mirror of
https://github.com/dalathegreat/Battery-Emulator.git
synced 2025-10-03 17:59:27 +02:00
Add charge/discharge current to datalayer
This commit is contained in:
parent
1af7e7db12
commit
710a7339d8
14 changed files with 104 additions and 312 deletions
|
@ -293,7 +293,7 @@ void core_loop(void* task_time_us) {
|
|||
#ifdef DOUBLE_BATTERY
|
||||
update_values_battery2();
|
||||
#endif
|
||||
update_scaled_values(); // Check if real or calculated SOC% value should be sent
|
||||
update_calculated_values();
|
||||
#ifndef SERIAL_LINK_RECEIVER
|
||||
update_machineryprotection(); // Check safeties (Not on serial link reciever board)
|
||||
#endif
|
||||
|
@ -837,7 +837,23 @@ void handle_contactors() {
|
|||
#endif // CONTACTOR_CONTROL
|
||||
}
|
||||
|
||||
void update_scaled_values() {
|
||||
void update_calculated_values() {
|
||||
/* Calculate allowed charge/discharge currents*/
|
||||
if (datalayer.battery.status.voltage_dV > 10) {
|
||||
// Only update value when we have voltage available to avoid div0. TODO: This should be based on nominal voltage
|
||||
datalayer.battery.status.max_charge_current_dA =
|
||||
((datalayer.battery.status.max_charge_power_W * 100) / datalayer.battery.status.voltage_dV);
|
||||
datalayer.battery.status.max_discharge_current_dA =
|
||||
((datalayer.battery.status.max_discharge_power_W * 100) / datalayer.battery.status.voltage_dV);
|
||||
}
|
||||
/* Restrict values from user settings if needed*/
|
||||
if (datalayer.battery.status.max_charge_current_dA > datalayer.battery.info.max_charge_amp_dA) {
|
||||
datalayer.battery.status.max_charge_current_dA = datalayer.battery.info.max_charge_amp_dA;
|
||||
}
|
||||
if (datalayer.battery.status.max_discharge_current_dA > datalayer.battery.info.max_discharge_amp_dA) {
|
||||
datalayer.battery.status.max_discharge_current_dA = datalayer.battery.info.max_discharge_amp_dA;
|
||||
}
|
||||
|
||||
if (datalayer.battery.settings.soc_scaling_active) {
|
||||
/** SOC Scaling
|
||||
*
|
||||
|
@ -896,7 +912,7 @@ void update_scaled_values() {
|
|||
}
|
||||
#endif
|
||||
|
||||
} else { // No SOC window wanted. Set scaled to same as real.
|
||||
} else { // soc_scaling_active == false. No SOC window wanted. Set scaled to same as real.
|
||||
datalayer.battery.status.reported_soc = datalayer.battery.status.real_soc;
|
||||
datalayer.battery.status.reported_remaining_capacity_Wh = datalayer.battery.status.remaining_capacity_Wh;
|
||||
#ifdef DOUBLE_BATTERY
|
||||
|
|
|
@ -49,10 +49,14 @@ typedef struct {
|
|||
*/
|
||||
uint32_t reported_remaining_capacity_Wh;
|
||||
|
||||
/** Maximum allowed battery discharge power in Watts */
|
||||
/** Maximum allowed battery discharge power in Watts. Set by battery */
|
||||
uint32_t max_discharge_power_W = 0;
|
||||
/** Maximum allowed battery charge power in Watts */
|
||||
/** Maximum allowed battery charge power in Watts. Set by battery */
|
||||
uint32_t max_charge_power_W = 0;
|
||||
/** Maximum allowed battery discharge current in dA. Calculated based on allowed W and Voltage */
|
||||
uint16_t max_discharge_current_dA = 0;
|
||||
/** Maximum allowed battery charge current in dA. Calculated based on allowed W and Voltage */
|
||||
uint16_t max_charge_current_dA = 0;
|
||||
|
||||
/** int16_t */
|
||||
/** Maximum temperature currently measured in the pack, in d°C. 150 = 15.0 °C */
|
||||
|
|
|
@ -229,6 +229,14 @@ void update_machineryprotection() {
|
|||
}
|
||||
|
||||
#endif // DOUBLE_BATTERY
|
||||
|
||||
//Safeties verified, Zero charge/discharge ampere values incase any safety wrote the W to 0
|
||||
if (datalayer.battery.status.max_discharge_power_W == 0) {
|
||||
datalayer.battery.status.max_discharge_current_dA = 0;
|
||||
}
|
||||
if (datalayer.battery.status.max_charge_power_W == 0) {
|
||||
datalayer.battery.status.max_charge_current_dA = 0;
|
||||
}
|
||||
}
|
||||
|
||||
//battery pause status begin
|
||||
|
|
|
@ -652,6 +652,10 @@ String processor(const String& var) {
|
|||
float powerFloat = static_cast<float>(datalayer.battery.status.active_power_W); // Convert to float
|
||||
float tempMaxFloat = static_cast<float>(datalayer.battery.status.temperature_max_dC) / 10.0; // Convert to float
|
||||
float tempMinFloat = static_cast<float>(datalayer.battery.status.temperature_min_dC) / 10.0; // Convert to float
|
||||
float maxCurrentChargeFloat =
|
||||
static_cast<float>(datalayer.battery.status.max_charge_current_dA) / 10.0; // Convert to float
|
||||
float maxCurrentDischargeFloat =
|
||||
static_cast<float>(datalayer.battery.status.max_discharge_current_dA) / 10.0; // Convert to float
|
||||
uint16_t cell_delta_mv =
|
||||
datalayer.battery.status.cell_max_voltage_mV - datalayer.battery.status.cell_min_voltage_mV;
|
||||
|
||||
|
@ -669,9 +673,13 @@ String processor(const String& var) {
|
|||
if (emulator_pause_status == NORMAL) {
