mirror of
https://github.com/dalathegreat/Battery-Emulator.git
synced 2025-10-03 17:59:27 +02:00
Revert "Update Adafruit_NeoPixel library to commit fd74287"
This commit is contained in:
parent
6824f0633a
commit
6f59924b4e
3 changed files with 3945 additions and 4326 deletions
File diff suppressed because it is too large
Load diff
|
@ -33,390 +33,380 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#ifndef ADAFRUIT_NEOPIXEL_H
|
||||
#define ADAFRUIT_NEOPIXEL_H
|
||||
#ifndef ADAFRUIT_NEOPIXEL_H
|
||||
#define ADAFRUIT_NEOPIXEL_H
|
||||
|
||||
#ifdef ARDUINO
|
||||
#if (ARDUINO >= 100)
|
||||
#include <Arduino.h>
|
||||
#else
|
||||
#include <WProgram.h>
|
||||
#include <pins_arduino.h>
|
||||
#endif
|
||||
#ifdef ARDUINO
|
||||
#if (ARDUINO >= 100)
|
||||
#include <Arduino.h>
|
||||
#else
|
||||
#include <WProgram.h>
|
||||
#include <pins_arduino.h>
|
||||
#endif
|
||||
|
||||
#ifdef USE_TINYUSB // For Serial when selecting TinyUSB
|
||||
#include <Adafruit_TinyUSB.h>
|
||||
#endif
|
||||
#ifdef USE_TINYUSB // For Serial when selecting TinyUSB
|
||||
#include <Adafruit_TinyUSB.h>
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef TARGET_LPC1768
|
||||
#include <Arduino.h>
|
||||
#endif
|
||||
#ifdef TARGET_LPC1768
|
||||
#include <Arduino.h>
|
||||
#endif
|
||||
|
||||
#if defined(ARDUINO_ARCH_RP2040)
|
||||
#include <stdlib.h>
|
||||
#include "hardware/pio.h"
|
||||
#include "hardware/clocks.h"
|
||||
#include "rp2040_pio.h"
|
||||
#endif
|
||||
#if defined(ARDUINO_ARCH_RP2040)
|
||||
#include <stdlib.h>
|
||||
#include "hardware/pio.h"
|
||||
#include "hardware/clocks.h"
|
||||
#include "rp2040_pio.h"
|
||||
#endif
|
||||
|
||||
// The order of primary colors in the NeoPixel data stream can vary among
|
||||
// device types, manufacturers and even different revisions of the same
|
||||
// item. The third parameter to the Adafruit_NeoPixel constructor encodes
|
||||
// the per-pixel byte offsets of the red, green and blue primaries (plus
|
||||
// white, if present) in the data stream -- the following #defines provide
|
||||
// an easier-to-use named version for each permutation. e.g. NEO_GRB
|
||||
// indicates a NeoPixel-compatible device expecting three bytes per pixel,
|
||||
// with the first byte transmitted containing the green value, second
|
||||
// containing red and third containing blue. The in-memory representation
|
||||
// of a chain of NeoPixels is the same as the data-stream order; no
|
||||
// re-ordering of bytes is required when issuing data to the chain.
|
||||
// Most of these values won't exist in real-world devices, but it's done
|
||||
// this way so we're ready for it (also, if using the WS2811 driver IC,
|
||||
// one might have their pixels set up in any weird permutation).
|
||||
// The order of primary colors in the NeoPixel data stream can vary among
|
||||
// device types, manufacturers and even different revisions of the same
|
||||
// item. The third parameter to the Adafruit_NeoPixel constructor encodes
|
||||
// the per-pixel byte offsets of the red, green and blue primaries (plus
|
||||
// white, if present) in the data stream -- the following #defines provide
|
||||
// an easier-to-use named version for each permutation. e.g. NEO_GRB
|
||||
// indicates a NeoPixel-compatible device expecting three bytes per pixel,
|
||||
// with the first byte transmitted containing the green value, second
|
||||
// containing red and third containing blue. The in-memory representation
|
||||
// of a chain of NeoPixels is the same as the data-stream order; no
|
||||
// re-ordering of bytes is required when issuing data to the chain.
|
||||
// Most of these values won't exist in real-world devices, but it's done
|
||||
// this way so we're ready for it (also, if using the WS2811 driver IC,
|
||||
// one might have their pixels set up in any weird permutation).
|
||||
|
||||
// Bits 5,4 of this value are the offset (0-3) from the first byte of a
|
||||
// pixel to the location of the red color byte. Bits 3,2 are the green
|
||||
// offset and 1,0 are the blue offset. If it is an RGBW-type device
|
||||
// (supporting a white primary in addition to R,G,B), bits 7,6 are the
|
||||
// offset to the white byte...otherwise, bits 7,6 are set to the same value
|
||||
// as 5,4 (red) to indicate an RGB (not RGBW) device.
|
||||
// i.e. binary representation:
|
||||
// 0bWWRRGGBB for RGBW devices
|
||||
// 0bRRRRGGBB for RGB
|
||||
// Bits 5,4 of this value are the offset (0-3) from the first byte of a
|
||||
// pixel to the location of the red color byte. Bits 3,2 are the green
|
||||
// offset and 1,0 are the blue offset. If it is an RGBW-type device
|
||||
// (supporting a white primary in addition to R,G,B), bits 7,6 are the
|
||||
// offset to the white byte...otherwise, bits 7,6 are set to the same value
|
||||
// as 5,4 (red) to indicate an RGB (not RGBW) device.
