Merge pull request #619 from dalathegreat/feature/double-automatic-contactor

Feature: Double contactor support + NC support
This commit is contained in:
Daniel Öster 2024-11-24 01:14:10 +02:00 committed by GitHub
commit 9e74fcd032
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 120 additions and 90 deletions

View file

@ -57,7 +57,7 @@ const char* version_number = "7.8.dev";
// Interval settings // Interval settings
uint16_t intervalUpdateValues = INTERVAL_1_S; // Interval at which to update inverter values / Modbus registers uint16_t intervalUpdateValues = INTERVAL_1_S; // Interval at which to update inverter values / Modbus registers
unsigned long previousMillis10ms = 50; unsigned long previousMillis10ms = 0;
unsigned long previousMillisUpdateVal = 0; unsigned long previousMillisUpdateVal = 0;
// CAN parameters // CAN parameters
@ -118,6 +118,16 @@ MyTimer check_pause_2s(INTERVAL_2_S);
enum State { DISCONNECTED, PRECHARGE, NEGATIVE, POSITIVE, PRECHARGE_OFF, COMPLETED, SHUTDOWN_REQUESTED }; enum State { DISCONNECTED, PRECHARGE, NEGATIVE, POSITIVE, PRECHARGE_OFF, COMPLETED, SHUTDOWN_REQUESTED };
State contactorStatus = DISCONNECTED; State contactorStatus = DISCONNECTED;
#define ON 1
#define OFF 0
#ifdef NC_CONTACTORS //Normally closed contactors use inverted logic
#undef ON
#define ON 0
#undef OFF
#define OFF 1
#endif
#define MAX_ALLOWED_FAULT_TICKS 1000 #define MAX_ALLOWED_FAULT_TICKS 1000
/* NOTE: modify the precharge time constant below to account for the resistance and capacitance of the target system. /* NOTE: modify the precharge time constant below to account for the resistance and capacitance of the target system.
* t=3RC at minimum, t=5RC ideally * t=3RC at minimum, t=5RC ideally
@ -125,20 +135,32 @@ State contactorStatus = DISCONNECTED;
#define PRECHARGE_TIME_MS 160 #define PRECHARGE_TIME_MS 160
#define NEGATIVE_CONTACTOR_TIME_MS 1000 #define NEGATIVE_CONTACTOR_TIME_MS 1000
#define POSITIVE_CONTACTOR_TIME_MS 2000 #define POSITIVE_CONTACTOR_TIME_MS 2000
#ifdef PWM_CONTACTOR_CONTROL
#define PWM_Freq 20000 // 20 kHz frequency, beyond audible range #define PWM_Freq 20000 // 20 kHz frequency, beyond audible range
#define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100% #define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100%
#define PWM_Hold_Duty 250 #define PWM_HOLD_DUTY 250
#define PWM_Off_Duty 0 #define PWM_OFF_DUTY 0
#define PWM_On_Duty 1023 #define PWM_ON_DUTY 1023
#define POSITIVE_PWM_Ch 0 #define POSITIVE_PWM_Ch 0
#define NEGATIVE_PWM_Ch 1 #define NEGATIVE_PWM_Ch 1
#endif
unsigned long prechargeStartTime = 0; unsigned long prechargeStartTime = 0;
unsigned long negativeStartTime = 0; unsigned long negativeStartTime = 0;
unsigned long timeSpentInFaultedMode = 0; unsigned long timeSpentInFaultedMode = 0;
#endif #endif
void set(uint8_t pin, bool direction, uint32_t pwm_freq = 0xFFFFFFFFFF) {
#ifdef PWM_CONTACTOR_CONTROL
if (pwm_freq != 0xFFFFFFFFFF) {
ledcWrite(pin, pwm_freq);
return;
}
#endif
if (direction == 1) {
digitalWrite(pin, HIGH);
} else { // 0
digitalWrite(pin, LOW);
}
}
#ifdef EQUIPMENT_STOP_BUTTON #ifdef EQUIPMENT_STOP_BUTTON
const unsigned long equipment_button_long_press_duration = const unsigned long equipment_button_long_press_duration =
15000; // 15 seconds for long press in case of MOMENTARY_SWITCH 15000; // 15 seconds for long press in case of MOMENTARY_SWITCH
@ -280,9 +302,6 @@ void core_loop(void* task_time_us) {
previousMillis10ms = millis(); previousMillis10ms = millis();
led_exe(); led_exe();
handle_contactors(); // Take care of startup precharge/contactor closing handle_contactors(); // Take care of startup precharge/contactor closing
#ifdef DOUBLE_BATTERY
check_interconnect_available();
#endif
} }
END_TIME_MEASUREMENT_MAX(time_10ms, datalayer.system.status.time_10ms_us); END_TIME_MEASUREMENT_MAX(time_10ms, datalayer.system.status.time_10ms_us);
@ -292,6 +311,7 @@ void core_loop(void* task_time_us) {
update_values_battery(); // Fetch battery values update_values_battery(); // Fetch battery values
#ifdef DOUBLE_BATTERY #ifdef DOUBLE_BATTERY
update_values_battery2(); update_values_battery2();
check_interconnect_available();
#endif #endif
update_calculated_values(); update_calculated_values();
#ifndef SERIAL_LINK_RECEIVER #ifndef SERIAL_LINK_RECEIVER
@ -497,27 +517,34 @@ void init_CAN() {
void init_contactors() { void init_contactors() {
// Init contactor pins // Init contactor pins
#ifdef CONTACTOR_CONTROL #ifdef CONTACTOR_CONTROL
#ifndef PWM_CONTACTOR_CONTROL #ifdef PWM_CONTACTOR_CONTROL
pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
#else
ledcAttachChannel(POSITIVE_CONTACTOR_PIN, PWM_Freq, PWM_Res, ledcAttachChannel(POSITIVE_CONTACTOR_PIN, PWM_Freq, PWM_Res,
POSITIVE_PWM_Ch); // Setup PWM Channel Frequency and Resolution POSITIVE_PWM_Ch); // Setup PWM Channel Frequency and Resolution
ledcAttachChannel(NEGATIVE_CONTACTOR_PIN, PWM_Freq, PWM_Res, ledcAttachChannel(NEGATIVE_CONTACTOR_PIN, PWM_Freq, PWM_Res,
NEGATIVE_PWM_Ch); // Setup PWM Channel Frequency and Resolution NEGATIVE_PWM_Ch); // Setup PWM Channel Frequency and Resolution
ledcWrite(POSITIVE_CONTACTOR_PIN, PWM_Off_Duty); // Set Positive PWM to 0% ledcWrite(POSITIVE_CONTACTOR_PIN, PWM_OFF_DUTY); // Set Positive PWM to 0%
ledcWrite(NEGATIVE_CONTACTOR_PIN, PWM_Off_Duty); // Set Negative PWM to 0% ledcWrite(NEGATIVE_CONTACTOR_PIN, PWM_OFF_DUTY); // Set Negative PWM to 0%
#else //Normal CONTACTOR_CONTROL
pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT);
set(POSITIVE_CONTACTOR_PIN, OFF);
pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT);
set(NEGATIVE_CONTACTOR_PIN, OFF);
#endif #endif
pinMode(PRECHARGE_PIN, OUTPUT); pinMode(PRECHARGE_PIN, OUTPUT);
digitalWrite(PRECHARGE_PIN, LOW); set(PRECHARGE_PIN, OFF);
#endif #endif //CONTACTOR_CONTROL
#ifdef CONTACTOR_CONTROL_DOUBLE_BATTERY
pinMode(SECOND_POSITIVE_CONTACTOR_PIN, OUTPUT);
set(SECOND_POSITIVE_CONTACTOR_PIN, OFF);
pinMode(SECOND_NEGATIVE_CONTACTOR_PIN, OUTPUT);
set(SECOND_NEGATIVE_CONTACTOR_PIN, OFF);
#endif //CONTACTOR_CONTROL_DOUBLE_BATTERY
// Init BMS contactor // Init BMS contactor
#ifdef HW_STARK // TODO: Rewrite this so LilyGo can also handle this BMS contactor #ifdef HW_STARK // TODO: Rewrite this so LilyGo can also handle this BMS contactor
pinMode(BMS_POWER, OUTPUT); pinMode(BMS_POWER, OUTPUT);
digitalWrite(BMS_POWER, HIGH); digitalWrite(BMS_POWER, HIGH);
#endif #endif //HW_STARK
} }
void init_rs485() { void init_rs485() {
@ -695,14 +722,18 @@ void check_interconnect_available() {
return; // Both voltage values need to be available to start check return; // Both voltage values need to be available to start check
} }
if (abs(datalayer.battery.status.voltage_dV - datalayer.battery2.status.voltage_dV) < 30) { // If we are within 3.0V uint16_t voltage_diff = abs(datalayer.battery.status.voltage_dV - datalayer.battery2.status.voltage_dV);
if (voltage_diff <= 30) { // If we are within 3.0V between the batteries
clear_event(EVENT_VOLTAGE_DIFFERENCE); clear_event(EVENT_VOLTAGE_DIFFERENCE);
if (datalayer.battery.status.bms_status != FAULT) { // Only proceed if we are not in faulted state if (datalayer.battery.status.bms_status == FAULT) {
// If main battery is in fault state, disengage the second battery
datalayer.system.status.battery2_allows_contactor_closing = false;
} else { // If main battery is OK, allow second battery to join
datalayer.system.status.battery2_allows_contactor_closing = true; datalayer.system.status.battery2_allows_contactor_closing = true;
} }
} else { //We are over 3.0V diff } else { //Voltage between the two packs is too large
set_event(EVENT_VOLTAGE_DIFFERENCE, set_event(EVENT_VOLTAGE_DIFFERENCE, (uint8_t)(voltage_diff / 10));
(uint8_t)(abs(datalayer.battery.status.voltage_dV - datalayer.battery2.status.voltage_dV) / 10));
} }
} }
#endif //DOUBLE_BATTERY #endif //DOUBLE_BATTERY
@ -712,6 +743,10 @@ void handle_contactors() {
datalayer.system.status.inverter_allows_contactor_closing = digitalRead(INVERTER_CONTACTOR_ENABLE_PIN); datalayer.system.status.inverter_allows_contactor_closing = digitalRead(INVERTER_CONTACTOR_ENABLE_PIN);
#endif #endif
#ifdef CONTACTOR_CONTROL_DOUBLE_BATTERY
handle_contactors_battery2();
#endif
#ifdef CONTACTOR_CONTROL #ifdef CONTACTOR_CONTROL
// First check if we have any active errors, incase we do, turn off the battery // First check if we have any active errors, incase we do, turn off the battery
if (datalayer.battery.status.bms_status == FAULT) { if (datalayer.battery.status.bms_status == FAULT) {
@ -720,50 +755,38 @@ void handle_contactors() {
timeSpentInFaultedMode = 0; timeSpentInFaultedMode = 0;
} }
//handle contactor control SHUTDOWN_REQUESTED vs DISCONNECTED //handle contactor control SHUTDOWN_REQUESTED
if (timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS || if (timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS) {
(datalayer.system.settings.equipment_stop_active && contactorStatus != SHUTDOWN_REQUESTED)) {
contactorStatus = SHUTDOWN_REQUESTED; contactorStatus = SHUTDOWN_REQUESTED;
datalayer.system.settings.equipment_stop_active = true;
}
if (contactorStatus == SHUTDOWN_REQUESTED && !datalayer.system.settings.equipment_stop_active) {
contactorStatus = DISCONNECTED;
} }
if (contactorStatus == SHUTDOWN_REQUESTED) { if (contactorStatus == SHUTDOWN_REQUESTED) {
digitalWrite(PRECHARGE_PIN, LOW); set(PRECHARGE_PIN, OFF);
#ifndef PWM_CONTACTOR_CONTROL set(NEGATIVE_CONTACTOR_PIN, OFF, PWM_OFF_DUTY);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW); set(POSITIVE_CONTACTOR_PIN, OFF, PWM_OFF_DUTY);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
#else
ledcWrite(NEGATIVE_CONTACTOR_PIN, PWM_Off_Duty);
ledcWrite(POSITIVE_CONTACTOR_PIN, PWM_Off_Duty);
#endif
set_event(EVENT_ERROR_OPEN_CONTACTOR, 0); set_event(EVENT_ERROR_OPEN_CONTACTOR, 0);
datalayer.system.status.contactor_control_closed = false; datalayer.system.status.contactors_engaged = false;
return; // A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured) return; // A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured)
} }
// After that, check if we are OK to start turning on the battery // After that, check if we are OK to start turning on the battery
if (contactorStatus == DISCONNECTED) { if (contactorStatus == DISCONNECTED) {
digitalWrite(PRECHARGE_PIN, LOW); set(PRECHARGE_PIN, OFF);
#ifndef PWM_CONTACTOR_CONTROL set(NEGATIVE_CONTACTOR_PIN, OFF, PWM_OFF_DUTY);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW); set(POSITIVE_CONTACTOR_PIN, OFF, PWM_OFF_DUTY);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
#else
ledcWrite(NEGATIVE_CONTACTOR_PIN, PWM_Off_Duty);
ledcWrite(POSITIVE_CONTACTOR_PIN, PWM_Off_Duty);
#endif
if (datalayer.system.status.battery_allows_contactor_closing && if (datalayer.system.status.battery_allows_contactor_closing &&
datalayer.system.status.inverter_allows_contactor_closing) { datalayer.system.status.inverter_allows_contactor_closing && !datalayer.system.settings.equipment_stop_active) {
contactorStatus = PRECHARGE; contactorStatus = PRECHARGE;
} }
} }
// In case the inverter requests contactors to open, set the state accordingly // In case the inverter requests contactors to open, set the state accordingly
if (contactorStatus == COMPLETED) { if (contactorStatus == COMPLETED) {
if (!datalayer.system.status.inverter_allows_contactor_closing) //Incase inverter (or estop) requests contactors to open, make state machine jump to Disconnected state (recoverable)
if (!datalayer.system.status.inverter_allows_contactor_closing || datalayer.system.settings.equipment_stop_active) {
contactorStatus = DISCONNECTED; contactorStatus = DISCONNECTED;
}
// Skip running the state machine below if it has already completed // Skip running the state machine below if it has already completed
return; return;
} }
@ -772,18 +795,14 @@ void handle_contactors() {
// Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge // Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge
switch (contactorStatus) { switch (contactorStatus) {
case PRECHARGE: case PRECHARGE:
digitalWrite(PRECHARGE_PIN, HIGH); set(PRECHARGE_PIN, ON);
prechargeStartTime = currentTime; prechargeStartTime = currentTime;
contactorStatus = NEGATIVE; contactorStatus = NEGATIVE;
break; break;
case NEGATIVE: case NEGATIVE:
if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) { if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) {
#ifndef PWM_CONTACTOR_CONTROL set(NEGATIVE_CONTACTOR_PIN, ON, PWM_ON_DUTY);
digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH);
#else
ledcWrite(NEGATIVE_CONTACTOR_PIN, PWM_On_Duty);
#endif
negativeStartTime = currentTime; negativeStartTime = currentTime;
contactorStatus = POSITIVE; contactorStatus = POSITIVE;
} }
@ -791,24 +810,18 @@ void handle_contactors() {
case POSITIVE: case POSITIVE:
if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) { if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) {
#ifndef PWM_CONTACTOR_CONTROL set(POSITIVE_CONTACTOR_PIN, ON, PWM_ON_DUTY);
digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH);
#else
ledcWrite(POSITIVE_CONTACTOR_PIN, PWM_On_Duty);
#endif
contactorStatus = PRECHARGE_OFF; contactorStatus = PRECHARGE_OFF;
} }
break; break;
case PRECHARGE_OFF: case PRECHARGE_OFF:
if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) { if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) {
digitalWrite(PRECHARGE_PIN, LOW); set(PRECHARGE_PIN, OFF);
#ifdef PWM_CONTACTOR_CONTROL set(NEGATIVE_CONTACTOR_PIN, ON, PWM_HOLD_DUTY);
ledcWrite(NEGATIVE_CONTACTOR_PIN, PWM_Hold_Duty); set(POSITIVE_CONTACTOR_PIN, ON, PWM_HOLD_DUTY);
ledcWrite(POSITIVE_CONTACTOR_PIN, PWM_Hold_Duty);
#endif
contactorStatus = COMPLETED; contactorStatus = COMPLETED;
datalayer.system.status.contactor_control_closed = true; datalayer.system.status.contactors_engaged = true;
} }
break; break;
default: default:
@ -817,6 +830,20 @@ void handle_contactors() {
#endif // CONTACTOR_CONTROL #endif // CONTACTOR_CONTROL
} }
#ifdef CONTACTOR_CONTROL_DOUBLE_BATTERY
void handle_contactors_battery2() {
if ((contactorStatus == COMPLETED) && datalayer.system.status.battery2_allows_contactor_closing) {
set(SECOND_NEGATIVE_CONTACTOR_PIN, ON);
set(SECOND_POSITIVE_CONTACTOR_PIN, ON);
datalayer.system.status.contactors_battery2_engaged = true;
} else { // Closing contactors on secondary battery not allowed
set(SECOND_NEGATIVE_CONTACTOR_PIN, OFF);
set(SECOND_POSITIVE_CONTACTOR_PIN, OFF);
datalayer.system.status.contactors_battery2_engaged = false;
}
}
#endif //CONTACTOR_CONTROL_DOUBLE_BATTERY
void update_calculated_values() { void update_calculated_values() {
/* Calculate allowed charge/discharge currents*/ /* Calculate allowed charge/discharge currents*/
if (datalayer.battery.status.voltage_dV > 10) { if (datalayer.battery.status.voltage_dV > 10) {

View file

@ -55,12 +55,16 @@
//#define HW_STARK //#define HW_STARK
//#define HW_3LB //#define HW_3LB
/* Contactor settings. If you have a battery that does not activate contactors via CAN, configure this section */
//#define CONTACTOR_CONTROL //Enable this line to have the emulator handle automatic precharge/contactor+/contactor- closing sequence (See wiki for pins)
//#define CONTACTOR_CONTROL_DOUBLE_BATTERY //Enable this line to have the emulator hardware control secondary set of contactors for double battery setups (See wiki for pins)
//#define PWM_CONTACTOR_CONTROL //Enable this line to use PWM for CONTACTOR_CONTROL, which lowers power consumption and heat generation. CONTACTOR_CONTROL must be enabled.
//#define NC_CONTACTORS //Enable this line to control normally closed contactors. CONTACTOR_CONTROL must be enabled for this option. Extremely rare setting!
/* Other options */ /* Other options */
//#define DEBUG_VIA_USB //Enable this line to have the USB port output serial diagnostic data while program runs (WARNING, raises CPU load, do not use for production) //#define DEBUG_VIA_USB //Enable this line to have the USB port output serial diagnostic data while program runs (WARNING, raises CPU load, do not use for production)
//#define DEBUG_CAN_DATA //Enable this line to print incoming/outgoing CAN & CAN-FD messages to USB serial (WARNING, raises CPU load, do not use for production) //#define DEBUG_CAN_DATA //Enable this line to print incoming/outgoing CAN & CAN-FD messages to USB serial (WARNING, raises CPU load, do not use for production)
//#define INTERLOCK_REQUIRED //Nissan LEAF specific setting, if enabled requires both high voltage conenctors to be seated before starting //#define INTERLOCK_REQUIRED //Nissan LEAF specific setting, if enabled requires both high voltage conenctors to be seated before starting
//#define CONTACTOR_CONTROL //Enable this line to have pins 25,32,33 handle automatic precharge/contactor+/contactor- closing sequence
//#define PWM_CONTACTOR_CONTROL //Enable this line to use PWM for CONTACTOR_CONTROL, which lowers power consumption and heat generation. CONTACTOR_CONTROL must be enabled.
//#define DUAL_CAN //Enable this line to activate an isolated secondary CAN Bus using add-on MCP2515 chip (Needed for some inverters / double battery) //#define DUAL_CAN //Enable this line to activate an isolated secondary CAN Bus using add-on MCP2515 chip (Needed for some inverters / double battery)
#define CRYSTAL_FREQUENCY_MHZ 8 //DUAL_CAN option, what is your MCP2515 add-on boards crystal frequency? #define CRYSTAL_FREQUENCY_MHZ 8 //DUAL_CAN option, what is your MCP2515 add-on boards crystal frequency?
//#define CAN_FD //Enable this line to activate an isolated secondary CAN-FD bus using add-on MCP2518FD chip / Native CANFD on Stark board //#define CAN_FD //Enable this line to activate an isolated secondary CAN-FD bus using add-on MCP2518FD chip / Native CANFD on Stark board

View file

@ -136,10 +136,10 @@ static uint16_t battery2_TEMP = 0; //Temporary value used in s
static uint16_t battery2_Wh_Remaining = 0; //Amount of energy in battery, in Wh static uint16_t battery2_Wh_Remaining = 0; //Amount of energy in battery, in Wh
static uint16_t battery2_GIDS = 273; //Startup in 24kWh mode static uint16_t battery2_GIDS = 273; //Startup in 24kWh mode
static uint16_t battery2_MAX = 0; static uint16_t battery2_MAX = 0;
static uint16_t battery2_Max_GIDS = 273; //Startup in 24kWh mode static uint16_t battery2_Max_GIDS = 273; //Startup in 24kWh mode
static uint16_t battery2_StateOfHealth = 99; //State of health % static uint16_t battery2_StateOfHealth = 99; //State of health %
static uint16_t battery2_Total_Voltage2 = 740; //Battery voltage (0-450V) [0.5V/bit, so actual range 0-800] static uint16_t battery2_Total_Voltage2 = 0; //Battery voltage (0-450V) [0.5V/bit, so actual range 0-800]
static int16_t battery2_Current2 = 0; //Battery current (-400-200A) [0.5A/bit, so actual range -800-400] static int16_t battery2_Current2 = 0; //Battery current (-400-200A) [0.5A/bit, so actual range -800-400]
static int16_t battery2_HistData_Temperature_MAX = 6; //-40 to 86*C static int16_t battery2_HistData_Temperature_MAX = 6; //-40 to 86*C
static int16_t battery2_HistData_Temperature_MIN = 5; //-40 to 86*C static int16_t battery2_HistData_Temperature_MIN = 5; //-40 to 86*C
static int16_t battery2_AverageTemperature = 6; //Only available on ZE0, in celcius, -40 to +55 static int16_t battery2_AverageTemperature = 6; //Only available on ZE0, in celcius, -40 to +55
@ -514,11 +514,7 @@ void receive_can_battery2(CAN_frame rx_frame) {
battery2_Relay_Cut_Request = ((rx_frame.data.u8[1] & 0x18) >> 3); battery2_Relay_Cut_Request = ((rx_frame.data.u8[1] & 0x18) >> 3);
battery2_Failsafe_Status = (rx_frame.data.u8[1] & 0x07); battery2_Failsafe_Status = (rx_frame.data.u8[1] & 0x07);
battery2_MainRelayOn_flag = (bool)((rx_frame.data.u8[3] & 0x20) >> 5); battery2_MainRelayOn_flag = (bool)((rx_frame.data.u8[3] & 0x20) >> 5);
if (battery2_MainRelayOn_flag) { //battery2_allows_contactor_closing written by check_interconnect_available();
datalayer.system.status.battery2_allows_contactor_closing = true;
} else {
datalayer.system.status.battery2_allows_contactor_closing = false;
}
battery2_Full_CHARGE_flag = (bool)((rx_frame.data.u8[3] & 0x10) >> 4); battery2_Full_CHARGE_flag = (bool)((rx_frame.data.u8[3] & 0x10) >> 4);
battery2_Interlock = (bool)((rx_frame.data.u8[3] & 0x08) >> 3); battery2_Interlock = (bool)((rx_frame.data.u8[3] & 0x08) >> 3);
break; break;

View file

@ -192,7 +192,9 @@ typedef struct {
bool inverter_allows_contactor_closing = true; bool inverter_allows_contactor_closing = true;
#ifdef CONTACTOR_CONTROL #ifdef CONTACTOR_CONTROL
/** True if the contactor controlled by battery-emulator is closed */ /** True if the contactor controlled by battery-emulator is closed */
bool contactor_control_closed = false; bool contactors_engaged = false;
/** True if the contactor controlled by battery-emulator is closed. Determined by check_interconnect_available(); if voltage is OK */
bool contactors_battery2_engaged = false;
#endif #endif
} DATALAYER_SYSTEM_STATUS_TYPE; } DATALAYER_SYSTEM_STATUS_TYPE;

View file

@ -52,9 +52,9 @@
#define NEGATIVE_CONTACTOR_PIN 33 #define NEGATIVE_CONTACTOR_PIN 33
#define PRECHARGE_PIN 25 #define PRECHARGE_PIN 25
#define 2ND_POSITIVE_CONTACTOR_PIN 13 #define SECOND_POSITIVE_CONTACTOR_PIN 13
#define 2ND_NEGATIVE_CONTACTOR_PIN 16 #define SECOND_NEGATIVE_CONTACTOR_PIN 16
#define 2ND_PRECHARGE_PIN 18 #define SECOND_PRECHARGE_PIN 18
// SMA CAN contactor pins // SMA CAN contactor pins
#define INVERTER_CONTACTOR_ENABLE_PIN 36 #define INVERTER_CONTACTOR_ENABLE_PIN 36

View file

@ -642,7 +642,7 @@ String processor(const String& var) {
#ifdef CONTACTOR_CONTROL #ifdef CONTACTOR_CONTROL
content += "<h4>Contactors controlled by Battery-Emulator: "; content += "<h4>Contactors controlled by Battery-Emulator: ";
if (datalayer.system.status.contactor_control_closed) { if (datalayer.system.status.contactors_engaged) {
content += "<span style='color: green;'>ON</span>"; content += "<span style='color: green;'>ON</span>";
} else { } else {
content += "<span style='color: red;'>OFF</span>"; content += "<span style='color: red;'>OFF</span>";
@ -773,34 +773,35 @@ String processor(const String& var) {
#ifdef CONTACTOR_CONTROL #ifdef CONTACTOR_CONTROL
content += "<h4>Contactors controlled by Battery-Emulator: "; content += "<h4>Contactors controlled by Battery-Emulator: ";
if (datalayer.system.status.contactor_control_closed) { if (datalayer.system.status.contactors_battery2_engaged) {
content += "<span style='color: green;'>ON</span>"; content += "<span style='color: green;'>ON</span>";
} else { } else {
content += "<span style='color: red;'>OFF</span>"; content += "<span style='color: red;'>OFF</span>";
} }
content += "</h4>"; content += "</h4>";
#ifdef CONTACTOR_CONTROL_DOUBLE_BATTERY
content += "<h4>Pre Charge: "; content += "<h4>Pre Charge: ";
if (digitalRead(PRECHARGE_PIN) == HIGH) { if (digitalRead(SECOND_PRECHARGE_PIN) == HIGH) {
content += "<span style='color: green;'>&#10003;</span>"; content += "<span style='color: green;'>&#10003;</span>";
} else { } else {
content += "<span style='color: red;'>&#10005;</span>"; content += "<span style='color: red;'>&#10005;</span>";
} }
content += " Cont. Neg.: "; content += " Cont. Neg.: ";
if (digitalRead(NEGATIVE_CONTACTOR_PIN) == HIGH) { if (digitalRead(SECOND_NEGATIVE_CONTACTOR_PIN) == HIGH) {
content += "<span style='color: green;'>&#10003;</span>"; content += "<span style='color: green;'>&#10003;</span>";
} else { } else {
content += "<span style='color: red;'>&#10005;</span>"; content += "<span style='color: red;'>&#10005;</span>";
} }
content += " Cont. Pos.: "; content += " Cont. Pos.: ";
if (digitalRead(POSITIVE_CONTACTOR_PIN) == HIGH) { if (digitalRead(SECOND_POSITIVE_CONTACTOR_PIN) == HIGH) {
content += "<span style='color: green;'>&#10003;</span>"; content += "<span style='color: green;'>&#10003;</span>";
} else { } else {
content += "<span style='color: red;'>&#10005;</span>"; content += "<span style='color: red;'>&#10005;</span>";
} }
content += "</h4>"; content += "</h4>";
#endif #endif // CONTACTOR_CONTROL_DOUBLE_BATTERY
#endif // CONTACTOR_CONTROL
content += "</div>"; content += "</div>";
content += "</div>"; content += "</div>";