|
||||
content += formatPowerValue("Max discharge power", datalayer.battery.status.max_discharge_power_W, "", 1);
|
||||
content += formatPowerValue("Max charge power", datalayer.battery.status.max_charge_power_W, "", 1);
|
||||
content += "<h4 style='color: white;'>Max discharge current: " + String(maxCurrentDischargeFloat, 1) + " A</h4>";
|
||||
content += "<h4 style='color: white;'>Max charge current: " + String(maxCurrentChargeFloat, 1) + " A</h4>";
|
||||
} else {
|
||||
content += formatPowerValue("Max discharge power", datalayer.battery.status.max_discharge_power_W, "", 1, "red");
|
||||
content += formatPowerValue("Max charge power", datalayer.battery.status.max_charge_power_W, "", 1, "red");
|
||||
content += "<h4 style='color: red;'>Max discharge current: " + String(maxCurrentDischargeFloat, 1) + " A</h4>";
|
||||
content += "<h4 style='color: red;'>Max charge current: " + String(maxCurrentChargeFloat, 1) + " A</h4>";
|
||||
}
|
||||
|
||||
content += "<h4>Cell max: " + String(datalayer.battery.status.cell_max_voltage_mV) + " mV</h4>";
|
||||
|
|
|
@ -72,31 +72,10 @@ CAN_frame AFORE_35A = {.FD = false,
|
|||
.DLC = 8,
|
||||
.ID = 0x35A,
|
||||
.data = {0x65, 0x6D, 0x75, 0x6C, 0x61, 0x74, 0x6F, 0x72}}; // Emulator
|
||||
static int16_t max_charge_current_dA = 0;
|
||||
static int16_t max_discharge_current_dA = 0;
|
||||
|
||||
void update_values_can_inverter() { //This function maps all the values fetched from battery CAN to the correct CAN messages
|
||||
//There are more mappings that could be added, but this should be enough to use as a starting point
|
||||
// Note we map both 0 and 1 messages
|
||||
|
||||
if (datalayer.battery.status.voltage_dV > 10) { //div0 safeguard
|
||||
max_charge_current_dA = (datalayer.battery.status.max_charge_power_W * 100) / datalayer.battery.status.voltage_dV;
|
||||
if (max_charge_current_dA > datalayer.battery.info.max_charge_amp_dA) {
|
||||
max_charge_current_dA =
|
||||
datalayer.battery.info
|
||||
.max_charge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
max_discharge_current_dA =
|
||||
(datalayer.battery.status.max_discharge_power_W * 100) / datalayer.battery.status.voltage_dV;
|
||||
if (max_discharge_current_dA > datalayer.battery.info.max_discharge_amp_dA) {
|
||||
max_discharge_current_dA =
|
||||
datalayer.battery.info
|
||||
.max_discharge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
} else {
|
||||
max_charge_current_dA = 0;
|
||||
max_discharge_current_dA = 0;
|
||||
}
|
||||
/*0x350 Operation Information*/
|
||||
AFORE_350.data.u8[0] = (datalayer.battery.status.voltage_dV & 0x00FF);
|
||||
AFORE_350.data.u8[1] = (datalayer.battery.status.voltage_dV >> 8);
|
||||
|
@ -115,11 +94,11 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
AFORE_351.data.u8[2] = SOCMAX;
|
||||
AFORE_351.data.u8[3] = SOCMIN;
|
||||
AFORE_351.data.u8[4] = 0x03; //Bit0 and Bit1 set
|
||||
if ((max_charge_current_dA == 0) || (datalayer.battery.status.reported_soc == 10000) ||
|
||||
if ((datalayer.battery.status.max_charge_current_dA == 0) || (datalayer.battery.status.reported_soc == 10000) ||
|
||||
(datalayer.battery.status.bms_status == FAULT)) {
|
||||
AFORE_351.data.u8[4] &= ~0x01; // Remove Bit0 (clear) Charge enable flag
|
||||
}
|
||||
if ((max_discharge_current_dA == 0) || (datalayer.battery.status.reported_soc == 0) ||
|
||||
if ((datalayer.battery.status.max_discharge_current_dA == 0) || (datalayer.battery.status.reported_soc == 0) ||
|
||||
(datalayer.battery.status.bms_status == FAULT)) {
|
||||
AFORE_351.data.u8[4] &= ~0x02; // Remove Bit1 (clear) Discharge enable flag
|
||||
}
|
||||
|
@ -135,10 +114,10 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
AFORE_351.data.u8[7] = (datalayer.battery.info.number_of_cells >> 8);
|
||||
|
||||
/*0x352 - Protection parameters*/
|
||||
AFORE_352.data.u8[0] = (max_charge_current_dA & 0x00FF);
|
||||
AFORE_352.data.u8[1] = (max_charge_current_dA >> 8);
|
||||
AFORE_352.data.u8[2] = (max_discharge_current_dA & 0x00FF);
|
||||
AFORE_352.data.u8[3] = (max_discharge_current_dA >> 8);
|
||||
AFORE_352.data.u8[0] = (datalayer.battery.status.max_charge_current_dA & 0x00FF);
|
||||
AFORE_352.data.u8[1] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
AFORE_352.data.u8[2] = (datalayer.battery.status.max_discharge_current_dA & 0x00FF);
|
||||
AFORE_352.data.u8[3] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
AFORE_352.data.u8[4] = (datalayer.battery.info.max_design_voltage_dV & 0x00FF);
|
||||
AFORE_352.data.u8[5] = (datalayer.battery.info.max_design_voltage_dV >> 8);
|
||||
AFORE_352.data.u8[6] = (datalayer.battery.info.min_design_voltage_dV & 0x00FF);
|
||||
|
|
|
@ -79,8 +79,6 @@ CAN_frame BYD_210 = {.FD = false,
|
|||
.ID = 0x210,
|
||||
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
|
||||
|
||||
static uint16_t discharge_current = 0;
|
||||
static uint16_t charge_current = 0;
|
||||
static int16_t temperature_average = 0;
|
||||
static uint16_t inverter_voltage = 0;
|
||||
static uint16_t inverter_SOC = 0;
|
||||
|
@ -91,32 +89,6 @@ static bool initialDataSent = 0;
|
|||
|
||||
void update_values_can_inverter() { //This function maps all the values fetched from battery CAN to the correct CAN messages
|
||||
|
||||
/* Calculate allowed charge/discharge currents*/
|
||||
if (datalayer.battery.status.voltage_dV > 10) { // Only update value when we have voltage available to avoid div0
|
||||
charge_current =
|
||||
((datalayer.battery.status.max_charge_power_W * 10) /
|
||||
datalayer.battery.status.voltage_dV); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
|
||||
//The above calculation results in (30 000*10)/3700=81A
|
||||
charge_current = (charge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
|
||||
|
||||
discharge_current =
|
||||
((datalayer.battery.status.max_discharge_power_W * 10) /
|
||||
datalayer.battery.status.voltage_dV); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
|
||||
//The above calculation results in (30 000*10)/3700=81A
|
||||
discharge_current = (discharge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
|
||||
}
|
||||
/* Restrict values from user settings if needed*/
|
||||
if (charge_current > datalayer.battery.info.max_charge_amp_dA) {
|
||||
charge_current =
|
||||
datalayer.battery.info
|
||||
.max_charge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
if (discharge_current > datalayer.battery.info.max_discharge_amp_dA) {
|
||||
discharge_current =
|
||||
datalayer.battery.info
|
||||
.max_discharge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
|
||||
/* Calculate temperature */
|
||||
temperature_average =
|
||||
((datalayer.battery.status.temperature_max_dC + datalayer.battery.status.temperature_min_dC) / 2);
|
||||
|
@ -137,11 +109,11 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
BYD_110.data.u8[2] = (datalayer.battery.info.min_design_voltage_dV >> 8);
|
||||
BYD_110.data.u8[3] = (datalayer.battery.info.min_design_voltage_dV & 0x00FF);
|
||||
//Maximum discharge power allowed (Unit: A+1)
|
||||
BYD_110.data.u8[4] = (discharge_current >> 8);
|
||||
BYD_110.data.u8[5] = (discharge_current & 0x00FF);
|
||||
BYD_110.data.u8[4] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
BYD_110.data.u8[5] = (datalayer.battery.status.max_discharge_current_dA & 0x00FF);
|
||||
//Maximum charge power allowed (Unit: A+1)
|
||||
BYD_110.data.u8[6] = (charge_current >> 8);
|
||||
BYD_110.data.u8[7] = (charge_current & 0x00FF);
|
||||
BYD_110.data.u8[6] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
BYD_110.data.u8[7] = (datalayer.battery.status.max_charge_current_dA & 0x00FF);
|
||||
|
||||
//SOC (100.00%)
|
||||
BYD_150.data.u8[0] = (datalayer.battery.status.reported_soc >> 8);
|
||||
|
|
|
@ -80,30 +80,6 @@ static uint16_t ampere_hours_remaining = 0;
|
|||
|
||||
void update_values_can_inverter() { //This function maps all the values fetched from battery CAN to the correct CAN messages
|
||||
//Calculate values
|
||||
|
||||
if (datalayer.battery.status.voltage_dV > 10) { // Only update value when we have voltage available to avoid div0
|
||||
discharge_current =
|
||||
((datalayer.battery.status.max_discharge_power_W * 10) /
|
||||
datalayer.battery.status.voltage_dV); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
|
||||
discharge_current = (discharge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
|
||||
charge_current =
|
||||
((datalayer.battery.status.max_charge_power_W * 10) /
|
||||
datalayer.battery.status.voltage_dV); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
|
||||
charge_current = (charge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
|
||||
}
|
||||
|
||||
if (charge_current > datalayer.battery.info.max_charge_amp_dA) {
|
||||
charge_current =
|
||||
datalayer.battery.info
|
||||
.max_charge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
|
||||
if (discharge_current > datalayer.battery.info.max_discharge_amp_dA) {
|
||||
discharge_current =
|
||||
datalayer.battery.info
|
||||
.max_discharge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
|
||||
temperature_average =
|
||||
((datalayer.battery.status.temperature_max_dC + datalayer.battery.status.temperature_min_dC) / 2);
|
||||
|
||||
|
@ -118,15 +94,14 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
SMA_358.data.u8[0] = (datalayer.battery.info.max_design_voltage_dV >> 8);
|
||||
SMA_358.data.u8[1] = (datalayer.battery.info.max_design_voltage_dV & 0x00FF);
|
||||
//Minvoltage (eg 300.0V = 3000 , 16bits long)
|
||||
SMA_358.data.u8[2] = (datalayer.battery.info.min_design_voltage_dV >>
|
||||
8); //Minvoltage behaves strange on SMA, cuts out at 56% of the set value?
|
||||
SMA_358.data.u8[2] = (datalayer.battery.info.min_design_voltage_dV >> 8);
|
||||
SMA_358.data.u8[3] = (datalayer.battery.info.min_design_voltage_dV & 0x00FF);
|
||||
//Discharge limited current, 500 = 50A, (0.1, A)
|
||||
SMA_358.data.u8[4] = (discharge_current >> 8);
|
||||
SMA_358.data.u8[5] = (discharge_current & 0x00FF);
|
||||
SMA_358.data.u8[4] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
SMA_358.data.u8[5] = (datalayer.battery.status.max_discharge_current_dA & 0x00FF);
|
||||
//Charge limited current, 125 =12.5A (0.1, A)
|
||||
SMA_358.data.u8[6] = (charge_current >> 8);
|
||||
SMA_358.data.u8[7] = (charge_current & 0x00FF);
|
||||
SMA_358.data.u8[6] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
SMA_358.data.u8[7] = (datalayer.battery.status.max_charge_current_dA & 0x00FF);
|
||||
|
||||
//SOC (100.00%)
|
||||
SMA_3D8.data.u8[0] = (datalayer.battery.status.reported_soc >> 8);
|
||||
|
|
|
@ -22,8 +22,6 @@ below that you can customize, incase you use a lower voltage battery with this p
|
|||
#define TOTAL_LIFETIME_WH_ACCUMULATED 0 //We dont have this value in the emulator
|
||||
|
||||
/* Do not change code below unless you are sure what you are doing */
|
||||
static uint16_t max_charge_rate_amp = 0;
|
||||
static uint16_t max_discharge_rate_amp = 0;
|
||||
static int16_t temperature_average = 0;
|
||||
static uint16_t voltage_per_pack = 0;
|
||||
static int16_t current_per_pack = 0;
|
||||
|
@ -364,50 +362,6 @@ void update_values_can_inverter() { //This function maps all the CAN values fet
|
|||
temperature_average =
|
||||
((datalayer.battery.status.temperature_max_dC + datalayer.battery.status.temperature_min_dC) / 2);
|
||||
|
||||
//datalayer.battery.status.max_charge_power_W (30000W max)
|
||||
if (datalayer.battery.status.reported_soc > 9999) { // 99.99%
|
||||
// Additional safety incase SOC% is 100, then do not charge battery further
|
||||
max_charge_rate_amp = 0;
|
||||
} else { // We can pass on the battery charge rate (in W) to the inverter (that takes A)
|
||||
if (datalayer.battery.status.max_charge_power_W >= 30000) {
|
||||
max_charge_rate_amp = 75; // Incase battery can take over 30kW, cap value to 75A
|
||||
} else { // Calculate the W value into A
|
||||
if (datalayer.battery.status.voltage_dV > 10) {
|
||||
max_charge_rate_amp =
|
||||
datalayer.battery.status.max_charge_power_W / (datalayer.battery.status.voltage_dV * 0.1); // P/U=I
|
||||
} else { // We avoid dividing by 0 and crashing the board
|
||||
// If we have no voltage, something has gone wrong, do not allow charging
|
||||
max_charge_rate_amp = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//datalayer.battery.status.max_discharge_power_W (30000W max)
|
||||
if (datalayer.battery.status.reported_soc < 100) { // 1.00%
|
||||
// Additional safety in case SOC% is below 1, then do not discharge battery further
|
||||
max_discharge_rate_amp = 0;
|
||||
} else { // We can pass on the battery discharge rate to the inverter
|
||||
if (datalayer.battery.status.max_discharge_power_W >= 30000) {
|
||||
max_discharge_rate_amp = 75; // Incase battery can be charged with over 30kW, cap value to 75A
|
||||
} else { // Calculate the W value into A
|
||||
if (datalayer.battery.status.voltage_dV > 10) {
|
||||
max_discharge_rate_amp =
|
||||
datalayer.battery.status.max_discharge_power_W / (datalayer.battery.status.voltage_dV * 0.1); // P/U=I
|
||||
} else { // We avoid dividing by 0 and crashing the board
|
||||
// If we have no voltage, something has gone wrong, do not allow discharging
|
||||
max_discharge_rate_amp = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Cap the value according to user settings. Some inverters cannot handle large values.
|
||||
if ((max_charge_rate_amp * 10) > datalayer.battery.info.max_charge_amp_dA) {
|
||||
max_charge_rate_amp = (datalayer.battery.info.max_charge_amp_dA / 10);
|
||||
}
|
||||
if ((max_discharge_rate_amp * 10) > datalayer.battery.info.max_discharge_amp_dA) {
|
||||
max_discharge_rate_amp = (datalayer.battery.info.max_discharge_amp_dA / 10);
|
||||
}
|
||||
|
||||
if (inverterStillAlive > 0) {
|
||||
inverterStillAlive--;
|
||||
}
|
||||
|
@ -424,10 +378,10 @@ void update_values_can_inverter() { //This function maps all the CAN values fet
|
|||
FOXESS_1872.data.u8[1] = (datalayer.battery.info.max_design_voltage_dV >> 8);
|
||||
FOXESS_1872.data.u8[2] = (uint8_t)datalayer.battery.info.min_design_voltage_dV;
|
||||
FOXESS_1872.data.u8[3] = (datalayer.battery.info.min_design_voltage_dV >> 8);
|
||||
FOXESS_1872.data.u8[4] = (uint8_t)(max_charge_rate_amp * 10);
|
||||
FOXESS_1872.data.u8[5] = ((max_charge_rate_amp * 10) >> 8);
|
||||
FOXESS_1872.data.u8[6] = (uint8_t)(max_discharge_rate_amp * 10);
|
||||
FOXESS_1872.data.u8[7] = ((max_discharge_rate_amp * 10) >> 8);
|
||||
FOXESS_1872.data.u8[4] = (uint8_t)datalayer.battery.status.max_charge_current_dA;
|
||||
FOXESS_1872.data.u8[5] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
FOXESS_1872.data.u8[6] = (uint8_t)datalayer.battery.status.max_discharge_current_dA;
|
||||
FOXESS_1872.data.u8[7] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
|
||||
//BMS_PackData
|
||||
FOXESS_1873.data.u8[0] = (uint8_t)datalayer.battery.status.voltage_dV; // OK
|
||||
|
@ -463,7 +417,7 @@ void update_values_can_inverter() { //This function maps all the CAN values fet
|
|||
// 0x1876 b0 bit 0 appears to be 1 when at maxsoc and BMS says charge is not allowed -