|
||||
// i.e. binary representation:
|
||||
// 0bWWRRGGBB for RGBW devices
|
||||
// 0bRRRRGGBB for RGB
|
||||
|
||||
// RGB NeoPixel permutations; white and red offsets are always same
|
||||
// Offset: W R G B
|
||||
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B
|
||||
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G
|
||||
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B
|
||||
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R
|
||||
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G
|
||||
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R
|
||||
// RGB NeoPixel permutations; white and red offsets are always same
|
||||
// Offset: W R G B
|
||||
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B
|
||||
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G
|
||||
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B
|
||||
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R
|
||||
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G
|
||||
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R
|
||||
|
||||
// RGBW NeoPixel permutations; all 4 offsets are distinct
|
||||
// Offset: W R G B
|
||||
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B
|
||||
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G
|
||||
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B
|
||||
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R
|
||||
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G
|
||||
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R
|
||||
// RGBW NeoPixel permutations; all 4 offsets are distinct
|
||||
// Offset: W R G B
|
||||
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B
|
||||
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G
|
||||
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B
|
||||
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R
|
||||
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G
|
||||
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R
|
||||
|
||||
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B
|
||||
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G
|
||||
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B
|
||||
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W
|
||||
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G
|
||||
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W
|
||||
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B
|
||||
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G
|
||||
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B
|
||||
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W
|
||||
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G
|
||||
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W
|
||||
|
||||
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B
|
||||
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R
|
||||
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B
|
||||
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W
|
||||
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R
|
||||
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W
|
||||
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B
|
||||
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R
|
||||
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B
|
||||
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W
|
||||
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R
|
||||
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W
|
||||
|
||||
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G
|
||||
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R
|
||||
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G
|
||||
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W
|
||||
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R
|
||||
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W
|
||||
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G
|
||||
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R
|
||||
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G
|
||||
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W
|
||||
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R
|
||||
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W
|
||||
|
||||
// Add NEO_KHZ400 to the color order value to indicate a 400 KHz device.
|
||||
// All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is
|
||||
// the default if unspecified. Because flash space is very limited on ATtiny
|
||||
// devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on
|
||||
// those chips, though it can be enabled by removing the ifndef/endif below,
|
||||
// but code will be bigger. Conversely, can disable the NEO_KHZ400 line on
|
||||
// other MCUs to remove v1 support and save a little space.
|
||||
// Add NEO_KHZ400 to the color order value to indicate a 400 KHz device.
|
||||
// All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is
|
||||
// the default if unspecified. Because flash space is very limited on ATtiny
|
||||
// devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on
|
||||
// those chips, though it can be enabled by removing the ifndef/endif below,
|
||||
// but code will be bigger. Conversely, can disable the NEO_KHZ400 line on
|
||||
// other MCUs to remove v1 support and save a little space.
|
||||
|
||||
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
|
||||
#ifndef __AVR_ATtiny85__
|
||||
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
|
||||
#endif
|
||||
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
|
||||
#ifndef __AVR_ATtiny85__
|
||||
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
|
||||
#endif
|
||||
|
||||
// If 400 KHz support is enabled, the third parameter to the constructor
|
||||
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
|
||||
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
|
||||
// is sufficient to encode pixel color order, saving some space.
|
||||
// If 400 KHz support is enabled, the third parameter to the constructor
|
||||
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
|
||||
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
|
||||
// is sufficient to encode pixel color order, saving some space.
|
||||
|
||||
#ifdef NEO_KHZ400
|
||||
typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
|
||||
#else
|
||||
typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
|
||||
#endif
|
||||
#ifdef NEO_KHZ400
|
||||
typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
|
||||
#else
|
||||
typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
|
||||
#endif
|
||||
|
||||
// These two tables are declared outside the Adafruit_NeoPixel class
|
||||
// because some boards may require oldschool compilers that don't
|
||||
// handle the C++11 constexpr keyword.
|
||||
// These two tables are declared outside the Adafruit_NeoPixel class
|
||||
// because some boards may require oldschool compilers that don't
|
||||
// handle the C++11 constexpr keyword.
|
||||
|
||||
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
|
||||
Copy & paste this snippet into a Python REPL to regenerate:
|
||||
import math
|
||||
for x in range(256):
|
||||
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
|
||||
if x&15 == 15: print
|
||||
*/
|
||||
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
|
||||
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
|
||||
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
|
||||
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
|
||||
241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
|
||||
254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251,
|
||||
250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
|
||||
230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198,
|
||||
196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
|
||||
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109,
|
||||
106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
|
||||
62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29,
|
||||
27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
|
||||
5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
|
||||
12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37,
|
||||
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
|
||||
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
|
||||
124};
|
||||
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
|
||||
Copy & paste this snippet into a Python REPL to regenerate:
|
||||
import math
|
||||
for x in range(256):
|
||||
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
|
||||
if x&15 == 15: print
|
||||
*/
|
||||
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
|
||||
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
|
||||
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
|
||||
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
|
||||
241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
|
||||
254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251,
|
||||
250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
|
||||
230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198,
|
||||
196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
|
||||
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109,
|
||||
106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
|
||||
62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29,
|
||||
27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
|
||||
5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
|
||||
12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37,
|
||||
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
|
||||
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
|
||||
124};
|
||||
|
||||
/* Similar to above, but for an 8-bit gamma-correction table.
|
||||
Copy & paste this snippet into a Python REPL to regenerate:
|
||||
import math
|
||||
gamma=2.6
|
||||
for x in range(256):
|
||||
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
|
||||
if x&15 == 15: print
|
||||
*/
|
||||
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
|
||||
3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
|
||||
6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
|
||||
11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17,
|
||||
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
|
||||
25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35,
|
||||
36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48,
|
||||
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||
64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81,
|
||||
82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102,
|
||||
103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125,
|
||||
127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152,
|
||||
154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182,
|
||||
184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215,
|
||||
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
|
||||
255};
|
||||
/* Similar to above, but for an 8-bit gamma-correction table.
|
||||
Copy & paste this snippet into a Python REPL to regenerate:
|
||||
import math
|
||||
gamma=2.6
|
||||
for x in range(256):
|
||||
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
|
||||
if x&15 == 15: print
|
||||
*/
|
||||
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
|
||||
3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
|
||||
6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
|
||||
11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17,
|
||||
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
|
||||
25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35,
|
||||
36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48,
|
||||
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||
64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81,
|
||||
82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102,
|
||||
103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125,
|
||||
127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152,
|
||||
154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182,
|
||||
184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215,
|
||||
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
|
||||
255};
|
||||
|
||||
/* Declare external methods required by the Adafruit_NeoPixel implementation
|
||||
for specific hardware/library versions
|
||||
*/
|
||||
#if defined(ESP32)
|
||||
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
|
||||
extern "C" void espInit();
|
||||
#endif
|
||||
#endif
|
||||
/*!
|
||||
@brief Class that stores state and functions for interacting with
|
||||
Adafruit NeoPixels and compatible devices.
|
||||
*/
|
||||
class Adafruit_NeoPixel {
|
||||
|
||||
/*!
|
||||
@brief Class that stores state and functions for interacting with
|
||||
Adafruit NeoPixels and compatible devices.
|
||||
*/
|
||||
class Adafruit_NeoPixel {
|
||||
public:
|
||||
// Constructor: number of LEDs, pin number, LED type
|
||||
Adafruit_NeoPixel(uint16_t n, int16_t pin = 6,
|
||||
neoPixelType type = NEO_GRB + NEO_KHZ800);
|
||||
Adafruit_NeoPixel(void);
|
||||
~Adafruit_NeoPixel();
|
||||
|
||||
public:
|
||||
// Constructor: number of LEDs, pin number, LED type
|
||||
Adafruit_NeoPixel(uint16_t n, int16_t pin = 6,
|
||||
neoPixelType type = NEO_GRB + NEO_KHZ800);
|
||||
Adafruit_NeoPixel(void);
|
||||
~Adafruit_NeoPixel();
|
||||
void begin(void);
|
||||
void show(void);
|
||||
void setPin(int16_t p);
|
||||
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
|
||||
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
|
||||
void setPixelColor(uint16_t n, uint32_t c);
|
||||
void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0);
|
||||
void setBrightness(uint8_t);
|
||||
void clear(void);
|
||||
void updateLength(uint16_t n);
|
||||
void updateType(neoPixelType t);
|
||||
/*!
|
||||
@brief Check whether a call to show() will start sending data
|
||||
immediately or will 'block' for a required interval. NeoPixels
|
||||
require a short quiet time (about 300 microseconds) after the
|
||||
last bit is received before the data 'latches' and new data can
|
||||
start being received. Usually one's sketch is implicitly using
|
||||
this time to generate a new frame of animation...but if it
|
||||
finishes very quickly, this function could be used to see if
|
||||
there's some idle time available for some low-priority
|
||||
concurrent task.
|
||||
@return 1 or true if show() will start sending immediately, 0 or false
|
||||
if show() would block (meaning some idle time is available).
|
||||
*/
|
||||
bool canShow(void) {
|
||||
// It's normal and possible for endTime to exceed micros() if the
|
||||
// 32-bit clock counter has rolled over (about every 70 minutes).
|
||||
// Since both are uint32_t, a negative delta correctly maps back to
|
||||
// positive space, and it would seem like the subtraction below would
|
||||
// suffice. But a problem arises if code invokes show() very
|
||||
// infrequently...the micros() counter may roll over MULTIPLE times in
|
||||
// that interval, the delta calculation is no longer correct and the
|
||||
// next update may stall for a very long time. The check below resets
|
||||
// the latch counter if a rollover has occurred. This can cause an
|
||||
// extra delay of up to 300 microseconds in the rare case where a
|
||||
// show() call happens precisely around the rollover, but that's
|
||||
// neither likely nor especially harmful, vs. other code that might
|
||||
// stall for 30+ minutes, or having to document and frequently remind
|
||||
// and/or provide tech support explaining an unintuitive need for
|
||||
// show() calls at least once an hour.
|
||||
uint32_t now = micros();
|
||||
if (endTime > now) {
|
||||
endTime = now;
|
||||
}
|
||||
return (now - endTime) >= 300L;
|
||||
}
|
||||
/*!
|
||||
@brief Get a pointer directly to the NeoPixel data buffer in RAM.
|
||||
Pixel data is stored in a device-native format (a la the NEO_*
|
||||
constants) and is not translated here. Applications that access
|
||||
this buffer will need to be aware of the specific data format
|
||||
and handle colors appropriately.
|
||||
@return Pointer to NeoPixel buffer (uint8_t* array).
|
||||
@note This is for high-performance applications where calling
|
||||
setPixelColor() on every single pixel would be too slow (e.g.
|
||||
POV or light-painting projects). There is no bounds checking
|
||||
on the array, creating tremendous potential for mayhem if one
|
||||
writes past the ends of the buffer. Great power, great
|
||||
responsibility and all that.
|
||||
*/
|
||||
uint8_t *getPixels(void) const { return pixels; };
|
||||
uint8_t getBrightness(void) const;
|
||||
/*!
|
||||
@brief Retrieve the pin number used for NeoPixel data output.
|
||||
@return Arduino pin number (-1 if not set).
|
||||
*/
|
||||
int16_t getPin(void) const { return pin; };
|
||||
/*!
|
||||
@brief Return the number of pixels in an Adafruit_NeoPixel strip object.
|
||||
@return Pixel count (0 if not set).
|
||||
*/
|
||||
uint16_t numPixels(void) const { return numLEDs; }
|
||||
uint32_t getPixelColor(uint16_t n) const;
|
||||
/*!
|
||||
@brief An 8-bit integer sine wave function, not directly compatible
|
||||
with standard trigonometric units like radians or degrees.
|
||||
@param x Input angle, 0-255; 256 would loop back to zero, completing
|
||||
the circle (equivalent to 360 degrees or 2 pi radians).
|
||||
One can therefore use an unsigned 8-bit variable and simply
|
||||
add or subtract, allowing it to overflow/underflow and it
|
||||
still does the expected contiguous thing.
|
||||
@return Sine result, 0 to 255, or -128 to +127 if type-converted to
|
||||
a signed int8_t, but you'll most likely want unsigned as this
|
||||
output is often used for pixel brightness in animation effects.
|
||||
*/
|
||||
static uint8_t sine8(uint8_t x) {
|
||||
return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
|
||||
}
|
||||
/*!
|
||||
@brief An 8-bit gamma-correction function for basic pixel brightness
|
||||
adjustment. Makes color transitions appear more perceptially
|
||||
correct.
|
||||
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
|
||||
@return Gamma-adjusted brightness, can then be passed to one of the
|
||||
setPixelColor() functions. This uses a fixed gamma correction
|
||||
exponent of 2.6, which seems reasonably okay for average
|
||||
NeoPixels in average tasks. If you need finer control you'll
|
||||
need to provide your own gamma-correction function instead.
|
||||
*/
|
||||
static uint8_t gamma8(uint8_t x) {
|
||||
return pgm_read_byte(&_NeoPixelGammaTable[x]); // 0-255 in, 0-255 out
|
||||
}
|
||||
/*!
|
||||
@brief Convert separate red, green and blue values into a single
|
||||
"packed" 32-bit RGB color.
|
||||
@param r Red brightness, 0 to 255.
|
||||
@param g Green brightness, 0 to 255.
|
||||
@param b Blue brightness, 0 to 255.
|
||||
@return 32-bit packed RGB value, which can then be assigned to a
|
||||
variable for later use or passed to the setPixelColor()
|
||||
function. Packed RGB format is predictable, regardless of
|
||||
LED strand color order.
|
||||
*/
|
||||
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
|
||||
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||||
}
|
||||
/*!
|
||||
@brief Convert separate red, green, blue and white values into a
|
||||
single "packed" 32-bit WRGB color.
|
||||
@param r Red brightness, 0 to 255.
|
||||
@param g Green brightness, 0 to 255.
|
||||
@param b Blue brightness, 0 to 255.
|
||||
@param w White brightness, 0 to 255.
|
||||
@return 32-bit packed WRGB value, which can then be assigned to a
|
||||
variable for later use or passed to the setPixelColor()
|
||||
function. Packed WRGB format is predictable, regardless of
|
||||
LED strand color order.
|
||||
*/
|
||||
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
|
||||
return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||||
}
|
||||
static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
|
||||
/*!
|
||||
@brief A gamma-correction function for 32-bit packed RGB or WRGB
|
||||
colors. Makes color transitions appear more perceptially
|
||||
correct.
|
||||
@param x 32-bit packed RGB or WRGB color.
|
||||
@return Gamma-adjusted packed color, can then be passed in one of the
|
||||
setPixelColor() functions. Like gamma8(), this uses a fixed
|
||||
gamma correction exponent of 2.6, which seems reasonably okay
|
||||
for average NeoPixels in average tasks. If you need finer
|
||||
control you'll need to provide your own gamma-correction
|
||||
function instead.
|
||||
*/
|
||||
static uint32_t gamma32(uint32_t x);
|
||||
|
||||
void begin(void);
|
||||
void show(void);
|
||||
void setPin(int16_t p);
|
||||
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
|
||||
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
|
||||
void setPixelColor(uint16_t n, uint32_t c);
|
||||
void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0);
|
||||
void setBrightness(uint8_t);
|
||||
void clear(void);
|
||||
void updateLength(uint16_t n);
|
||||
void updateType(neoPixelType t);
|
||||
/*!
|
||||
@brief Check whether a call to show() will start sending data
|
||||
immediately or will 'block' for a required interval. NeoPixels
|
||||
require a short quiet time (about 300 microseconds) after the
|
||||
last bit is received before the data 'latches' and new data can
|
||||
start being received. Usually one's sketch is implicitly using
|
||||
this time to generate a new frame of animation...but if it
|
||||
finishes very quickly, this function could be used to see if
|
||||
there's some idle time available for some low-priority
|
||||
concurrent task.
|
||||
@return 1 or true if show() will start sending immediately, 0 or false
|
||||
if show() would block (meaning some idle time is available).
|
||||
*/
|
||||
bool canShow(void) {
|
||||
// It's normal and possible for endTime to exceed micros() if the
|
||||
// 32-bit clock counter has rolled over (about every 70 minutes).
|
||||
// Since both are uint32_t, a negative delta correctly maps back to
|
||||
// positive space, and it would seem like the subtraction below would
|
||||
// suffice. But a problem arises if code invokes show() very
|
||||
// infrequently...the micros() counter may roll over MULTIPLE times in
|
||||
// that interval, the delta calculation is no longer correct and the
|
||||
// next update may stall for a very long time. The check below resets
|
||||
// the latch counter if a rollover has occurred. This can cause an
|
||||
// extra delay of up to 300 microseconds in the rare case where a
|
||||
// show() call happens precisely around the rollover, but that's
|
||||
// neither likely nor especially harmful, vs. other code that might
|
||||
// stall for 30+ minutes, or having to document and frequently remind
|
||||
// and/or provide tech support explaining an unintuitive need for
|
||||
// show() calls at least once an hour.
|
||||
uint32_t now = micros();
|
||||
if (endTime > now) {
|
||||
endTime = now;
|
||||
}
|
||||
return (now - endTime) >= 300L;
|
||||
}
|
||||
/*!
|
||||
@brief Get a pointer directly to the NeoPixel data buffer in RAM.
|
||||
Pixel data is stored in a device-native format (a la the NEO_*
|
||||
constants) and is not translated here. Applications that access
|
||||
this buffer will need to be aware of the specific data format
|
||||
and handle colors appropriately.
|
||||
@return Pointer to NeoPixel buffer (uint8_t* array).
|
||||
@note This is for high-performance applications where calling
|
||||
setPixelColor() on every single pixel would be too slow (e.g.
|
||||
POV or light-painting projects). There is no bounds checking
|
||||
on the array, creating tremendous potential for mayhem if one
|
||||
writes past the ends of the buffer. Great power, great
|
||||
responsibility and all that.
|
||||
*/
|
||||
uint8_t *getPixels(void) const { return pixels; };
|
||||
uint8_t getBrightness(void) const;
|
||||
/*!
|
||||
@brief Retrieve the pin number used for NeoPixel data output.
|
||||
@return Arduino pin number (-1 if not set).
|
||||
*/
|
||||
int16_t getPin(void) const { return pin; };
|
||||
/*!
|
||||
@brief Return the number of pixels in an Adafruit_NeoPixel strip object.
|
||||
@return Pixel count (0 if not set).
|
||||
*/
|
||||
uint16_t numPixels(void) const { return numLEDs; }
|
||||
uint32_t getPixelColor(uint16_t n) const;
|
||||
/*!
|
||||
@brief An 8-bit integer sine wave function, not directly compatible
|
||||
with standard trigonometric units like radians or degrees.
|
||||
@param x Input angle, 0-255; 256 would loop back to zero, completing
|
||||
the circle (equivalent to 360 degrees or 2 pi radians).
|
||||
One can therefore use an unsigned 8-bit variable and simply
|
||||
add or subtract, allowing it to overflow/underflow and it
|
||||
still does the expected contiguous thing.
|
||||
@return Sine result, 0 to 255, or -128 to +127 if type-converted to
|
||||
a signed int8_t, but you'll most likely want unsigned as this
|
||||
output is often used for pixel brightness in animation effects.
|
||||
*/
|
||||
static uint8_t sine8(uint8_t x) {
|
||||
return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
|
||||
}
|
||||
/*!
|
||||
@brief An 8-bit gamma-correction function for basic pixel brightness
|
||||
adjustment. Makes color transitions appear more perceptially
|
||||
correct.
|
||||
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
|
||||
@return Gamma-adjusted brightness, can then be passed to one of the
|
||||
setPixelColor() functions. This uses a fixed gamma correction
|
||||
exponent of 2.6, which seems reasonably okay for average
|
||||
NeoPixels in average tasks. If you need finer control you'll
|
||||
need to provide your own gamma-correction function instead.
|
||||
*/
|
||||
static uint8_t gamma8(uint8_t x) {
|
||||
return pgm_read_byte(&_NeoPixelGammaTable[x]); // 0-255 in, 0-255 out
|
||||
}
|
||||
/*!
|
||||
@brief Convert separate red, green and blue values into a single
|
||||
"packed" 32-bit RGB color.
|
||||
@param r Red brightness, 0 to 255.
|
||||
@param g Green brightness, 0 to 255.
|
||||
@param b Blue brightness, 0 to 255.
|
||||
@return 32-bit packed RGB value, which can then be assigned to a
|
||||
variable for later use or passed to the setPixelColor()
|
||||
function. Packed RGB format is predictable, regardless of
|
||||
LED strand color order.
|
||||
*/
|
||||
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
|
||||
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||||
}
|
||||
/*!
|
||||
@brief Convert separate red, green, blue and white values into a
|
||||
single "packed" 32-bit WRGB color.
|
||||
@param r Red brightness, 0 to 255.
|
||||
@param g Green brightness, 0 to 255.
|
||||
@param b Blue brightness, 0 to 255.
|
||||
@param w White brightness, 0 to 255.
|
||||
@return 32-bit packed WRGB value, which can then be assigned to a
|
||||
variable for later use or passed to the setPixelColor()
|
||||
function. Packed WRGB format is predictable, regardless of
|
||||
LED strand color order.
|
||||
*/
|
||||
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
|
||||
return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||||
}
|
||||
static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
|
||||
/*!
|
||||
@brief A gamma-correction function for 32-bit packed RGB or WRGB
|
||||
colors. Makes color transitions appear more perceptially
|
||||
correct.
|
||||
@param x 32-bit packed RGB or WRGB color.
|
||||
@return Gamma-adjusted packed color, can then be passed in one of the
|
||||
setPixelColor() functions. Like gamma8(), this uses a fixed
|
||||
gamma correction exponent of 2.6, which seems reasonably okay
|
||||
for average NeoPixels in average tasks. If you need finer
|
||||
control you'll need to provide your own gamma-correction
|
||||
function instead.
|
||||
*/
|
||||
static uint32_t gamma32(uint32_t x);
|
||||
void rainbow(uint16_t first_hue = 0, int8_t reps = 1,
|
||||
uint8_t saturation = 255, uint8_t brightness = 255,
|
||||
bool gammify = true);
|
||||
|
||||
void rainbow(uint16_t first_hue = 0, int8_t reps = 1,
|
||||
uint8_t saturation = 255, uint8_t brightness = 255,
|
||||
bool gammify = true);
|
||||
static neoPixelType str2order(const char *v);
|
||||
|
||||
static neoPixelType str2order(const char *v);
|
||||
private:
|
||||
#if defined(ARDUINO_ARCH_RP2040)
|
||||
void rp2040Init(uint8_t pin, bool is800KHz);
|
||||
void rp2040Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz);
|
||||
#endif
|
||||
|
||||
private:
|
||||
#if defined(ARDUINO_ARCH_RP2040)
|
||||
void rp2040Init(uint8_t pin, bool is800KHz);
|
||||
void rp2040Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz);
|
||||
#endif
|
||||
|
||||
protected:
|
||||
#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled...
|
||||
bool is800KHz; ///< true if 800 KHz pixels
|
||||
#endif
|
||||
bool begun; ///< true if begin() previously called
|
||||
uint16_t numLEDs; ///< Number of RGB LEDs in strip
|
||||
uint16_t numBytes; ///< Size of 'pixels' buffer below
|
||||
int16_t pin; ///< Output pin number (-1 if not yet set)
|
||||
uint8_t brightness; ///< Strip brightness 0-255 (stored as +1)
|
||||
uint8_t *pixels; ///< Holds LED color values (3 or 4 bytes each)
|
||||
uint8_t rOffset; ///< Red index within each 3- or 4-byte pixel
|
||||
uint8_t gOffset; ///< Index of green byte
|
||||
uint8_t bOffset; ///< Index of blue byte
|
||||
uint8_t wOffset; ///< Index of white (==rOffset if no white)
|
||||
uint32_t endTime; ///< Latch timing reference
|
||||
#ifdef __AVR__
|
||||
volatile uint8_t *port; ///< Output PORT register
|
||||
uint8_t pinMask; ///< Output PORT bitmask
|
||||
#endif
|
||||
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32) || defined(ARDUINO_ARCH_CH32)
|
||||
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT
|
||||
uint32_t gpioPin; ///< Output GPIO PIN
|
||||
#endif
|
||||
#if defined(ARDUINO_ARCH_RP2040)
|
||||
PIO pio = pio0;
|
||||
int sm = 0;
|
||||
bool init = true;
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif // ADAFRUIT_NEOPIXEL_H
|
||||
protected:
|
||||
#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled...
|
||||
bool is800KHz; ///< true if 800 KHz pixels
|
||||
#endif
|
||||
bool begun; ///< true if begin() previously called
|
||||
uint16_t numLEDs; ///< Number of RGB LEDs in strip
|
||||
uint16_t numBytes; ///< Size of 'pixels' buffer below
|
||||
int16_t pin; ///< Output pin number (-1 if not yet set)
|
||||
uint8_t brightness; ///< Strip brightness 0-255 (stored as +1)
|
||||
uint8_t *pixels; ///< Holds LED color values (3 or 4 bytes each)
|
||||
uint8_t rOffset; ///< Red index within each 3- or 4-byte pixel
|
||||
uint8_t gOffset; ///< Index of green byte
|
||||
uint8_t bOffset; ///< Index of blue byte
|
||||
uint8_t wOffset; ///< Index of white (==rOffset if no white)
|
||||
uint32_t endTime; ///< Latch timing reference
|
||||
#ifdef __AVR__
|
||||
volatile uint8_t *port; ///< Output PORT register
|
||||
uint8_t pinMask; ///< Output PORT bitmask
|
||||
#endif
|
||||
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32)
|
||||
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT
|
||||
uint32_t gpioPin; ///< Output GPIO PIN
|
||||
#endif
|
||||
#if defined(ARDUINO_ARCH_RP2040)
|
||||
PIO pio = pio0;
|
||||
int sm = 0;
|
||||
bool init = true;
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif // ADAFRUIT_NEOPIXEL_H
|
||||
|
|
|
@ -17,256 +17,147 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#if defined(ESP32)
|
||||
#if defined(ESP32)
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <Arduino.h>
|
||||
#include "driver/rmt.h"
|
||||
|
||||
#if defined(ESP_IDF_VERSION)
|
||||
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
|
||||
#define HAS_ESP_IDF_4
|
||||
#endif
|
||||
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
|
||||
#define HAS_ESP_IDF_5
|
||||
#endif
|
||||
#endif
|
||||
#if defined(ESP_IDF_VERSION)
|
||||
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
|
||||
#define HAS_ESP_IDF_4
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered
|
||||
// to work with the Arduino version of the ESP-IDF (3.2)
|
||||
|
||||
#ifdef HAS_ESP_IDF_5
|
||||
#define WS2812_T0H_NS (400)
|
||||
#define WS2812_T0L_NS (850)
|
||||
#define WS2812_T1H_NS (800)
|
||||
#define WS2812_T1L_NS (450)
|
||||
|
||||
static SemaphoreHandle_t show_mutex = NULL;
|
||||
#define WS2811_T0H_NS (500)
|
||||
#define WS2811_T0L_NS (2000)
|
||||
#define WS2811_T1H_NS (1200)
|
||||
#define WS2811_T1L_NS (1300)
|
||||
|
||||
void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
|
||||
// Note: Because rmtPin is shared between all instances, we will
|
||||
// end up releasing/initializing the RMT channels each time we
|
||||
// invoke on different pins. This is probably ok, just not
|
||||
// efficient. led_data is shared between all instances but will
|
||||
// be allocated with enough space for the largest instance; data
|
||||
// is not used beyond the mutex lock so this should be fine.
|
||||
static uint32_t t0h_ticks = 0;
|
||||
static uint32_t t1h_ticks = 0;
|
||||
static uint32_t t0l_ticks = 0;
|
||||
static uint32_t t1l_ticks = 0;
|
||||
|
||||
#define SEMAPHORE_TIMEOUT_MS 50
|
||||
// Limit the number of RMT channels available for the Neopixels. Defaults to all
|
||||
// channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free
|
||||
// any channels with a higher number for other uses, such as IR send-and-recieve
|
||||
// libraries. Redefine as 1 to restrict Neopixels to only a single channel.
|
||||
#define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX
|
||||
|
||||
static rmt_data_t *led_data = NULL;
|
||||
static uint32_t led_data_size = 0;
|
||||
static int rmtPin = -1;
|
||||
#define RMT_LL_HW_BASE (&RMT)
|
||||
|
||||
if (show_mutex && xSemaphoreTake(show_mutex, SEMAPHORE_TIMEOUT_MS / portTICK_PERIOD_MS) == pdTRUE) {
|
||||
uint32_t requiredSize = numBytes * 8;
|
||||
if (requiredSize > led_data_size) {
|
||||
free(led_data);
|
||||
if (led_data = (rmt_data_t *)malloc(requiredSize * sizeof(rmt_data_t))) {
|
||||
led_data_size = requiredSize;
|
||||
} else {
|
||||
led_data_size = 0;
|
||||
}
|
||||
} else if (requiredSize == 0) {
|
||||
// To release RMT resources (RMT channels and led_data), call
|
||||
// .updateLength(0) to set number of pixels/bytes to zero,
|
||||
// then call .show() to invoke this code and free resources.
|
||||
free(led_data);
|
||||
led_data = NULL;
|
||||
if (rmtPin >= 0) {
|
||||
rmtDeinit(rmtPin);
|
||||
rmtPin = -1;
|
||||
}
|
||||
led_data_size = 0;
|
||||
}
|
||||
bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX];
|
||||
|
||||
if (led_data_size > 0 && requiredSize <= led_data_size) {
|
||||
if (pin != rmtPin) {
|
||||
if (rmtPin >= 0) {
|
||||
rmtDeinit(rmtPin);
|
||||
rmtPin = -1;
|
||||
}
|
||||
if (!rmtInit(pin, RMT_TX_MODE, RMT_MEM_NUM_BLOCKS_1, 10000000)) {
|
||||
log_e("Failed to init RMT TX mode on pin %d", pin);
|
||||
return;
|
||||
}
|
||||
rmtPin = pin;
|
||||
}
|
||||
static void IRAM_ATTR ws2812_rmt_adapter(const void* src, rmt_item32_t* dest, size_t src_size, size_t wanted_num,
|
||||
size_t* translated_size, size_t* item_num) {
|
||||
if (src == NULL || dest == NULL) {
|
||||
*translated_size = 0;
|
||||
*item_num = 0;
|
||||
return;
|
||||
}
|
||||
const rmt_item32_t bit0 = {{{t0h_ticks, 1, t0l_ticks, 0}}}; //Logical 0
|
||||
const rmt_item32_t bit1 = {{{t1h_ticks, 1, t1l_ticks, 0}}}; //Logical 1
|
||||
size_t size = 0;
|
||||
size_t num = 0;
|
||||
uint8_t* psrc = (uint8_t*)src;
|
||||
rmt_item32_t* pdest = dest;
|
||||
while (size < src_size && num < wanted_num) {
|
||||
for (int i = 0; i < 8; i++) {
|
||||
// MSB first
|
||||
if (*psrc & (1 << (7 - i))) {
|
||||
pdest->val = bit1.val;
|
||||
} else {
|
||||
pdest->val = bit0.val;
|
||||
}
|
||||
num++;
|
||||
pdest++;
|
||||
}
|
||||
size++;
|
||||
psrc++;
|
||||
}
|
||||
*translated_size = size;
|
||||
*item_num = num;
|
||||
}
|
||||
|
||||
if (rmtPin >= 0) {
|
||||
int i=0;
|
||||
for (int b=0; b < numBytes; b++) {
|
||||
for (int bit=0; bit<8; bit++){
|
||||
if ( pixels[b] & (1<<(7-bit)) ) {
|
||||
led_data[i].level0 = 1;
|
||||
led_data[i].duration0 = 8;
|
||||
led_data[i].level1 = 0;
|
||||
led_data[i].duration1 = 4;
|
||||
} else {
|
||||
led_data[i].level0 = 1;
|
||||
led_data[i].duration0 = 4;
|
||||
led_data[i].level1 = 0;
|
||||
led_data[i].duration1 = 8;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
}
|
||||
static bool rmt_initialized = false;
|
||||
static bool rmt_adapter_initialized = false;
|
||||
|
||||
rmtWrite(pin, led_data, numBytes * 8, RMT_WAIT_FOR_EVER);
|
||||
}
|
||||
}
|
||||
void espShow(uint8_t pin, uint8_t* pixels, uint32_t numBytes, boolean is800KHz) {
|
||||
if (rmt_initialized == false) {
|
||||
// Reserve channel
|
||||
rmt_channel_t channel = 0;
|
||||
|
||||
xSemaphoreGive(show_mutex);
|
||||
}
|
||||
}
|
||||
#if defined(HAS_ESP_IDF_4)
|
||||
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel);
|
||||
config.clk_div = 2;
|
||||
#else
|
||||
// Match default TX config from ESP-IDF version 3.4
|
||||
rmt_config_t config = {.rmt_mode = RMT_MODE_TX,
|
||||
.channel = channel,
|
||||
.gpio_num = pin,
|
||||
.clk_div = 2,
|
||||
.mem_block_num = 1,
|
||||
.tx_config = {
|
||||
.carrier_freq_hz = 38000,
|
||||
.carrier_level = RMT_CARRIER_LEVEL_HIGH,
|
||||
.idle_level = RMT_IDLE_LEVEL_LOW,
|
||||
.carrier_duty_percent = 33,
|
||||
.carrier_en = false,
|
||||
.loop_en = false,
|
||||
.idle_output_en = true,
|
||||
}};
|
||||
#endif
|
||||
rmt_config(&config);
|
||||
rmt_driver_install(config.channel, 0, 0);
|
||||
|
||||
// To avoid race condition initializing the mutex, all instances of
|
||||
// Adafruit_NeoPixel must be constructed before launching and child threads
|
||||
void espInit() {
|
||||
if (!show_mutex) {
|
||||
show_mutex = xSemaphoreCreateMutex();
|
||||
}
|
||||
}
|
||||
// Convert NS timings to ticks
|
||||
uint32_t counter_clk_hz = 0;
|
||||
|
||||
#else
|
||||
#if defined(HAS_ESP_IDF_4)
|
||||
rmt_get_counter_clock(channel, &counter_clk_hz);
|
||||
#else
|
||||
// this emulates the rmt_get_counter_clock() function from ESP-IDF 3.4
|
||||
if (RMT_LL_HW_BASE->conf_ch[config.channel].conf1.ref_always_on == RMT_BASECLK_REF) {
|
||||
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
|
||||
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
|
||||
counter_clk_hz = REF_CLK_FREQ / (div);
|
||||
} else {
|
||||
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
|
||||
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
|
||||
counter_clk_hz = APB_CLK_FREQ / (div);
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "driver/rmt.h"
|
||||
// NS to tick converter
|
||||
float ratio = (float)counter_clk_hz / 1e9;
|
||||
|
||||
if (is800KHz) {
|
||||
t0h_ticks = (uint32_t)(ratio * WS2812_T0H_NS);
|
||||
t0l_ticks = (uint32_t)(ratio * WS2812_T0L_NS);
|
||||
t1h_ticks = (uint32_t)(ratio * WS2812_T1H_NS);
|
||||
t1l_ticks = (uint32_t)(ratio * WS2812_T1L_NS);
|
||||
} else {
|
||||
t0h_ticks = (uint32_t)(ratio * WS2811_T0H_NS);
|
||||
t0l_ticks = (uint32_t)(ratio * WS2811_T0L_NS);
|
||||
t1h_ticks = (uint32_t)(ratio * WS2811_T1H_NS);
|
||||
t1l_ticks = (uint32_t)(ratio * WS2811_T1L_NS);
|
||||
}
|
||||
|
||||
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered
|
||||
// to work with the Arduino version of the ESP-IDF (3.2)
|
||||
// Initialize automatic timing translator
|
||||
rmt_translator_init(0, ws2812_rmt_adapter);
|
||||
rmt_initialized = true;
|
||||
}
|
||||
|
||||
#define WS2812_T0H_NS (400)
|
||||
#define WS2812_T0L_NS (850)
|
||||
#define WS2812_T1H_NS (800)
|
||||
#define WS2812_T1L_NS (450)
|
||||
|
||||
#define WS2811_T0H_NS (500)
|
||||
#define WS2811_T0L_NS (2000)
|
||||
#define WS2811_T1H_NS (1200)
|
||||
#define WS2811_T1L_NS (1300)
|
||||
|
||||
static uint32_t t0h_ticks = 0;
|
||||
static uint32_t t1h_ticks = 0;
|
||||
static uint32_t t0l_ticks = 0;
|
||||
static uint32_t t1l_ticks = 0;
|
||||
|
||||
// Limit the number of RMT channels available for the Neopixels. Defaults to all
|
||||
// channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free
|
||||
// any channels with a higher number for other uses, such as IR send-and-recieve
|
||||
// libraries. Redefine as 1 to restrict Neopixels to only a single channel.
|
||||
#define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX
|
||||
|
||||
#define RMT_LL_HW_BASE (&RMT)
|
||||
|
||||
bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX];
|
||||
|
||||
static void IRAM_ATTR ws2812_rmt_adapter(const void *src, rmt_item32_t *dest, size_t src_size,
|
||||
size_t wanted_num, size_t *translated_size, size_t *item_num)
|
||||
{
|
||||
if (src == NULL || dest == NULL) {
|
||||
*translated_size = 0;
|
||||
*item_num = 0;
|
||||
return;
|
||||
}
|
||||
const rmt_item32_t bit0 = {{{ t0h_ticks, 1, t0l_ticks, 0 }}}; //Logical 0
|
||||
const rmt_item32_t bit1 = {{{ t1h_ticks, 1, t1l_ticks, 0 }}}; //Logical 1
|
||||
size_t size = 0;
|
||||
size_t num = 0;
|
||||
uint8_t *psrc = (uint8_t *)src;
|
||||
rmt_item32_t *pdest = dest;
|
||||
while (size < src_size && num < wanted_num) {
|
||||
for (int i = 0; i < 8; i++) {
|
||||
// MSB first
|
||||
if (*psrc & (1 << (7 - i))) {
|
||||
pdest->val = bit1.val;
|
||||
} else {
|
||||
pdest->val = bit0.val;
|
||||
}
|
||||
num++;
|
||||
pdest++;
|
||||
}
|
||||
size++;
|
||||
psrc++;
|
||||
}
|
||||
*translated_size = size;
|
||||
*item_num = num;
|
||||
}
|
||||
|
||||
static bool rmt_initialized = false;
|
||||
static bool rmt_adapter_initialized = false;
|
||||
|
||||
void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
|
||||
if (rmt_initialized == false) {
|
||||
// Reserve channel
|
||||
rmt_channel_t channel = 0;
|
||||
#if defined(HAS_ESP_IDF_4)
|
||||
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel);
|
||||
config.clk_div = 2;
|
||||
#else
|
||||
// Match default TX config from ESP-IDF version 3.4
|
||||
rmt_config_t config = {
|
||||
.rmt_mode = RMT_MODE_TX,
|
||||
.channel = channel,
|
||||
.gpio_num = pin,
|
||||
.clk_div = 2,
|
||||
.mem_block_num = 1,
|
||||
.tx_config = {
|
||||
.carrier_freq_hz = 38000,
|
||||
.carrier_level = RMT_CARRIER_LEVEL_HIGH,
|
||||
.idle_level = RMT_IDLE_LEVEL_LOW,
|
||||
.carrier_duty_percent = 33,
|
||||
.carrier_en = false,
|
||||
.loop_en = false,
|
||||
.idle_output_en = true,
|
||||
}
|
||||
};
|
||||
#endif
|
||||
rmt_config(&config);
|
||||
rmt_driver_install(config.channel, 0, 0);
|
||||
|
||||
// Convert NS timings to ticks
|
||||
uint32_t counter_clk_hz = 0;
|
||||
|
||||
#if defined(HAS_ESP_IDF_4)
|
||||
rmt_get_counter_clock(channel, &counter_clk_hz);
|
||||
#else
|
||||
// this emulates the rmt_get_counter_clock() function from ESP-IDF 3.4
|
||||
if (RMT_LL_HW_BASE->conf_ch[config.channel].conf1.ref_always_on == RMT_BASECLK_REF) {
|
||||
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
|
||||
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
|
||||
counter_clk_hz = REF_CLK_FREQ / (div);
|
||||
} else {
|
||||
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
|
||||
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
|
||||
counter_clk_hz = APB_CLK_FREQ / (div);
|
||||
}
|
||||
#endif
|
||||
|
||||
// NS to tick converter
|
||||
float ratio = (float)counter_clk_hz / 1e9;
|
||||
|
||||
if (is800KHz) {
|
||||
t0h_ticks = (uint32_t)(ratio * WS2812_T0H_NS);
|
||||
t0l_ticks = (uint32_t)(ratio * WS2812_T0L_NS);
|
||||
t1h_ticks = (uint32_t)(ratio * WS2812_T1H_NS);
|
||||
t1l_ticks = (uint32_t)(ratio * WS2812_T1L_NS);
|
||||
} else {
|
||||
t0h_ticks = (uint32_t)(ratio * WS2811_T0H_NS);
|
||||
t0l_ticks = (uint32_t)(ratio * WS2811_T0L_NS);
|
||||
t1h_ticks = (uint32_t)(ratio * WS2811_T1H_NS);
|
||||
t1l_ticks = (uint32_t)(ratio * WS2811_T1L_NS);
|
||||
}
|
||||
|
||||
// Initialize automatic timing translator
|
||||
rmt_translator_init(0, ws2812_rmt_adapter);
|
||||
rmt_initialized = true;
|
||||
}
|
||||
|
||||
// Write and wait to finish
|
||||
rmt_write_sample(0, pixels, (size_t)numBytes, false);
|
||||
//rmt_wait_tx_done(config.channel, pdMS_TO_TICKS(100));
|
||||
|
||||
// Free channel again
|
||||
//rmt_driver_uninstall(config.channel);
|
||||
//rmt_reserved_channels[channel] = false;
|
||||
|
||||
//gpio_set_direction(pin, GPIO_MODE_OUTPUT);
|
||||
}
|
||||
|
||||
#endif // ifndef IDF5
|
||||
|
||||
|
||||
#endif // ifdef(ESP32)
|
||||
// Write and wait to finish
|
||||
rmt_write_sample(0, pixels, (size_t)numBytes, false);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue