Final fixes from andy

This commit is contained in:
Daniel 2023-12-18 00:34:50 +02:00
parent ca21dae6ba
commit 90bb3fe843
7 changed files with 435 additions and 241 deletions

View file

@ -14,11 +14,13 @@
#include "src/lib/miwagner-ESP32-Arduino-CAN/CAN_config.h" #include "src/lib/miwagner-ESP32-Arduino-CAN/CAN_config.h"
#include "src/lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h" #include "src/lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"
#ifdef WEBSERVER
#include "src/devboard/webserver/webserver.h"
#endif
// Interval settings // Interval settings
int intervalUpdateValues = 4800; // Interval at which to update inverter values / Modbus registers int intervalUpdateValues = 4800; // Interval at which to update inverter values / Modbus registers
const int interval1 = 1; // Interval for 1ms tasks
const int interval10 = 10; // Interval for 10ms tasks const int interval10 = 10; // Interval for 10ms tasks
unsigned long previousMillis1ms = 0;
unsigned long previousMillis10ms = 50; unsigned long previousMillis10ms = 50;
unsigned long previousMillisUpdateVal = 0; unsigned long previousMillisUpdateVal = 0;
@ -38,7 +40,7 @@ static ACAN2515_Buffer16 gBuffer;
#define MB_RTU_NUM_VALUES 30000 #define MB_RTU_NUM_VALUES 30000
#endif #endif
#if defined(LUNA2000_MODBUS) #if defined(LUNA2000_MODBUS)
#define MB_RTU_NUM_VALUES 50000 #define MB_RTU_NUM_VALUES 30000
#endif #endif
#if defined(BYD_MODBUS) || defined(LUNA2000_MODBUS) #if defined(BYD_MODBUS) || defined(LUNA2000_MODBUS)
uint16_t mbPV[MB_RTU_NUM_VALUES]; // Process variable memory uint16_t mbPV[MB_RTU_NUM_VALUES]; // Process variable memory
@ -75,6 +77,7 @@ uint16_t bms_status = ACTIVE; // ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTA
uint16_t stat_batt_power = 0; // Power going in/out of battery uint16_t stat_batt_power = 0; // Power going in/out of battery
uint16_t cell_max_voltage = 3700; // Stores the highest cell voltage value in the system uint16_t cell_max_voltage = 3700; // Stores the highest cell voltage value in the system
uint16_t cell_min_voltage = 3700; // Stores the minimum cell voltage value in the system uint16_t cell_min_voltage = 3700; // Stores the minimum cell voltage value in the system
bool LFP_Chemistry = false;
// LED parameters // LED parameters
Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800); Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800);
@ -104,12 +107,16 @@ unsigned long negativeStartTime = 0;
unsigned long timeSpentInFaultedMode = 0; unsigned long timeSpentInFaultedMode = 0;
#endif #endif
bool batteryAllowsContactorClosing = false; bool batteryAllowsContactorClosing = false;
bool inverterAllowsContactorClosing = false; bool inverterAllowsContactorClosing = true;
// Initialization // Initialization
void setup() { void setup() {
init_serial(); init_serial();
#ifdef WEBSERVER
init_webserver();
#endif
init_CAN(); init_CAN();
init_LED(); init_LED();
@ -117,6 +124,7 @@ void setup() {
init_contactors(); init_contactors();
init_modbus(); init_modbus();
init_serialDataLink();
inform_user_on_inverter(); inform_user_on_inverter();
@ -125,14 +133,18 @@ void setup() {
// Perform main program functions // Perform main program functions
void loop() { void loop() {
runSerialDataLink();
#ifdef WEBSERVER
// Over-the-air updates by ElegantOTA
ElegantOTA.loop();
#endif
// Input // Input
receive_can(); // Receive CAN messages. Runs as fast as possible receive_can(); // Receive CAN messages. Runs as fast as possible
#ifdef DUAL_CAN #ifdef DUAL_CAN
receive_can2(); receive_can2();
#endif #endif
#ifdef SERIAL_LINK_RECEIVER
receive_serial();
#endif
// Process // Process
if (millis() - previousMillis10ms >= interval10) // Every 10ms if (millis() - previousMillis10ms >= interval10) // Every 10ms
@ -155,9 +167,6 @@ void loop() {
#ifdef DUAL_CAN #ifdef DUAL_CAN
send_can2(); send_can2();
#endif #endif
#ifdef SERIAL_LINK_TRANSMITTER
send_serial();
#endif
} }
// Initialization functions // Initialization functions
@ -225,13 +234,6 @@ void init_modbus() {
pinMode(PIN_5V_EN, OUTPUT); pinMode(PIN_5V_EN, OUTPUT);
digitalWrite(PIN_5V_EN, HIGH); digitalWrite(PIN_5V_EN, HIGH);
#if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER)
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN); // If the Modbus RTU port will be used for serial link
#if defined(BYD_MODBUS) || defined(LUNA2000_MODBUS)
#error Modbus pins cannot be used for Serial and Modbus at the same time!
#endif
#endif
#ifdef BYD_MODBUS #ifdef BYD_MODBUS
// Init Static data to the RTU Modbus // Init Static data to the RTU Modbus
handle_static_data_modbus_byd(); handle_static_data_modbus_byd();
@ -254,36 +256,24 @@ void inform_user_on_inverter() {
// Inform user what Inverter is used // Inform user what Inverter is used
#ifdef BYD_CAN #ifdef BYD_CAN
Serial.println("BYD CAN protocol selected"); Serial.println("BYD CAN protocol selected");
bool inverterAllowsContactorClosing =
true; // The inverter does not care when contactors are actuated, OK to start with them ON
#endif #endif
#ifdef BYD_MODBUS #ifdef BYD_MODBUS
Serial.println("BYD Modbus RTU protocol selected"); Serial.println("BYD Modbus RTU protocol selected");
bool inverterAllowsContactorClosing =
true; // The inverter does not care when contactors are actuated, OK to start with them ON
#endif #endif
#ifdef LUNA2000_MODBUS #ifdef LUNA2000_MODBUS
Serial.println("Luna2000 Modbus RTU protocol selected"); Serial.println("Luna2000 Modbus RTU protocol selected");
bool inverterAllowsContactorClosing =
true; // The inverter does not care when contactors are actuated, OK to start with them ON
#endif #endif
#ifdef PYLON_CAN #ifdef PYLON_CAN
Serial.println("PYLON CAN protocol selected"); Serial.println("PYLON CAN protocol selected");
bool inverterAllowsContactorClosing =
true; // The inverter does not care when contactors are actuated, OK to start with them ON
#endif #endif
#ifdef SMA_CAN #ifdef SMA_CAN
Serial.println("SMA CAN protocol selected"); Serial.println("SMA CAN protocol selected");
bool inverterAllowsContactorClosing =
true; // The inverter does not care when contactors are actuated, OK to start with them ON
#endif #endif
#ifdef SOFAR_CAN #ifdef SOFAR_CAN
Serial.println("SOFAR CAN protocol selected"); Serial.println("SOFAR CAN protocol selected");
bool inverterAllowsContactorClosing =
true; // The inverter does not care when contactors are actuated, OK to start with them ON
#endif #endif
#ifdef SOLAX_CAN #ifdef SOLAX_CAN
inverterAllowsContactorClosing = false; // The inverter needs to allow first on this protocol! inverterAllowsContactorClosing = false; // The inverter needs to allow first on this protocol
intervalUpdateValues = 800; // This protocol also requires the values to be updated faster intervalUpdateValues = 800; // This protocol also requires the values to be updated faster
Serial.println("SOLAX CAN protocol selected"); Serial.println("SOLAX CAN protocol selected");
#endif #endif
@ -315,6 +305,9 @@ void inform_user_on_battery() {
#ifdef TEST_FAKE_BATTERY #ifdef TEST_FAKE_BATTERY
Serial.println("Test mode with fake battery selected"); Serial.println("Test mode with fake battery selected");
#endif #endif
#ifdef SERIAL_LINK_RECEIVER
Serial.println("SERIAL_DATA_LINK_RECEIVER selected");
#endif
#if !defined(ABSOLUTE_MAX_VOLTAGE) #if !defined(ABSOLUTE_MAX_VOLTAGE)
#error No battery selected! Choose one from the USER_SETTINGS.h file #error No battery selected! Choose one from the USER_SETTINGS.h file
#endif #endif
@ -413,30 +406,6 @@ void send_can() {
#endif #endif
} }
#ifdef SERIAL_LINK_RECEIVER
//---- Receives serial data and transfers to the Inverter
void receive_serial() {
unsigned long currentMillis = millis();
if (currentMillis - previousMillis1ms >= interval1) { //--- try 2 second
previousMillis1ms = currentMillis;
manageSerialLinkReceiver();
}
}
#endif
#ifdef SERIAL_LINK_TRANSMITTER
//---- Gets data from Battery and serial Transmits the data to the Receiver
void send_serial() {
unsigned long currentMillis = millis();
if (bms_status == ACTIVE) {
if (currentMillis - previousMillis1ms >= interval1) { //--- try 2 second
previousMillis1ms = currentMillis;
manageSerialLinkTransmitter();
}
}
}
#endif
#ifdef DUAL_CAN #ifdef DUAL_CAN
void receive_can2() { // This function is similar to receive_can, but just takes care of inverters in the 2nd bus. void receive_can2() { // This function is similar to receive_can, but just takes care of inverters in the 2nd bus.
// Depending on which inverter is selected, we forward this to their respective CAN routines // Depending on which inverter is selected, we forward this to their respective CAN routines
@ -647,10 +616,34 @@ void update_values() {
#ifdef SMA_CAN #ifdef SMA_CAN
update_values_can_sma(); update_values_can_sma();
#endif #endif
#ifdef SOFAR_CAN
update_values_can_sofar();
#endif
#ifdef SOLAX_CAN #ifdef SOLAX_CAN
update_values_can_solax(); update_values_can_solax();
#endif #endif
}
void runSerialDataLink() {
static unsigned long sdlTimer = 0;
unsigned long currentMillis = millis();
#ifdef SERIAL_LINK_RECEIVER #ifdef SERIAL_LINK_RECEIVER
update_values_serial_link(); if (currentMillis - sdlTimer >= 1) { //--- try 2 second
sdlTimer = currentMillis;
manageSerialLinkReceiver();
}
#endif
#ifdef SERIAL_LINK_TRANSMITTER
if (currentMillis - sdlTimer >= 1) { //--- try 2 second
sdlTimer = currentMillis;
manageSerialLinkTransmitter();
}
#endif
}
void init_serialDataLink() {
#if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER)
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
#endif #endif
} }

View file

@ -11,10 +11,22 @@ const uint8_t sendingNumVariables = INVERTER_SEND_NUM_VARIABLES;
const uint8_t sendingNumVariables = 0; const uint8_t sendingNumVariables = 0;
#endif #endif
// txid,rxid, num_send,num_recv #ifdef TESTBENCH
SerialDataLink dataLinkReceive(Serial2, 0, 0x01, sendingNumVariables, // In the testbench environment, the receiver uses Serial3
#define SerialReceiver Serial3
#else
// In the production environment, the receiver uses Serial2
#define SerialReceiver Serial2
#endif
#define REPORT_SDL_DATA 1
// txid,rxid, num_send,num_recv
SerialDataLink dataLinkReceive(SerialReceiver, 0, 0x01, sendingNumVariables,
INVERTER_RECV_NUM_VARIABLES); // ... INVERTER_RECV_NUM_VARIABLES); // ...
static bool batteryFault = false; // used locally - mainly to indicate Battery CAN failure
void __getData() { void __getData() {
SOC = (uint16_t)dataLinkReceive.getReceivedData(0); SOC = (uint16_t)dataLinkReceive.getReceivedData(0);
StateOfHealth = (uint16_t)dataLinkReceive.getReceivedData(1); StateOfHealth = (uint16_t)dataLinkReceive.getReceivedData(1);
@ -24,14 +36,20 @@ void __getData() {
remaining_capacity_Wh = (uint16_t)dataLinkReceive.getReceivedData(5); remaining_capacity_Wh = (uint16_t)dataLinkReceive.getReceivedData(5);
max_target_discharge_power = (uint16_t)dataLinkReceive.getReceivedData(6); max_target_discharge_power = (uint16_t)dataLinkReceive.getReceivedData(6);
max_target_charge_power = (uint16_t)dataLinkReceive.getReceivedData(7); max_target_charge_power = (uint16_t)dataLinkReceive.getReceivedData(7);
bms_status = (uint16_t)dataLinkReceive.getReceivedData(8); uint16_t _bms_status = (uint16_t)dataLinkReceive.getReceivedData(8);
bms_status = _bms_status;
bms_char_dis_status = (uint16_t)dataLinkReceive.getReceivedData(9); bms_char_dis_status = (uint16_t)dataLinkReceive.getReceivedData(9);
stat_batt_power = (uint16_t)dataLinkReceive.getReceivedData(10); stat_batt_power = (uint16_t)dataLinkReceive.getReceivedData(10);
temperature_min = (uint16_t)dataLinkReceive.getReceivedData(11); temperature_min = (uint16_t)dataLinkReceive.getReceivedData(11);
temperature_max = (uint16_t)dataLinkReceive.getReceivedData(12); temperature_max = (uint16_t)dataLinkReceive.getReceivedData(12);
cell_max_voltage = (uint16_t)dataLinkReceive.getReceivedData(13); cell_max_voltage = (uint16_t)dataLinkReceive.getReceivedData(13);
cell_min_voltage = (uint16_t)dataLinkReceive.getReceivedData(14); cell_min_voltage = (uint16_t)dataLinkReceive.getReceivedData(14);
batteryAllowsContactorClosing = (uint16_t)dataLinkReceive.getReceivedData(15); LFP_Chemistry = (bool)dataLinkReceive.getReceivedData(15);
batteryAllowsContactorClosing = (uint16_t)dataLinkReceive.getReceivedData(16);
batteryFault = false;
if (_bms_status == FAULT)
batteryFault = true;
} }
void updateData() { void updateData() {
@ -47,13 +65,16 @@ void updateData() {
*/ */
void manageSerialLinkReceiver() { void manageSerialLinkReceiver() {
static bool lasterror = false; static bool lasterror = false;
static unsigned long last_minutesLost = 0; static unsigned long last_minutesLost = 0;
static unsigned long lastGood; static unsigned long lastGood;
static uint16_t lastGoodMaxCharge; static uint16_t lastGoodMaxCharge;
static uint16_t lastGoodMaxDischarge; static uint16_t lastGoodMaxDischarge;
static bool initLink = false; static bool initLink = false;
static unsigned long reportTime = 0;
static uint16_t reads = 0;
static uint16_t errors = 0;
unsigned long currentTime = millis(); unsigned long currentTime = millis();
if (!initLink) { if (!initLink) {
@ -69,21 +90,26 @@ void manageSerialLinkReceiver() {
if (readError) { if (readError) {
Serial.print(currentTime); Serial.print(currentTime);
Serial.println(" - ERROR: Serial Data Link - Read Error"); Serial.println(" - ERROR: SerialDataLink - Read Error");
lasterror = true; lasterror = true;
} else { errors++;
if (lasterror) {
lasterror = false;
Serial.print(currentTime);
Serial.println(" - RECOVERY: Serial Data Link - Read GOOD");
}
} }
if (dataLinkReceive.checkNewData(true)) // true = clear Flag if (dataLinkReceive.checkNewData(true)) // true = clear Flag
{ {
__getData(); __getData();
reads++;
lastGoodMaxCharge = max_target_charge_power; lastGoodMaxCharge = max_target_charge_power;
lastGoodMaxDischarge = max_target_discharge_power; lastGoodMaxDischarge = max_target_discharge_power;
lastGood = currentTime; //--- if BatteryFault then assume Data is stale
if (!batteryFault)
lastGood = currentTime;
//bms_status = ACTIVE; // just testing
if (lasterror) {
lasterror = false;
Serial.print(currentTime);
Serial.println(" - RECOVERY: SerialDataLink - Read GOOD");
}
} }
unsigned long minutesLost = (currentTime - lastGood) / 60000UL; unsigned long minutesLost = (currentTime - lastGood) / 60000UL;
@ -93,6 +119,7 @@ void manageSerialLinkReceiver() {
max_target_charge_power = (lastGoodMaxCharge * (4 - minutesLost)) / 4; max_target_charge_power = (lastGoodMaxCharge * (4 - minutesLost)) / 4;
max_target_discharge_power = (lastGoodMaxDischarge * (4 - minutesLost)) / 4; max_target_discharge_power = (lastGoodMaxDischarge * (4 - minutesLost)) / 4;
} else { } else {
// Times Up -
max_target_charge_power = 0; max_target_charge_power = 0;
max_target_discharge_power = 0; max_target_discharge_power = 0;
bms_status = 4; //Fault state bms_status = 4; //Fault state
@ -103,7 +130,11 @@ void manageSerialLinkReceiver() {
if (minutesLost != last_minutesLost) { if (minutesLost != last_minutesLost) {
last_minutesLost = minutesLost; last_minutesLost = minutesLost;
Serial.print(currentTime); Serial.print(currentTime);
Serial.print(" - Minutes without data : "); if (batteryFault) {
Serial.print("Battery Fault (minutes) : ");
} else {
Serial.print(" - Minutes without data : ");
}
Serial.print(minutesLost); Serial.print(minutesLost);
Serial.print(", max Charge = "); Serial.print(", max Charge = ");
Serial.print(max_target_charge_power); Serial.print(max_target_charge_power);
@ -112,6 +143,24 @@ void manageSerialLinkReceiver() {
} }
} }
if (currentTime - reportTime > 59999) {
reportTime = currentTime;
Serial.print(currentTime);
Serial.print(" SerialDataLink-Receiver - NewData :");
Serial.print(reads);
Serial.print(" Errors : ");
Serial.println(errors);
reads = 0;
errors = 0;
// --- printUsefullData();
//Serial.print("SOC = ");
//Serial.println(SOC);
#ifdef REPORT_SDL_DATA
update_values_serial_link();
#endif
}
static unsigned long updateTime = 0; static unsigned long updateTime = 0;
#ifdef INVERTER_SEND_NUM_VARIABLES #ifdef INVERTER_SEND_NUM_VARIABLES
@ -156,8 +205,12 @@ void update_values_serial_link() {
Serial.print(cell_max_voltage); Serial.print(cell_max_voltage);
Serial.print(" Cell min: "); Serial.print(" Cell min: ");
Serial.print(cell_min_voltage); Serial.print(cell_min_voltage);
Serial.print(" LFP : ");
Serial.print(LFP_Chemistry);
Serial.print(" batteryAllowsContactorClosing: "); Serial.print(" batteryAllowsContactorClosing: ");
Serial.print(batteryAllowsContactorClosing); Serial.print(batteryAllowsContactorClosing);
Serial.print(" inverterAllowsContactorClosing: "); Serial.print(" inverterAllowsContactorClosing: ");
Serial.print(inverterAllowsContactorClosing); Serial.print(inverterAllowsContactorClosing);
Serial.println("");
} }

View file

@ -31,9 +31,23 @@ extern uint16_t temperature_max; //C+1, Goes thru convert2unsignedint16 funct
extern uint16_t cell_max_voltage; //mV, 0-4350 extern uint16_t cell_max_voltage; //mV, 0-4350
extern uint16_t cell_min_voltage; //mV, 0-4350 extern uint16_t cell_min_voltage; //mV, 0-4350
extern uint8_t LEDcolor; //Enum, 0-10 extern uint8_t LEDcolor; //Enum, 0-10
extern bool batteryAllowsContactorClosing; //Bool, 1=true, 0=false
extern bool LFP_Chemistry;
extern uint16_t CANerror;
extern bool batteryAllowsContactorClosing; //Bool, 1=true, 0=false
// Parameters to send to the transmitter
extern bool inverterAllowsContactorClosing; //Bool, 1=true, 0=false extern bool inverterAllowsContactorClosing; //Bool, 1=true, 0=false
// Definitions for bms_status
#define STANDBY 0
#define INACTIVE 1
#define DARKSTART 2
#define ACTIVE 3
#define FAULT 4
#define UPDATING 5
void manageSerialLinkReceiver(); void manageSerialLinkReceiver();
void update_values_serial_link(); void update_values_serial_link();

View file

@ -8,7 +8,7 @@
* Will transmit max 16 int variable - receive none * Will transmit max 16 int variable - receive none
*/ */
#define BATTERY_SEND_NUM_VARIABLES 16 #define BATTERY_SEND_NUM_VARIABLES 17
#define BATTERY_RECV_NUM_VARIABLES 1 #define BATTERY_RECV_NUM_VARIABLES 1
#ifdef BATTERY_RECV_NUM_VARIABLES #ifdef BATTERY_RECV_NUM_VARIABLES
@ -17,9 +17,13 @@ const uint8_t receivingNumVariables = BATTERY_RECV_NUM_VARIABLES;
const uint8_t receivingNumVariables = 0; const uint8_t receivingNumVariables = 0;
#endif #endif
//#define REPORT_SDL_DATA 1
// txid,rxid,num_tx,num_rx // txid,rxid,num_tx,num_rx
SerialDataLink dataLinkTransmit(Serial2, 0x01, 0, BATTERY_SEND_NUM_VARIABLES, receivingNumVariables); SerialDataLink dataLinkTransmit(Serial2, 0x01, 0, BATTERY_SEND_NUM_VARIABLES, receivingNumVariables);
void printSendingValues();
void _getData() { void _getData() {
inverterAllowsContactorClosing = dataLinkTransmit.getReceivedData(0); inverterAllowsContactorClosing = dataLinkTransmit.getReceivedData(0);
//var2 = dataLinkTransmit.getReceivedData(1); //var2 = dataLinkTransmit.getReceivedData(1);
@ -30,8 +34,9 @@ void manageSerialLinkTransmitter() {
static bool initLink = false; static bool initLink = false;
static unsigned long updateTime = 0; static unsigned long updateTime = 0;
static bool lasterror = false; static bool lasterror = false;
static unsigned long lastNoError = 0; //static unsigned long lastNoError = 0;
static unsigned long transmitGoodSince = 0; static unsigned long transmitGoodSince = 0;
static unsigned long lastGood = 0;
unsigned long currentTime = millis(); unsigned long currentTime = millis();
@ -49,8 +54,9 @@ void manageSerialLinkTransmitter() {
updateTime = currentTime; updateTime = currentTime;
if (!initLink) { if (!initLink) {
initLink = true; initLink = true;
transmitGoodSince = currentTime;
// sends variables every 5000mS even if no change // sends variables every 5000mS even if no change
dataLinkTransmit.setUpdateInterval(5000); dataLinkTransmit.setUpdateInterval(10000);
} }
bool sendError = dataLinkTransmit.checkTransmissionError(true); bool sendError = dataLinkTransmit.checkTransmissionError(true);
if (sendError) { if (sendError) {
@ -58,13 +64,26 @@ void manageSerialLinkTransmitter() {
Serial.println(" - ERROR: Serial Data Link - SEND Error"); Serial.println(" - ERROR: Serial Data Link - SEND Error");
lasterror = true; lasterror = true;
transmitGoodSince = currentTime; transmitGoodSince = currentTime;
} else { }
if (lasterror) {
lasterror = false; /* new feature */
Serial.print(currentTime); /* @getLastAcknowledge(bool resetFlag)
Serial.println(" - RECOVERY: Serial Data Link - Send GOOD"); * - returns:
} * -2 NACK received from receiver
lastNoError = currentTime; * -1 no ACK received
* 0 no activity
* 1 ACK received
* resetFlag = true will clear to 0
*/
int ackReceived = dataLinkTransmit.getLastAcknowledge(true);
if (ackReceived > 0)
lastGood = currentTime;
if (lasterror && (ackReceived > 0)) {
lasterror = false;
Serial.print(currentTime);
Serial.println(" - RECOVERY: Serial Data Link - Send GOOD");
} }
//--- reporting every 60 seconds that transmission is good //--- reporting every 60 seconds that transmission is good
@ -72,13 +91,24 @@ void manageSerialLinkTransmitter() {
transmitGoodSince = currentTime; transmitGoodSince = currentTime;
Serial.print(currentTime); Serial.print(currentTime);
Serial.println(" - Transmit Good"); Serial.println(" - Transmit Good");
// printUsefullData();
#ifdef REPORT_SDL_DATA
void printSendingValues();
#endif
} }
//--- report that Errors been ocurring for > 60 seconds //--- report that Errors been ocurring for > 60 seconds
if (currentTime - lastNoError > 60000) // 60 seconds if (currentTime - lastGood > 60000) // 60 seconds
{ {
lastGood = currentTime;
Serial.print(currentTime); Serial.print(currentTime);
Serial.println(" - Transmit Failed : 60 seconds"); Serial.println(" - Transmit Failed : 60 seconds");
// print the max_ data
Serial.println("SerialDataLink : bms_status=4");
Serial.println("SerialDataLink : LEDcolor = RED");
Serial.println("SerialDataLink : max_target_discharge_power = 0");
Serial.println("SerialDataLink : max_target_charge_power = 0");
bms_status = 4; //FAULT bms_status = 4; //FAULT
max_target_discharge_power = 0; max_target_discharge_power = 0;
max_target_charge_power = 0; max_target_charge_power = 0;
@ -97,21 +127,69 @@ void manageSerialLinkTransmitter() {
} }
*/ */
dataLinkTransmit.updateData(0, SOC); static unsigned long updateDataTime = 0;
dataLinkTransmit.updateData(1, StateOfHealth);
dataLinkTransmit.updateData(2, battery_voltage); if (currentTime - updateDataTime > 999) {
dataLinkTransmit.updateData(3, battery_current); updateDataTime = currentTime;
dataLinkTransmit.updateData(4, capacity_Wh); dataLinkTransmit.updateData(0, SOC);
dataLinkTransmit.updateData(5, remaining_capacity_Wh); dataLinkTransmit.updateData(1, StateOfHealth);
dataLinkTransmit.updateData(6, max_target_discharge_power); dataLinkTransmit.updateData(2, battery_voltage);
dataLinkTransmit.updateData(7, max_target_charge_power); dataLinkTransmit.updateData(3, battery_current);
dataLinkTransmit.updateData(8, bms_status); dataLinkTransmit.updateData(4, capacity_Wh);
dataLinkTransmit.updateData(9, bms_char_dis_status); dataLinkTransmit.updateData(5, remaining_capacity_Wh);
dataLinkTransmit.updateData(10, stat_batt_power); dataLinkTransmit.updateData(6, max_target_discharge_power);
dataLinkTransmit.updateData(11, temperature_min); dataLinkTransmit.updateData(7, max_target_charge_power);
dataLinkTransmit.updateData(12, temperature_max); dataLinkTransmit.updateData(8, bms_status);
dataLinkTransmit.updateData(13, cell_max_voltage); dataLinkTransmit.updateData(9, bms_char_dis_status);
dataLinkTransmit.updateData(14, cell_min_voltage); dataLinkTransmit.updateData(10, stat_batt_power);
dataLinkTransmit.updateData(15, batteryAllowsContactorClosing); dataLinkTransmit.updateData(11, temperature_min);
dataLinkTransmit.updateData(12, temperature_max);
dataLinkTransmit.updateData(13, cell_max_voltage);
dataLinkTransmit.updateData(14, cell_min_voltage);
dataLinkTransmit.updateData(15, (int16_t)LFP_Chemistry);
dataLinkTransmit.updateData(16, batteryAllowsContactorClosing);
}
} }
} }
void printSendingValues() {
Serial.println("Values from battery: ");
Serial.print("SOC: ");
Serial.print(SOC);
Serial.print(" SOH: ");
Serial.print(StateOfHealth);
Serial.print(" Voltage: ");
Serial.print(battery_voltage);
Serial.print(" Current: ");
Serial.print(battery_current);
Serial.print(" Capacity: ");
Serial.print(capacity_Wh);
Serial.print(" Remain cap: ");
Serial.print(remaining_capacity_Wh);
Serial.print(" Max discharge W: ");
Serial.print(max_target_discharge_power);
Serial.print(" Max charge W: ");
Serial.print(max_target_charge_power);
Serial.print(" BMS status: ");
Serial.print(bms_status);
Serial.print(" BMS status dis/cha: ");
Serial.print(bms_char_dis_status);
Serial.print(" Power: ");
Serial.print(stat_batt_power);
Serial.print(" Temp min: ");
Serial.print(temperature_min);
Serial.print(" Temp max: ");
Serial.print(temperature_max);
Serial.print(" Cell max: ");
Serial.print(cell_max_voltage);
Serial.print(" Cell min: ");
Serial.print(cell_min_voltage);
Serial.print(" LFP : ");
Serial.print(LFP_Chemistry);
Serial.print(" batteryAllowsContactorClosing: ");
Serial.print(batteryAllowsContactorClosing);
Serial.print(" inverterAllowsContactorClosing: ");
Serial.print(inverterAllowsContactorClosing);
Serial.println("");
}

View file

@ -25,9 +25,22 @@ extern uint16_t temperature_max; //C+1, Goes thru convert2unsignedint16 funct
extern uint16_t cell_max_voltage; //mV, 0-4350 extern uint16_t cell_max_voltage; //mV, 0-4350
extern uint16_t cell_min_voltage; //mV, 0-4350 extern uint16_t cell_min_voltage; //mV, 0-4350
extern uint8_t LEDcolor; //Enum, 0-10 extern uint8_t LEDcolor; //Enum, 0-10
extern bool batteryAllowsContactorClosing; //Bool, 1=true, 0=false extern bool batteryAllowsContactorClosing; //Bool, 1=true, 0=false
extern bool LFP_Chemistry;
extern uint16_t CANerror;
// parameters received from receiver
extern bool inverterAllowsContactorClosing; //Bool, 1=true, 0=false extern bool inverterAllowsContactorClosing; //Bool, 1=true, 0=false
// Definitions for BMS status
#define STANDBY 0
#define INACTIVE 1
#define DARKSTART 2
#define ACTIVE 3
#define FAULT 4
#define UPDATING 5
void manageSerialLinkTransmitter(); void manageSerialLinkTransmitter();
#endif #endif

View file

@ -109,6 +109,16 @@ bool SerialDataLink::checkTransmissionError(bool resetFlag)
return currentStatus; return currentStatus;
} }
int SerialDataLink::getLastAcknowledge(bool resetFlag)
{
int result = lastAcknowledgeStatus;
if (resetFlag)
{
lastAcknowledgeStatus = 0; // Reset to default state
}
return result;
}
bool SerialDataLink::checkReadError(bool reset) bool SerialDataLink::checkReadError(bool reset)
{ {
bool error = readError; bool error = readError;
@ -134,115 +144,135 @@ void SerialDataLink::muteACK(bool mute)
void SerialDataLink::run() void SerialDataLink::run()
{ {
unsigned long currentTime = millis(); unsigned long currentTime = millis();
static DataLinkState oldstate; static DataLinkState oldstate;
// Check if state has not changed for a prolonged period // Check if state has not changed for a prolonged period
if (oldstate != currentState) if (oldstate != currentState)
{ {
lastStateChangeTime = currentTime; lastStateChangeTime = currentTime;
oldstate = currentState; oldstate = currentState;
} }
if ((currentTime - lastStateChangeTime) > stateChangeTimeout) { if ((currentTime - lastStateChangeTime) > stateChangeTimeout) {
// Reset the state to Idle and perform necessary cleanup // Reset the state to Idle and perform necessary cleanup
currentState = DataLinkState::Idle; currentState = DataLinkState::Idle;
// Perform any additional cleanup or reinitialization here // Perform any additional cleanup or reinitialization here
// ... // ...
lastStateChangeTime = currentTime; // Reset the last state change time lastStateChangeTime = currentTime; // Reset the last state change time
} }
switch (currentState)
{ switch (currentState)
case DataLinkState::Idle: {
// Decide if the device should start transmitting case DataLinkState::Idle:
currentState = DataLinkState::Receiving; // Decide if the device should start transmitting
if (shouldTransmit()) currentState = DataLinkState::Receiving;
{ if (shouldTransmit())
currentState = DataLinkState::Transmitting; {
} currentState = DataLinkState::WaitTobuildPacket;
break; }
break;
case DataLinkState::Transmitting:
if (isTransmitting) case DataLinkState::WaitTobuildPacket:
{ constructPacket();
sendNextByte(); // Continue sending the current data if (isTransmitting)
} {
else currentState = DataLinkState::Transmitting;
{ }
constructPacket(); // Construct a new packet if not currently transmitting break;
if (muteAcknowledgement && (needToACK || needToNACK)) case DataLinkState::Transmitting:
{ sendNextByte();
needToACK = false;
needToNACK = false; // Check if the transmission is complete
} if (transmissionComplete)
uint8_t ack; {
// now it is known which acknoledge need sending since last Reception transmissionComplete = false;
if (needToACK) isTransmitting = false;
{ currentState = DataLinkState::WaitingForAck; // Move to WaitingForAck state
needToACK = false; }
ack = (txBufferIndex > 5) ? ACK_RTT_CODE : ACK_CODE; break;
serial.write(ack);
} case DataLinkState::WaitingForAck:
if (needToNACK)
{ if (ackTimeout())
needToNACK = false; {
ack = (txBufferIndex > 5) ? NACK_RTT_CODE : NACK_CODE; // Handle ACK timeout scenario
serial.write(ack); transmissionError = true;
} lastAcknowledgeStatus = -1;
} //--- if no ACK's etc received may as well move to Transmitting
if (maxIndexTX < 1)
{
currentState = DataLinkState::Receiving;
}
// Check if the transmission is complete
if (transmissionComplete)
{
transmissionComplete = false;
isTransmitting = false;
currentState = DataLinkState::WaitingForAck; // Move to WaitingForAck state
}
break;
case DataLinkState::WaitingForAck:
if (ackTimeout())
{
// Handle ACK timeout scenario
transmissionError = true;
isTransmitting = false;
//handleAckTimeout();
//--- if no ACK's etc received may as well move to Transmitting
currentState = DataLinkState::Transmitting;
}
if (ackReceived())
{
// No data to send from the other device
currentState = DataLinkState::Transmitting;
}
if (requestToSend)
{
// The other device has data to send (indicated by ACK+RTT)
currentState = DataLinkState::Receiving;
}
break;
case DataLinkState::Receiving:
read();
if (readComplete)
{
readComplete = false;
// transition to transmit mode
currentState = DataLinkState::Transmitting;
}
break;
default:
currentState = DataLinkState::Idle; currentState = DataLinkState::Idle;
} }
if (ackReceived())
{
// No data to send from the other device
currentState = DataLinkState::Idle;
}
if (requestToSend)
{
// The other device has data to send (indicated by ACK+RTT)
currentState = DataLinkState::Receiving;
requestToSend = false;
}
break;
case DataLinkState::Receiving:
read();
if (readComplete)
{
readComplete = false;
currentState = DataLinkState::SendingAck;
}
break;
case DataLinkState::SendingAck:
constructPacket();
if (muteAcknowledgement && (needToACK || needToNACK))
{
needToACK = false;
needToNACK = false;
}
uint8_t ack;
// now it is known which acknoledge need sending since last Reception
if (needToACK)
{
needToACK = false;
ack = (txBufferIndex > 5) ? ACK_RTT_CODE : ACK_CODE;
serial.write(ack);
}
if (needToNACK)
{
needToNACK = false;
ack = (txBufferIndex > 5) ? NACK_RTT_CODE : NACK_CODE;
serial.write(ack);
}
currentState = DataLinkState::Idle;
if (isTransmitting)
{
currentState = DataLinkState::Wait;
}
break;
case DataLinkState::Wait:
{
static unsigned long waitTimer=0;
if (waitTimer == 0) waitTimer = currentTime;
if (currentTime - waitTimer > 20)
{
waitTimer=0;
currentState = DataLinkState::Transmitting;
}
}
break;
default:
currentState = DataLinkState::Idle;
}
} }
void SerialDataLink::updateState(DataLinkState newState) void SerialDataLink::updateState(DataLinkState newState)
@ -343,42 +373,48 @@ bool SerialDataLink::sendNextByte()
bool SerialDataLink::ackReceived() bool SerialDataLink::ackReceived()
{ {
// Check if there is data available to read // Check if there is data available to read
if (serial.available() > 0) int count = 0;
if (serial.available() )
{ {
// Peek at the next byte without removing it from the buffer count++;
uint8_t nextByte = serial.peek(); // Peek at the next byte without removing it from the buffer
uint8_t nextByte = serial.peek();
if (nextByte == headerChar) if (nextByte == headerChar)
{ {
requestToSend = true; requestToSend = true;
transmissionError = true; transmissionError = true;
return false; return false;
}
uint8_t receivedByte = serial.read();
switch (receivedByte)
{
case ACK_CODE:
// Handle standard ACK
return true;
case ACK_RTT_CODE:
// Handle ACK with request to transmit
requestToSend = true;
return true;
case NACK_RTT_CODE:
requestToSend = true;
case NACK_CODE:
transmissionError = true;
return true;
default:
break;
} }
uint8_t receivedByte = serial.read();
switch (receivedByte)
{
case ACK_CODE:
// Handle standard ACK
lastAcknowledgeStatus = 1;
return true;
case ACK_RTT_CODE:
// Handle ACK with request to transmit
requestToSend = true;
lastAcknowledgeStatus = 1;
return true;
case NACK_RTT_CODE:
requestToSend = true;
case NACK_CODE:
transmissionError = true;
lastAcknowledgeStatus = -2;
return true;
break;
default:
break;
} }
}
return false; // No ACK, NACK, or new packet received return false; // No ACK, NACK, or new packet received
} }

View file

@ -68,6 +68,7 @@ public:
// Check for errors // Check for errors
bool checkTransmissionError(bool resetFlag); bool checkTransmissionError(bool resetFlag);
int getLastAcknowledge(bool resetFlag);
bool checkReadError(bool resetFlag); bool checkReadError(bool resetFlag);
// Setter methods for various parameters and special characters // Setter methods for various parameters and special characters
@ -84,9 +85,12 @@ private:
enum class DataLinkState enum class DataLinkState
{ {
Idle, Idle,
WaitTobuildPacket,
Transmitting, Transmitting,
WaitingForAck, WaitingForAck,
Receiving, Receiving,
SendingAck,
Wait,
Error Error
}; };
@ -117,6 +121,7 @@ private:
bool readComplete = false; bool readComplete = false;
bool retransmitEnabled; bool retransmitEnabled;
bool transmissionError = false; bool transmissionError = false;
int lastAcknowledgeStatus = 0;
bool readError = false; bool readError = false;
bool muteAcknowledgement = false; bool muteAcknowledgement = false;
@ -129,13 +134,15 @@ private:
int16_t dataArrayRX[dataArraySizeRX]; int16_t dataArrayRX[dataArraySizeRX];
bool dataUpdated[dataArraySizeTX]; bool dataUpdated[dataArraySizeTX];
unsigned long lastSent[dataArraySizeTX]; unsigned long lastSent[dataArraySizeTX];
// times in milliseconds
unsigned long updateInterval = 1000; unsigned long updateInterval = 1000;
unsigned long ACK_TIMEOUT = 200; unsigned long ACK_TIMEOUT = 200;
unsigned long PACKET_TIMEOUT = 200; // Timeout in milliseconds unsigned long PACKET_TIMEOUT = 200;
unsigned long lastStateChangeTime = 0;
unsigned long stateChangeTimeout = 300; unsigned long stateChangeTimeout = 300;
unsigned long lastStateChangeTime = 0;
// Special characters for packet framing // Special characters for packet framing
char headerChar = '<'; char headerChar = '<';