|
||||
// when at 0 indicates charge is possible - additional note there is something more to it than this,
|
||||
// it's not as straight forward - needs more testing to find what sets/unsets bit0 of byte0
|
||||
if ((max_charge_rate_amp == 0) || (datalayer.battery.status.reported_soc == 10000) ||
|
||||
if ((datalayer.battery.status.max_charge_current_dA == 0) || (datalayer.battery.status.reported_soc == 10000) ||
|
||||
(datalayer.battery.status.bms_status == FAULT)) {
|
||||
FOXESS_1876.data.u8[0] = 0x01;
|
||||
} else { //continue using battery
|
||||
|
|
|
@ -134,32 +134,10 @@ CAN_frame PYLON_4291 = {.FD = false,
|
|||
.ID = 0x4291,
|
||||
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
|
||||
|
||||
static int16_t max_charge_current = 0;
|
||||
static int16_t max_discharge_current = 0;
|
||||
|
||||
void update_values_can_inverter() { //This function maps all the values fetched from battery CAN to the correct CAN messages
|
||||
//There are more mappings that could be added, but this should be enough to use as a starting point
|
||||
// Note we map both 0 and 1 messages
|
||||
|
||||
if (datalayer.battery.status.voltage_dV > 10) { //div0 safeguard
|
||||
max_charge_current = (datalayer.battery.status.max_charge_power_W * 100) / datalayer.battery.status.voltage_dV;
|
||||
if (max_charge_current > datalayer.battery.info.max_charge_amp_dA) {
|
||||
max_charge_current =
|
||||
datalayer.battery.info
|
||||
.max_charge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
max_discharge_current =
|
||||
(datalayer.battery.status.max_discharge_power_W * 100) / datalayer.battery.status.voltage_dV;
|
||||
if (max_discharge_current > datalayer.battery.info.max_discharge_amp_dA) {
|
||||
max_discharge_current =
|
||||
datalayer.battery.info
|
||||
.max_discharge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
} else {
|
||||
max_charge_current = 0;
|
||||
max_discharge_current = 0;
|
||||
}
|
||||
|
||||
//Charge / Discharge allowed
|
||||
PYLON_4280.data.u8[0] = 0;
|
||||
PYLON_4280.data.u8[1] = 0;
|
||||
|
@ -253,28 +231,28 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
|
||||
#ifdef SET_30K_OFFSET
|
||||
//Max ChargeCurrent
|
||||
PYLON_4220.data.u8[4] = ((max_charge_current + 30000) & 0x00FF);
|
||||
PYLON_4220.data.u8[5] = ((max_charge_current + 30000) >> 8);
|
||||
PYLON_4221.data.u8[4] = ((max_charge_current + 30000) & 0x00FF);
|
||||
PYLON_4221.data.u8[5] = ((max_charge_current + 30000) >> 8);
|
||||
PYLON_4220.data.u8[4] = ((datalayer.battery.status.max_charge_current_dA + 30000) & 0x00FF);
|
||||
PYLON_4220.data.u8[5] = ((datalayer.battery.status.max_charge_current_dA + 30000) >> 8);
|
||||
PYLON_4221.data.u8[4] = ((datalayer.battery.status.max_charge_current_dA + 30000) & 0x00FF);
|
||||
PYLON_4221.data.u8[5] = ((datalayer.battery.status.max_charge_current_dA + 30000) >> 8);
|
||||
|
||||
//Max DischargeCurrent
|
||||
PYLON_4220.data.u8[6] = ((30000 - max_discharge_current) & 0x00FF);
|
||||
PYLON_4220.data.u8[7] = ((30000 - max_discharge_current) >> 8);
|
||||
PYLON_4221.data.u8[6] = ((30000 - max_discharge_current) & 0x00FF);
|
||||
PYLON_4221.data.u8[7] = ((30000 - max_discharge_current) >> 8);
|
||||
PYLON_4220.data.u8[6] = ((30000 - datalayer.battery.status.max_discharge_current_dA) & 0x00FF);
|
||||
PYLON_4220.data.u8[7] = ((30000 - datalayer.battery.status.max_discharge_current_dA) >> 8);
|
||||
PYLON_4221.data.u8[6] = ((30000 - datalayer.battery.status.max_discharge_current_dA) & 0x00FF);
|
||||
PYLON_4221.data.u8[7] = ((30000 - datalayer.battery.status.max_discharge_current_dA) >> 8);
|
||||
#else
|
||||
//Max ChargeCurrent
|
||||
PYLON_4220.data.u8[4] = (max_charge_current & 0x00FF);
|
||||
PYLON_4220.data.u8[5] = (max_charge_current >> 8);
|
||||
PYLON_4221.data.u8[4] = (max_charge_current & 0x00FF);
|
||||
PYLON_4221.data.u8[5] = (max_charge_current >> 8);
|
||||
PYLON_4220.data.u8[4] = (datalayer.battery.status.max_charge_current_dA & 0x00FF);
|
||||
PYLON_4220.data.u8[5] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
PYLON_4221.data.u8[4] = (datalayer.battery.status.max_charge_current_dA & 0x00FF);
|
||||
PYLON_4221.data.u8[5] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
|
||||
//Max DishargeCurrent
|
||||
PYLON_4220.data.u8[6] = (max_discharge_current & 0x00FF);
|
||||
PYLON_4220.data.u8[7] = (max_discharge_current >> 8);
|
||||
PYLON_4221.data.u8[6] = (max_discharge_current & 0x00FF);
|
||||
PYLON_4221.data.u8[7] = (max_discharge_current >> 8);
|
||||
PYLON_4220.data.u8[6] = (datalayer.battery.status.max_discharge_current_dA & 0x00FF);
|
||||
PYLON_4220.data.u8[7] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
PYLON_4221.data.u8[6] = (datalayer.battery.status.max_discharge_current_dA & 0x00FF);
|
||||
PYLON_4221.data.u8[7] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
#endif
|
||||
|
||||
//Max cell voltage
|
||||
|
|
|
@ -42,20 +42,13 @@ CAN_frame PYLON_35E = {.FD = false,
|
|||
void update_values_can_inverter() {
|
||||
// This function maps all the values fetched from battery CAN to the correct CAN messages
|
||||
|
||||
// do not update values unless we have some voltage, as we will run into IntegerDivideByZero exceptions otherwise
|
||||
if (datalayer.battery.status.voltage_dV == 0)
|
||||
return;
|
||||
|
||||
// TODO: officially this value is "battery charge voltage". Do we need to add something here to the actual voltage?
|
||||
PYLON_351.data.u8[0] = datalayer.battery.status.voltage_dV & 0xff;
|
||||
PYLON_351.data.u8[1] = datalayer.battery.status.voltage_dV >> 8;
|
||||
int16_t maxChargeCurrent = datalayer.battery.status.max_charge_power_W * 100 / datalayer.battery.status.voltage_dV;
|
||||
PYLON_351.data.u8[2] = maxChargeCurrent & 0xff;
|
||||
PYLON_351.data.u8[3] = maxChargeCurrent >> 8;
|
||||
int16_t maxDischargeCurrent =
|
||||
datalayer.battery.status.max_discharge_power_W * 100 / datalayer.battery.status.voltage_dV;
|
||||
PYLON_351.data.u8[4] = maxDischargeCurrent & 0xff;
|
||||
PYLON_351.data.u8[5] = maxDischargeCurrent >> 8;
|
||||
PYLON_351.data.u8[2] = datalayer.battery.status.max_charge_current_dA & 0xff;
|
||||
PYLON_351.data.u8[3] = datalayer.battery.status.max_charge_current_dA >> 8;
|
||||
PYLON_351.data.u8[4] = datalayer.battery.status.max_discharge_current_dA & 0xff;
|
||||
PYLON_351.data.u8[5] = datalayer.battery.status.max_discharge_current_dA >> 8;
|
||||
|
||||
PYLON_355.data.u8[0] = (datalayer.battery.status.reported_soc / 10) & 0xff;
|
||||
PYLON_355.data.u8[1] = (datalayer.battery.status.reported_soc / 10) >> 8;
|
||||
|
@ -75,11 +68,11 @@ void update_values_can_inverter() {
|
|||
PYLON_359.data.u8[2] = 0x00;
|
||||
PYLON_359.data.u8[3] = 0x00;
|
||||
PYLON_359.data.u8[4] = PACK_NUMBER;
|
||||
PYLON_359.data.u8[5] = 'P';
|
||||
PYLON_359.data.u8[6] = 'N';
|
||||
PYLON_359.data.u8[5] = 0x50; //P
|
||||
PYLON_359.data.u8[6] = 0x4E; //N
|
||||
|
||||
// ERRORS
|
||||
if (datalayer.battery.status.current_dA >= maxDischargeCurrent)
|
||||
if (datalayer.battery.status.current_dA >= (datalayer.battery.status.max_discharge_current_dA + 10))
|
||||
PYLON_359.data.u8[0] |= 0x80;
|
||||
if (datalayer.battery.status.temperature_min_dC <= BATTERY_MINTEMPERATURE)
|
||||
PYLON_359.data.u8[0] |= 0x10;
|
||||
|
@ -88,11 +81,11 @@ void update_values_can_inverter() {
|
|||
if (datalayer.battery.status.voltage_dV * 100 <= datalayer.battery.info.min_cell_voltage_mV)
|
||||
PYLON_359.data.u8[0] |= 0x04;
|
||||
// we never set PYLON_359.data.u8[1] |= 0x80 called "BMS internal"
|
||||
if (datalayer.battery.status.current_dA <= -1 * maxChargeCurrent)
|
||||
if (datalayer.battery.status.current_dA <= -1 * datalayer.battery.status.max_charge_current_dA)
|
||||
PYLON_359.data.u8[1] |= 0x01;
|
||||
|
||||
// WARNINGS (using same rules as errors but reporting earlier)
|
||||
if (datalayer.battery.status.current_dA >= maxDischargeCurrent * WARNINGS_PERCENT / 100)
|
||||
if (datalayer.battery.status.current_dA >= datalayer.battery.status.max_discharge_current_dA * WARNINGS_PERCENT / 100)
|
||||
PYLON_359.data.u8[2] |= 0x80;
|
||||
if (datalayer.battery.status.temperature_min_dC <= BATTERY_MINTEMPERATURE * WARNINGS_PERCENT / 100)
|
||||
PYLON_359.data.u8[2] |= 0x10;
|
||||
|
@ -101,7 +94,8 @@ void update_values_can_inverter() {
|
|||
if (datalayer.battery.status.voltage_dV * 100 <= datalayer.battery.info.min_cell_voltage_mV + 100)
|
||||
PYLON_359.data.u8[2] |= 0x04;
|
||||
// we never set PYLON_359.data.u8[3] |= 0x80 called "BMS internal"
|
||||
if (datalayer.battery.status.current_dA <= -1 * maxChargeCurrent * WARNINGS_PERCENT / 100)
|
||||
if (datalayer.battery.status.current_dA <=
|
||||
-1 * datalayer.battery.status.max_charge_current_dA * WARNINGS_PERCENT / 100)
|
||||
PYLON_359.data.u8[3] |= 0x01;
|
||||
|
||||
PYLON_35C.data.u8[0] = 0xC0; // enable charging and discharging
|
||||
|
|
|
@ -70,37 +70,12 @@ CAN_frame SMA_158 = {.FD = false,
|
|||
.ID = 0x158,
|
||||
.data = {0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0x6A, 0xAA, 0xAA}};
|
||||
|
||||
static int16_t discharge_current = 0;
|
||||
static int16_t charge_current = 0;
|
||||
static int16_t temperature_average = 0;
|
||||
static uint16_t ampere_hours_remaining = 0;
|
||||
|
||||
void update_values_can_inverter() { //This function maps all the values fetched from battery CAN to the correct CAN messages
|
||||
//Calculate values
|
||||
|
||||
if (datalayer.battery.status.voltage_dV > 10) { // Only update value when we have voltage available to avoid div0
|
||||
discharge_current =
|
||||
((datalayer.battery.status.max_discharge_power_W * 10) /
|
||||
datalayer.battery.status.voltage_dV); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
|
||||
discharge_current = (discharge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
|
||||
charge_current =
|
||||
((datalayer.battery.status.max_charge_power_W * 10) /
|
||||
datalayer.battery.status.voltage_dV); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
|
||||
charge_current = (charge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
|
||||
}
|
||||
|
||||
if (charge_current > datalayer.battery.info.max_charge_amp_dA) {
|
||||
charge_current =
|
||||
datalayer.battery.info
|
||||
.max_charge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
|
||||
if (discharge_current > datalayer.battery.info.max_discharge_amp_dA) {
|
||||
discharge_current =
|
||||
datalayer.battery.info
|
||||
.max_discharge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
|
||||
temperature_average =
|
||||
((datalayer.battery.status.temperature_max_dC + datalayer.battery.status.temperature_min_dC) / 2);
|
||||
|
||||
|
@ -119,11 +94,11 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
8); //Minvoltage behaves strange on SMA, cuts out at 56% of the set value?
|
||||
SMA_358.data.u8[3] = (datalayer.battery.info.min_design_voltage_dV & 0x00FF);
|
||||
//Discharge limited current, 500 = 50A, (0.1, A)
|
||||
SMA_358.data.u8[4] = (discharge_current >> 8);
|
||||
SMA_358.data.u8[5] = (discharge_current & 0x00FF);
|
||||
SMA_358.data.u8[4] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
SMA_358.data.u8[5] = (datalayer.battery.status.max_discharge_current_dA & 0x00FF);
|
||||
//Charge limited current, 125 =12.5A (0.1, A)
|
||||
SMA_358.data.u8[6] = (charge_current >> 8);
|
||||
SMA_358.data.u8[7] = (charge_current & 0x00FF);
|
||||
SMA_358.data.u8[6] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
SMA_358.data.u8[7] = (datalayer.battery.status.max_charge_current_dA & 0x00FF);
|
||||
|
||||
//SOC (100.00%)
|
||||
SMA_3D8.data.u8[0] = (datalayer.battery.status.reported_soc >> 8);
|
||||
|
|
|
@ -81,8 +81,6 @@ CAN_frame SMA_018 = {.FD = false,
|
|||
.ID = 0x018,
|
||||
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
|
||||
|
||||
static uint16_t discharge_current = 0;
|
||||
static uint16_t charge_current = 0;
|
||||
static int16_t temperature_average = 0;
|
||||
static uint16_t ampere_hours_remaining = 0;
|
||||
static uint16_t ampere_hours_max = 0;
|
||||
|
@ -123,29 +121,6 @@ InvInitState invInitState = SYSTEM_FREQUENCY;
|
|||
void update_values_can_inverter() { //This function maps all the values fetched from battery CAN to the inverter CAN
|
||||
//Calculate values
|
||||
|
||||
if (datalayer.battery.status.voltage_dV > 10) { // Only update value when we have voltage available to avoid div0
|
||||
charge_current =
|
||||
((datalayer.battery.status.max_charge_power_W * 10) /
|
||||
datalayer.battery.status.voltage_dV); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
|
||||
charge_current = (charge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
|
||||
discharge_current =
|
||||
((datalayer.battery.status.max_discharge_power_W * 10) /
|
||||
datalayer.battery.status.voltage_dV); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
|
||||
discharge_current = (discharge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
|
||||
}
|
||||
|
||||
if (charge_current > datalayer.battery.info.max_charge_amp_dA) {
|
||||
charge_current =
|
||||
datalayer.battery.info
|
||||
.max_charge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
|
||||
if (discharge_current > datalayer.battery.info.max_discharge_amp_dA) {
|
||||
discharge_current =
|
||||
datalayer.battery.info
|
||||
.max_discharge_amp_dA; //Cap the value to the max allowed Amp. Some inverters cannot handle large values.
|
||||
}
|
||||
|
||||
temperature_average =
|
||||
((datalayer.battery.status.temperature_max_dC + datalayer.battery.status.temperature_min_dC) / 2);
|
||||
|
||||
|
@ -167,11 +142,11 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
SMA_00D.data.u8[2] = (datalayer.battery.info.min_design_voltage_dV >> 8);
|
||||
SMA_00D.data.u8[3] = (datalayer.battery.info.min_design_voltage_dV & 0x00FF);
|
||||
//Discharge limited current, 500 = 50A, (0.1, A)
|
||||
SMA_00D.data.u8[4] = (discharge_current >> 8);
|
||||
SMA_00D.data.u8[5] = (discharge_current & 0x00FF);
|
||||
SMA_00D.data.u8[4] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
SMA_00D.data.u8[5] = (datalayer.battery.status.max_discharge_current_dA & 0x00FF);
|
||||
//Charge limited current, 125 =12.5A (0.1, A)
|
||||
SMA_00D.data.u8[6] = (charge_current >> 8);
|
||||
SMA_00D.data.u8[7] = (charge_current & 0x00FF);
|
||||
SMA_00D.data.u8[6] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
SMA_00D.data.u8[7] = (datalayer.battery.status.max_charge_current_dA & 0x00FF);
|
||||
|
||||
// Battery State
|
||||
//SOC (100.00%)
|
||||
|
|
|
@ -207,10 +207,10 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
//Maxvoltage (eg 400.0V = 4000 , 16bits long) Charge Cutoff Voltage
|
||||
SOFAR_351.data.u8[0] = (datalayer.battery.info.max_design_voltage_dV >> 8);
|
||||
SOFAR_351.data.u8[1] = (datalayer.battery.info.max_design_voltage_dV & 0x00FF);
|
||||
//SOFAR_351.data.u8[2] = DC charge current limitation (Default 25.0A)
|
||||
//SOFAR_351.data.u8[3] = DC charge current limitation
|
||||
//SOFAR_351.data.u8[4] = DC discharge current limitation (Default 25.0A)
|
||||
//SOFAR_351.data.u8[5] = DC discharge current limitation
|
||||
SOFAR_351.data.u8[2] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
SOFAR_351.data.u8[3] = (datalayer.battery.status.max_charge_current_dA & 0x00FF);
|
||||
SOFAR_351.data.u8[4] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
SOFAR_351.data.u8[5] = (datalayer.battery.status.max_discharge_current_dA & 0x00FF);
|
||||
//Minvoltage (eg 300.0V = 3000 , 16bits long) Discharge Cutoff Voltage
|
||||
SOFAR_351.data.u8[6] = (datalayer.battery.info.min_design_voltage_dV >> 8);
|
||||
SOFAR_351.data.u8[7] = (datalayer.battery.info.min_design_voltage_dV & 0x00FF);
|
||||
|
|
|
@ -10,8 +10,6 @@
|
|||
// https://github.com/dalathegreat/Battery-Emulator/wiki/Solax-inverters
|
||||
|
||||
/* Do not change code below unless you are sure what you are doing */
|
||||
static uint16_t max_charge_rate_amp = 0;
|
||||
static uint16_t max_discharge_rate_amp = 0;
|
||||
static int16_t temperature_average = 0;
|
||||
static uint8_t STATE = BATTERY_ANNOUNCE;
|
||||
static unsigned long LastFrameTime = 0;
|
||||
|
@ -93,50 +91,6 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
temperature_average =
|
||||
((datalayer.battery.status.temperature_max_dC + datalayer.battery.status.temperature_min_dC) / 2);
|
||||
|
||||
//datalayer.battery.status.max_charge_power_W (30000W max)
|
||||
if (datalayer.battery.status.reported_soc > 9999) { // 99.99%
|
||||
// Additional safety incase SOC% is 100, then do not charge battery further
|
||||
max_charge_rate_amp = 0;
|
||||
} else { // We can pass on the battery charge rate (in W) to the inverter (that takes A)
|
||||
if (datalayer.battery.status.max_charge_power_W >= 30000) {
|
||||
max_charge_rate_amp = 75; // Incase battery can take over 30kW, cap value to 75A
|
||||
} else { // Calculate the W value into A
|
||||
if (datalayer.battery.status.voltage_dV > 10) {
|
||||
max_charge_rate_amp =
|
||||
datalayer.battery.status.max_charge_power_W / (datalayer.battery.status.voltage_dV * 0.1); // P/U=I
|
||||
} else { // We avoid dividing by 0 and crashing the board
|
||||
// If we have no voltage, something has gone wrong, do not allow charging
|
||||
max_charge_rate_amp = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//datalayer.battery.status.max_discharge_power_W (30000W max)
|
||||
if (datalayer.battery.status.reported_soc < 100) { // 1.00%
|
||||
// Additional safety in case SOC% is below 1, then do not discharge battery further
|
||||
max_discharge_rate_amp = 0;
|
||||
} else { // We can pass on the battery discharge rate to the inverter
|
||||
if (datalayer.battery.status.max_discharge_power_W >= 30000) {
|
||||
max_discharge_rate_amp = 75; // Incase battery can be charged with over 30kW, cap value to 75A
|
||||
} else { // Calculate the W value into A
|
||||
if (datalayer.battery.status.voltage_dV > 10) {
|
||||
max_discharge_rate_amp =
|
||||
datalayer.battery.status.max_discharge_power_W / (datalayer.battery.status.voltage_dV * 0.1); // P/U=I
|
||||
} else { // We avoid dividing by 0 and crashing the board
|
||||
// If we have no voltage, something has gone wrong, do not allow discharging
|
||||
max_discharge_rate_amp = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Cap the value according to user settings. Some inverters cannot handle large values.
|
||||
if ((max_charge_rate_amp * 10) > datalayer.battery.info.max_charge_amp_dA) {
|
||||
max_charge_rate_amp = (datalayer.battery.info.max_charge_amp_dA / 10);
|
||||
}
|
||||
if ((max_discharge_rate_amp * 10) > datalayer.battery.info.max_discharge_amp_dA) {
|
||||
max_discharge_rate_amp = (datalayer.battery.info.max_discharge_amp_dA / 10);
|
||||
}
|
||||
|
||||
// Batteries might be larger than uint16_t value can take
|
||||
if (datalayer.battery.info.total_capacity_Wh > 65000) {
|
||||
capped_capacity_Wh = 65000;
|
||||
|
@ -156,10 +110,10 @@ void update_values_can_inverter() { //This function maps all the values fetched
|
|||
SOLAX_1872.data.u8[1] = (datalayer.battery.info.max_design_voltage_dV >> 8);
|
||||
SOLAX_1872.data.u8[2] = (uint8_t)datalayer.battery.info.min_design_voltage_dV;
|
||||
SOLAX_1872.data.u8[3] = (datalayer.battery.info.min_design_voltage_dV >> 8);
|
||||
SOLAX_1872.data.u8[4] = (uint8_t)(max_charge_rate_amp * 10);
|
||||
SOLAX_1872.data.u8[5] = ((max_charge_rate_amp * 10) >> 8);
|
||||
SOLAX_1872.data.u8[6] = (uint8_t)(max_discharge_rate_amp * 10);
|
||||
SOLAX_1872.data.u8[7] = ((max_discharge_rate_amp * 10) >> 8);
|
||||
SOLAX_1872.data.u8[4] = (uint8_t)datalayer.battery.status.max_charge_current_dA;
|
||||
SOLAX_1872.data.u8[5] = (datalayer.battery.status.max_charge_current_dA >> 8);
|
||||
SOLAX_1872.data.u8[6] = (uint8_t)datalayer.battery.status.max_discharge_current_dA;
|
||||
SOLAX_1872.data.u8[7] = (datalayer.battery.status.max_discharge_current_dA >> 8);
|
||||
|
||||
//BMS_PackData
|
||||
SOLAX_1873.data.u8[0] = (uint8_t)datalayer.battery.status.voltage_dV; // OK
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue