS(100));
// Free channel again
//rmt_driver_uninstall(config.channel);
//rmt_reserved_channels[channel] = false;
//gpio_set_direction(pin, GPIO_MODE_OUTPUT);
}
#endif // ifndef IDF5
#endif // ifdef(ESP32)
}
#endif