Add cell min/max voltage + max charge/discharge + simple SOH + use real SOC for better resolution

This commit is contained in:
Ole 2024-04-06 08:37:53 +02:00
parent 194facd6de
commit a891257019

View file

@ -266,6 +266,20 @@ CAN_frame_t BMW_5F8 = {.FIR = {.B =
.MsgID = 0x5F8, .MsgID = 0x5F8,
.data = {0x64, 0x01, 0x00, 0x0B, 0x92, 0x03, 0x00, 0x05}}; .data = {0x64, 0x01, 0x00, 0x0B, 0x92, 0x03, 0x00, 0x05}};
CAN_frame_t BMW_6F1_CELL = { .FIR = { .B = {
.DLC = 5,
.FF = CAN_frame_std,
} },
.MsgID = 0x6F1,
.data = { 0x07, 0x03, 0x22, 0xDD, 0xBF } };
CAN_frame_t BMW_6F1_CONTINUE = { .FIR = { .B = {
.DLC = 4,
.FF = CAN_frame_std,
} },
.MsgID = 0x6F1,
.data = { 0x07, 0x30, 0x00, 0x02 } };
//The above CAN messages need to be sent towards the battery to keep it alive //The above CAN messages need to be sent towards the battery to keep it alive
static uint8_t startup_counter_contactor = 0; static uint8_t startup_counter_contactor = 0;
@ -345,6 +359,9 @@ static uint8_t battery_status_diagnosis_powertrain_immediate_multiplexer = 0;
static uint8_t battery_ID2 = 0; static uint8_t battery_ID2 = 0;
static uint8_t battery_cellvoltage_mux = 0; static uint8_t battery_cellvoltage_mux = 0;
static uint8_t message_data[50];
static uint8_t next_data = 0;
static uint8_t calculateCRC(CAN_frame_t rx_frame, uint8_t length, uint8_t initial_value) { static uint8_t calculateCRC(CAN_frame_t rx_frame, uint8_t length, uint8_t initial_value) {
uint8_t crc = initial_value; uint8_t crc = initial_value;
for (uint8_t j = 1; j < length; j++) { //start at 1, since 0 is the CRC for (uint8_t j = 1; j < length; j++) { //start at 1, since 0 is the CRC
@ -363,7 +380,7 @@ static uint8_t increment_alive_counter(uint8_t counter) {
void update_values_battery() { //This function maps all the values fetched via CAN to the correct parameters used for modbus void update_values_battery() { //This function maps all the values fetched via CAN to the correct parameters used for modbus
system_real_SOC_pptt = (battery_display_SOC * 100); //increase Display_SOC range from 0-100 -> 100.00 system_real_SOC_pptt = (battery_HVBatt_SOC * 10); //increase Display_SOC range from 0-100 -> 100.00
system_battery_voltage_dV = battery_volts; //Unit V+1 (5000 = 500.0V) system_battery_voltage_dV = battery_volts; //Unit V+1 (5000 = 500.0V)
@ -373,16 +390,17 @@ void update_values_battery() { //This function maps all the values fetched via
system_remaining_capacity_Wh = (battery_energy_content_maximum_kWh * 1000); // Convert kWh to Wh system_remaining_capacity_Wh = (battery_energy_content_maximum_kWh * 1000); // Convert kWh to Wh
if ((battery_max_charge_amperage * system_battery_voltage_dV) > 65000) { system_SOH_pptt = battery_energy_content_maximum_kWh * 10000 / 27.2;
system_max_charge_power_W = 65000;
} else {
system_max_charge_power_W = (battery_max_charge_amperage * system_battery_voltage_dV);
}
if ((battery_max_discharge_amperage * system_battery_voltage_dV) > 65000) { if (battery_BEV_available_power_longterm_discharge > 65000) {
system_max_discharge_power_W = 65000; system_max_discharge_power_W = 65000;
} else { } else {
system_max_discharge_power_W = (battery_max_discharge_amperage * system_battery_voltage_dV); system_max_discharge_power_W = battery_BEV_available_power_longterm_discharge;
}
if (battery_BEV_available_power_longterm_charge > 65000) {
system_max_charge_power_W = 65000;
} else {
system_max_charge_power_W = battery_BEV_available_power_longterm_charge;
} }
battery_power = (system_battery_current_dA * (system_battery_voltage_dV / 100)); battery_power = (system_battery_current_dA * (system_battery_voltage_dV / 100));
@ -393,6 +411,9 @@ void update_values_battery() { //This function maps all the values fetched via
system_temperature_max_dC = battery_temperature_max * 10; // Add a decimal system_temperature_max_dC = battery_temperature_max * 10; // Add a decimal
system_cell_min_voltage_mV = system_cellvoltages_mV[0];
system_cell_max_voltage_mV = system_cellvoltages_mV[1];
/* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/ /* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/
if (!CANstillAlive) { if (!CANstillAlive) {
set_event(EVENT_CAN_RX_FAILURE, 0); set_event(EVENT_CAN_RX_FAILURE, 0);
@ -549,7 +570,28 @@ void receive_can_battery(CAN_frame_t rx_frame) {
case 0x587: //BMS [5s] Services case 0x587: //BMS [5s] Services
battery_ID2 = rx_frame.data.u8[0]; battery_ID2 = rx_frame.data.u8[0];
break; break;
case 0x607: //BMS - No use for this message case 0x607: //BMS - messages requested on 0x615
if (rx_frame.FIR.B.DLC > 6
&& next_data == 0
&& rx_frame.data.u8[0] == 0xf1) {
uint8_t count = 6;
while (count < rx_frame.FIR.B.DLC && next_data < 49) {
message_data[next_data++] = rx_frame.data.u8[count++];
}
ESP32Can.CANWriteFrame(&BMW_6F1_CONTINUE); // tell battery to send additional messages
} else if (rx_frame.FIR.B.DLC > 3
&& next_data > 0
&& rx_frame.data.u8[0] == 0xf1
&& ((rx_frame.data.u8[1] & 0xF0) == 0x20)) {
uint8_t count = 2;
while (count < rx_frame.FIR.B.DLC && next_data < 49) {
message_data[next_data++] = rx_frame.data.u8[count++];
}
system_cellvoltages_mV[0] = (message_data[0] << 8 | message_data[1]);
system_cellvoltages_mV[1] = (message_data[2] << 8 | message_data[3]);
}
break; break;
default: default:
break; break;
@ -699,6 +741,9 @@ void send_can_battery() {
ESP32Can.CANWriteFrame(&BMW_3E4); ESP32Can.CANWriteFrame(&BMW_3E4);
ESP32Can.CANWriteFrame(&BMW_37B); ESP32Can.CANWriteFrame(&BMW_37B);
next_data = 0;
ESP32Can.CANWriteFrame(&BMW_6F1_CELL);
BMW_3E5.data.u8[0] = 0xFD; // First 3E5 message byte0 we send is unique, once we sent initial value send this BMW_3E5.data.u8[0] = 0xFD; // First 3E5 message byte0 we send is unique, once we sent initial value send this
} }
} }