Merge pull request #954 from lenvm/feature/update-adafruit-neopixel-library-to-fd74287

Update Adafruit_NeoPixel library to commit fd74287
This commit is contained in:
Daniel Öster 2025-03-11 11:20:00 +02:00 committed by GitHub
commit b6defac4f9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 4327 additions and 3946 deletions

View file

@ -33,380 +33,390 @@
* *
*/ */
#ifndef ADAFRUIT_NEOPIXEL_H #ifndef ADAFRUIT_NEOPIXEL_H
#define ADAFRUIT_NEOPIXEL_H #define ADAFRUIT_NEOPIXEL_H
#ifdef ARDUINO #ifdef ARDUINO
#if (ARDUINO >= 100) #if (ARDUINO >= 100)
#include <Arduino.h> #include <Arduino.h>
#else #else
#include <WProgram.h> #include <WProgram.h>
#include <pins_arduino.h> #include <pins_arduino.h>
#endif #endif
#ifdef USE_TINYUSB // For Serial when selecting TinyUSB #ifdef USE_TINYUSB // For Serial when selecting TinyUSB
#include <Adafruit_TinyUSB.h> #include <Adafruit_TinyUSB.h>
#endif #endif
#endif #endif
#ifdef TARGET_LPC1768 #ifdef TARGET_LPC1768
#include <Arduino.h> #include <Arduino.h>
#endif #endif
#if defined(ARDUINO_ARCH_RP2040) #if defined(ARDUINO_ARCH_RP2040)
#include <stdlib.h> #include <stdlib.h>
#include "hardware/pio.h" #include "hardware/pio.h"
#include "hardware/clocks.h" #include "hardware/clocks.h"
#include "rp2040_pio.h" #include "rp2040_pio.h"
#endif #endif
// The order of primary colors in the NeoPixel data stream can vary among // The order of primary colors in the NeoPixel data stream can vary among
// device types, manufacturers and even different revisions of the same // device types, manufacturers and even different revisions of the same
// item. The third parameter to the Adafruit_NeoPixel constructor encodes // item. The third parameter to the Adafruit_NeoPixel constructor encodes
// the per-pixel byte offsets of the red, green and blue primaries (plus // the per-pixel byte offsets of the red, green and blue primaries (plus
// white, if present) in the data stream -- the following #defines provide // white, if present) in the data stream -- the following #defines provide
// an easier-to-use named version for each permutation. e.g. NEO_GRB // an easier-to-use named version for each permutation. e.g. NEO_GRB
// indicates a NeoPixel-compatible device expecting three bytes per pixel, // indicates a NeoPixel-compatible device expecting three bytes per pixel,
// with the first byte transmitted containing the green value, second // with the first byte transmitted containing the green value, second
// containing red and third containing blue. The in-memory representation // containing red and third containing blue. The in-memory representation
// of a chain of NeoPixels is the same as the data-stream order; no // of a chain of NeoPixels is the same as the data-stream order; no
// re-ordering of bytes is required when issuing data to the chain. // re-ordering of bytes is required when issuing data to the chain.
// Most of these values won't exist in real-world devices, but it's done // Most of these values won't exist in real-world devices, but it's done
// this way so we're ready for it (also, if using the WS2811 driver IC, // this way so we're ready for it (also, if using the WS2811 driver IC,
// one might have their pixels set up in any weird permutation). // one might have their pixels set up in any weird permutation).
// Bits 5,4 of this value are the offset (0-3) from the first byte of a // Bits 5,4 of this value are the offset (0-3) from the first byte of a
// pixel to the location of the red color byte. Bits 3,2 are the green // pixel to the location of the red color byte. Bits 3,2 are the green
// offset and 1,0 are the blue offset. If it is an RGBW-type device // offset and 1,0 are the blue offset. If it is an RGBW-type device
// (supporting a white primary in addition to R,G,B), bits 7,6 are the // (supporting a white primary in addition to R,G,B), bits 7,6 are the
// offset to the white byte...otherwise, bits 7,6 are set to the same value // offset to the white byte...otherwise, bits 7,6 are set to the same value
// as 5,4 (red) to indicate an RGB (not RGBW) device. // as 5,4 (red) to indicate an RGB (not RGBW) device.
// i.e. binary representation: // i.e. binary representation:
// 0bWWRRGGBB for RGBW devices // 0bWWRRGGBB for RGBW devices
// 0bRRRRGGBB for RGB // 0bRRRRGGBB for RGB
// RGB NeoPixel permutations; white and red offsets are always same // RGB NeoPixel permutations; white and red offsets are always same
// Offset: W R G B // Offset: W R G B
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B #define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G #define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B #define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R #define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G #define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R #define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R
// RGBW NeoPixel permutations; all 4 offsets are distinct // RGBW NeoPixel permutations; all 4 offsets are distinct
// Offset: W R G B // Offset: W R G B
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B #define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G #define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B #define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R #define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G #define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R #define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B #define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G #define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B #define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W #define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G #define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W #define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B #define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R #define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B #define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W #define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R #define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W #define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G #define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R #define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G #define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W #define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R #define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W #define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W
// Add NEO_KHZ400 to the color order value to indicate a 400 KHz device. // Add NEO_KHZ400 to the color order value to indicate a 400 KHz device.
// All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is // All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is
// the default if unspecified. Because flash space is very limited on ATtiny // the default if unspecified. Because flash space is very limited on ATtiny
// devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on // devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on
// those chips, though it can be enabled by removing the ifndef/endif below, // those chips, though it can be enabled by removing the ifndef/endif below,
// but code will be bigger. Conversely, can disable the NEO_KHZ400 line on // but code will be bigger. Conversely, can disable the NEO_KHZ400 line on
// other MCUs to remove v1 support and save a little space. // other MCUs to remove v1 support and save a little space.
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission #define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
#ifndef __AVR_ATtiny85__ #ifndef __AVR_ATtiny85__
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission #define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
#endif #endif
// If 400 KHz support is enabled, the third parameter to the constructor // If 400 KHz support is enabled, the third parameter to the constructor
// requires a 16-bit value (in order to select 400 vs 800 KHz speed). // requires a 16-bit value (in order to select 400 vs 800 KHz speed).
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value // If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
// is sufficient to encode pixel color order, saving some space. // is sufficient to encode pixel color order, saving some space.
#ifdef NEO_KHZ400 #ifdef NEO_KHZ400
typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#else #else
typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#endif #endif
// These two tables are declared outside the Adafruit_NeoPixel class // These two tables are declared outside the Adafruit_NeoPixel class
// because some boards may require oldschool compilers that don't // because some boards may require oldschool compilers that don't
// handle the C++11 constexpr keyword. // handle the C++11 constexpr keyword.
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255). /* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
Copy & paste this snippet into a Python REPL to regenerate: Copy & paste this snippet into a Python REPL to regenerate:
import math import math
for x in range(256): for x in range(256):
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))), print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
if x&15 == 15: print if x&15 == 15: print
*/ */
static const uint8_t PROGMEM _NeoPixelSineTable[256] = { static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211, 173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240, 213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254, 241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251, 254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251,
250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232, 250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198, 230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198,
196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155, 196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109, 152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109,
106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65, 106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29, 62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29,
27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6, 27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37,
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76, 40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121, 79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
124}; 124};
/* Similar to above, but for an 8-bit gamma-correction table. /* Similar to above, but for an 8-bit gamma-correction table.
Copy & paste this snippet into a Python REPL to regenerate: Copy & paste this snippet into a Python REPL to regenerate:
import math import math
gamma=2.6 gamma=2.6
for x in range(256): for x in range(256):
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))), print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
if x&15 == 15: print if x&15 == 15: print
*/ */
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = { static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17,
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35,
36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81,
82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102,
103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125,
127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152, 127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152,
154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182,
184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215, 184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215,
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252, 218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
255}; 255};
/*! /* Declare external methods required by the Adafruit_NeoPixel implementation
@brief Class that stores state and functions for interacting with for specific hardware/library versions
Adafruit NeoPixels and compatible devices. */
*/ #if defined(ESP32)
class Adafruit_NeoPixel { #if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
extern "C" void espInit();
public: #endif
// Constructor: number of LEDs, pin number, LED type #endif
Adafruit_NeoPixel(uint16_t n, int16_t pin = 6,
neoPixelType type = NEO_GRB + NEO_KHZ800); /*!
Adafruit_NeoPixel(void); @brief Class that stores state and functions for interacting with
~Adafruit_NeoPixel(); Adafruit NeoPixels and compatible devices.
*/
void begin(void); class Adafruit_NeoPixel {
void show(void);
void setPin(int16_t p); public:
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b); // Constructor: number of LEDs, pin number, LED type
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w); Adafruit_NeoPixel(uint16_t n, int16_t pin = 6,
void setPixelColor(uint16_t n, uint32_t c); neoPixelType type = NEO_GRB + NEO_KHZ800);
void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0); Adafruit_NeoPixel(void);
void setBrightness(uint8_t); ~Adafruit_NeoPixel();
void clear(void);
void updateLength(uint16_t n); void begin(void);
void updateType(neoPixelType t); void show(void);
/*! void setPin(int16_t p);
@brief Check whether a call to show() will start sending data void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
immediately or will 'block' for a required interval. NeoPixels void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
require a short quiet time (about 300 microseconds) after the void setPixelColor(uint16_t n, uint32_t c);
last bit is received before the data 'latches' and new data can void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0);
start being received. Usually one's sketch is implicitly using void setBrightness(uint8_t);
this time to generate a new frame of animation...but if it void clear(void);
finishes very quickly, this function could be used to see if void updateLength(uint16_t n);
there's some idle time available for some low-priority void updateType(neoPixelType t);
concurrent task. /*!
@return 1 or true if show() will start sending immediately, 0 or false @brief Check whether a call to show() will start sending data
if show() would block (meaning some idle time is available). immediately or will 'block' for a required interval. NeoPixels
*/ require a short quiet time (about 300 microseconds) after the
bool canShow(void) { last bit is received before the data 'latches' and new data can
// It's normal and possible for endTime to exceed micros() if the start being received. Usually one's sketch is implicitly using
// 32-bit clock counter has rolled over (about every 70 minutes). this time to generate a new frame of animation...but if it
// Since both are uint32_t, a negative delta correctly maps back to finishes very quickly, this function could be used to see if
// positive space, and it would seem like the subtraction below would there's some idle time available for some low-priority
// suffice. But a problem arises if code invokes show() very concurrent task.
// infrequently...the micros() counter may roll over MULTIPLE times in @return 1 or true if show() will start sending immediately, 0 or false
// that interval, the delta calculation is no longer correct and the if show() would block (meaning some idle time is available).
// next update may stall for a very long time. The check below resets */
// the latch counter if a rollover has occurred. This can cause an bool canShow(void) {
// extra delay of up to 300 microseconds in the rare case where a // It's normal and possible for endTime to exceed micros() if the
// show() call happens precisely around the rollover, but that's // 32-bit clock counter has rolled over (about every 70 minutes).
// neither likely nor especially harmful, vs. other code that might // Since both are uint32_t, a negative delta correctly maps back to
// stall for 30+ minutes, or having to document and frequently remind // positive space, and it would seem like the subtraction below would
// and/or provide tech support explaining an unintuitive need for // suffice. But a problem arises if code invokes show() very
// show() calls at least once an hour. // infrequently...the micros() counter may roll over MULTIPLE times in
uint32_t now = micros(); // that interval, the delta calculation is no longer correct and the
if (endTime > now) { // next update may stall for a very long time. The check below resets
endTime = now; // the latch counter if a rollover has occurred. This can cause an
} // extra delay of up to 300 microseconds in the rare case where a
return (now - endTime) >= 300L; // show() call happens precisely around the rollover, but that's
} // neither likely nor especially harmful, vs. other code that might
/*! // stall for 30+ minutes, or having to document and frequently remind
@brief Get a pointer directly to the NeoPixel data buffer in RAM. // and/or provide tech support explaining an unintuitive need for
Pixel data is stored in a device-native format (a la the NEO_* // show() calls at least once an hour.
constants) and is not translated here. Applications that access uint32_t now = micros();
this buffer will need to be aware of the specific data format if (endTime > now) {
and handle colors appropriately. endTime = now;
@return Pointer to NeoPixel buffer (uint8_t* array). }
@note This is for high-performance applications where calling return (now - endTime) >= 300L;
setPixelColor() on every single pixel would be too slow (e.g. }
POV or light-painting projects). There is no bounds checking /*!
on the array, creating tremendous potential for mayhem if one @brief Get a pointer directly to the NeoPixel data buffer in RAM.
writes past the ends of the buffer. Great power, great Pixel data is stored in a device-native format (a la the NEO_*
responsibility and all that. constants) and is not translated here. Applications that access
*/ this buffer will need to be aware of the specific data format
uint8_t *getPixels(void) const { return pixels; }; and handle colors appropriately.
uint8_t getBrightness(void) const; @return Pointer to NeoPixel buffer (uint8_t* array).
/*! @note This is for high-performance applications where calling
@brief Retrieve the pin number used for NeoPixel data output. setPixelColor() on every single pixel would be too slow (e.g.
@return Arduino pin number (-1 if not set). POV or light-painting projects). There is no bounds checking
*/ on the array, creating tremendous potential for mayhem if one
int16_t getPin(void) const { return pin; }; writes past the ends of the buffer. Great power, great
/*! responsibility and all that.
@brief Return the number of pixels in an Adafruit_NeoPixel strip object. */
@return Pixel count (0 if not set). uint8_t *getPixels(void) const { return pixels; };
*/ uint8_t getBrightness(void) const;
uint16_t numPixels(void) const { return numLEDs; } /*!
uint32_t getPixelColor(uint16_t n) const; @brief Retrieve the pin number used for NeoPixel data output.
/*! @return Arduino pin number (-1 if not set).
@brief An 8-bit integer sine wave function, not directly compatible */
with standard trigonometric units like radians or degrees. int16_t getPin(void) const { return pin; };
@param x Input angle, 0-255; 256 would loop back to zero, completing /*!
the circle (equivalent to 360 degrees or 2 pi radians). @brief Return the number of pixels in an Adafruit_NeoPixel strip object.
One can therefore use an unsigned 8-bit variable and simply @return Pixel count (0 if not set).
add or subtract, allowing it to overflow/underflow and it */
still does the expected contiguous thing. uint16_t numPixels(void) const { return numLEDs; }
@return Sine result, 0 to 255, or -128 to +127 if type-converted to uint32_t getPixelColor(uint16_t n) const;
a signed int8_t, but you'll most likely want unsigned as this /*!
output is often used for pixel brightness in animation effects. @brief An 8-bit integer sine wave function, not directly compatible
*/ with standard trigonometric units like radians or degrees.
static uint8_t sine8(uint8_t x) { @param x Input angle, 0-255; 256 would loop back to zero, completing
return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out the circle (equivalent to 360 degrees or 2 pi radians).
} One can therefore use an unsigned 8-bit variable and simply
/*! add or subtract, allowing it to overflow/underflow and it
@brief An 8-bit gamma-correction function for basic pixel brightness still does the expected contiguous thing.
adjustment. Makes color transitions appear more perceptially @return Sine result, 0 to 255, or -128 to +127 if type-converted to
correct. a signed int8_t, but you'll most likely want unsigned as this
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum). output is often used for pixel brightness in animation effects.
@return Gamma-adjusted brightness, can then be passed to one of the */
setPixelColor() functions. This uses a fixed gamma correction static uint8_t sine8(uint8_t x) {
exponent of 2.6, which seems reasonably okay for average return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
NeoPixels in average tasks. If you need finer control you'll }
need to provide your own gamma-correction function instead. /*!
*/ @brief An 8-bit gamma-correction function for basic pixel brightness
static uint8_t gamma8(uint8_t x) { adjustment. Makes color transitions appear more perceptially
return pgm_read_byte(&_NeoPixelGammaTable[x]); // 0-255 in, 0-255 out correct.
} @param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
/*! @return Gamma-adjusted brightness, can then be passed to one of the
@brief Convert separate red, green and blue values into a single setPixelColor() functions. This uses a fixed gamma correction
"packed" 32-bit RGB color. exponent of 2.6, which seems reasonably okay for average
@param r Red brightness, 0 to 255. NeoPixels in average tasks. If you need finer control you'll
@param g Green brightness, 0 to 255. need to provide your own gamma-correction function instead.
@param b Blue brightness, 0 to 255. */
@return 32-bit packed RGB value, which can then be assigned to a static uint8_t gamma8(uint8_t x) {
variable for later use or passed to the setPixelColor() return pgm_read_byte(&_NeoPixelGammaTable[x]); // 0-255 in, 0-255 out
function. Packed RGB format is predictable, regardless of }
LED strand color order. /*!
*/ @brief Convert separate red, green and blue values into a single
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) { "packed" 32-bit RGB color.
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; @param r Red brightness, 0 to 255.
} @param g Green brightness, 0 to 255.
/*! @param b Blue brightness, 0 to 255.
@brief Convert separate red, green, blue and white values into a @return 32-bit packed RGB value, which can then be assigned to a
single "packed" 32-bit WRGB color. variable for later use or passed to the setPixelColor()
@param r Red brightness, 0 to 255. function. Packed RGB format is predictable, regardless of
@param g Green brightness, 0 to 255. LED strand color order.
@param b Blue brightness, 0 to 255. */
@param w White brightness, 0 to 255. static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
@return 32-bit packed WRGB value, which can then be assigned to a return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
variable for later use or passed to the setPixelColor() }
function. Packed WRGB format is predictable, regardless of /*!
LED strand color order. @brief Convert separate red, green, blue and white values into a
*/ single "packed" 32-bit WRGB color.
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) { @param r Red brightness, 0 to 255.
return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; @param g Green brightness, 0 to 255.
} @param b Blue brightness, 0 to 255.
static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255); @param w White brightness, 0 to 255.
/*! @return 32-bit packed WRGB value, which can then be assigned to a
@brief A gamma-correction function for 32-bit packed RGB or WRGB variable for later use or passed to the setPixelColor()
colors. Makes color transitions appear more perceptially function. Packed WRGB format is predictable, regardless of
correct. LED strand color order.
@param x 32-bit packed RGB or WRGB color. */
@return Gamma-adjusted packed color, can then be passed in one of the static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
setPixelColor() functions. Like gamma8(), this uses a fixed return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
gamma correction exponent of 2.6, which seems reasonably okay }
for average NeoPixels in average tasks. If you need finer static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
control you'll need to provide your own gamma-correction /*!
function instead. @brief A gamma-correction function for 32-bit packed RGB or WRGB
*/ colors. Makes color transitions appear more perceptially
static uint32_t gamma32(uint32_t x); correct.
@param x 32-bit packed RGB or WRGB color.
void rainbow(uint16_t first_hue = 0, int8_t reps = 1, @return Gamma-adjusted packed color, can then be passed in one of the
uint8_t saturation = 255, uint8_t brightness = 255, setPixelColor() functions. Like gamma8(), this uses a fixed
bool gammify = true); gamma correction exponent of 2.6, which seems reasonably okay
for average NeoPixels in average tasks. If you need finer
static neoPixelType str2order(const char *v); control you'll need to provide your own gamma-correction
function instead.
private: */
#if defined(ARDUINO_ARCH_RP2040) static uint32_t gamma32(uint32_t x);
void rp2040Init(uint8_t pin, bool is800KHz);
void rp2040Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz); void rainbow(uint16_t first_hue = 0, int8_t reps = 1,
#endif uint8_t saturation = 255, uint8_t brightness = 255,
bool gammify = true);
protected:
#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled... static neoPixelType str2order(const char *v);
bool is800KHz; ///< true if 800 KHz pixels
#endif private:
bool begun; ///< true if begin() previously called #if defined(ARDUINO_ARCH_RP2040)
uint16_t numLEDs; ///< Number of RGB LEDs in strip void rp2040Init(uint8_t pin, bool is800KHz);
uint16_t numBytes; ///< Size of 'pixels' buffer below void rp2040Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz);
int16_t pin; ///< Output pin number (-1 if not yet set) #endif
uint8_t brightness; ///< Strip brightness 0-255 (stored as +1)
uint8_t *pixels; ///< Holds LED color values (3 or 4 bytes each) protected:
uint8_t rOffset; ///< Red index within each 3- or 4-byte pixel #ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled...
uint8_t gOffset; ///< Index of green byte bool is800KHz; ///< true if 800 KHz pixels
uint8_t bOffset; ///< Index of blue byte #endif
uint8_t wOffset; ///< Index of white (==rOffset if no white) bool begun; ///< true if begin() previously called
uint32_t endTime; ///< Latch timing reference uint16_t numLEDs; ///< Number of RGB LEDs in strip
#ifdef __AVR__ uint16_t numBytes; ///< Size of 'pixels' buffer below
volatile uint8_t *port; ///< Output PORT register int16_t pin; ///< Output pin number (-1 if not yet set)
uint8_t pinMask; ///< Output PORT bitmask uint8_t brightness; ///< Strip brightness 0-255 (stored as +1)
#endif uint8_t *pixels; ///< Holds LED color values (3 or 4 bytes each)
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32) uint8_t rOffset; ///< Red index within each 3- or 4-byte pixel
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT uint8_t gOffset; ///< Index of green byte
uint32_t gpioPin; ///< Output GPIO PIN uint8_t bOffset; ///< Index of blue byte
#endif uint8_t wOffset; ///< Index of white (==rOffset if no white)
#if defined(ARDUINO_ARCH_RP2040) uint32_t endTime; ///< Latch timing reference
PIO pio = pio0; #ifdef __AVR__
int sm = 0; volatile uint8_t *port; ///< Output PORT register
bool init = true; uint8_t pinMask; ///< Output PORT bitmask
#endif #endif
}; #if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32) || defined(ARDUINO_ARCH_CH32)
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT
#endif // ADAFRUIT_NEOPIXEL_H uint32_t gpioPin; ///< Output GPIO PIN
#endif
#if defined(ARDUINO_ARCH_RP2040)
PIO pio = pio0;
int sm = 0;
bool init = true;
#endif
};
#endif // ADAFRUIT_NEOPIXEL_H

View file

@ -17,147 +17,256 @@
* limitations under the License. * limitations under the License.
*/ */
#if defined(ESP32) #if defined(ESP32)
#include <Arduino.h> #include <Arduino.h>
#include "driver/rmt.h"
#if defined(ESP_IDF_VERSION)
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
#define HAS_ESP_IDF_4
#endif
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0)
#define HAS_ESP_IDF_5
#endif
#endif
#ifdef HAS_ESP_IDF_5
static SemaphoreHandle_t show_mutex = NULL;
void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
// Note: Because rmtPin is shared between all instances, we will
// end up releasing/initializing the RMT channels each time we
// invoke on different pins. This is probably ok, just not
// efficient. led_data is shared between all instances but will
// be allocated with enough space for the largest instance; data
// is not used beyond the mutex lock so this should be fine.
#define SEMAPHORE_TIMEOUT_MS 50
static rmt_data_t *led_data = NULL;
static uint32_t led_data_size = 0;
static int rmtPin = -1;
if (show_mutex && xSemaphoreTake(show_mutex, SEMAPHORE_TIMEOUT_MS / portTICK_PERIOD_MS) == pdTRUE) {
uint32_t requiredSize = numBytes * 8;
if (requiredSize > led_data_size) {
free(led_data);
if (led_data = (rmt_data_t *)malloc(requiredSize * sizeof(rmt_data_t))) {
led_data_size = requiredSize;
} else {
led_data_size = 0;
}
} else if (requiredSize == 0) {
// To release RMT resources (RMT channels and led_data), call
// .updateLength(0) to set number of pixels/bytes to zero,
// then call .show() to invoke this code and free resources.
free(led_data);
led_data = NULL;
if (rmtPin >= 0) {
rmtDeinit(rmtPin);
rmtPin = -1;
}
led_data_size = 0;
}
if (led_data_size > 0 && requiredSize <= led_data_size) {
if (pin != rmtPin) {
if (rmtPin >= 0) {
rmtDeinit(rmtPin);
rmtPin = -1;
}
if (!rmtInit(pin, RMT_TX_MODE, RMT_MEM_NUM_BLOCKS_1, 10000000)) {
log_e("Failed to init RMT TX mode on pin %d", pin);
return;
}
rmtPin = pin;
}
if (rmtPin >= 0) {
int i=0;
for (int b=0; b < numBytes; b++) {
for (int bit=0; bit<8; bit++){
if ( pixels[b] & (1<<(7-bit)) ) {
led_data[i].level0 = 1;
led_data[i].duration0 = 8;
led_data[i].level1 = 0;
led_data[i].duration1 = 4;
} else {
led_data[i].level0 = 1;
led_data[i].duration0 = 4;
led_data[i].level1 = 0;
led_data[i].duration1 = 8;
}
i++;
}
}
rmtWrite(pin, led_data, numBytes * 8, RMT_WAIT_FOR_EVER);
}
}
xSemaphoreGive(show_mutex);
}
}
// To avoid race condition initializing the mutex, all instances of
// Adafruit_NeoPixel must be constructed before launching and child threads
void espInit() {
if (!show_mutex) {
show_mutex = xSemaphoreCreateMutex();
}
}
#else
#include "driver/rmt.h"
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered
// to work with the Arduino version of the ESP-IDF (3.2)
#define WS2812_T0H_NS (400)
#define WS2812_T0L_NS (850)
#define WS2812_T1H_NS (800)
#define WS2812_T1L_NS (450)
#define WS2811_T0H_NS (500)
#define WS2811_T0L_NS (2000)
#define WS2811_T1H_NS (1200)
#define WS2811_T1L_NS (1300)
static uint32_t t0h_ticks = 0;
static uint32_t t1h_ticks = 0;
static uint32_t t0l_ticks = 0;
static uint32_t t1l_ticks = 0;
// Limit the number of RMT channels available for the Neopixels. Defaults to all
// channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free
// any channels with a higher number for other uses, such as IR send-and-recieve
// libraries. Redefine as 1 to restrict Neopixels to only a single channel.
#define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX
#define RMT_LL_HW_BASE (&RMT)
bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX];
static void IRAM_ATTR ws2812_rmt_adapter(const void *src, rmt_item32_t *dest, size_t src_size,
size_t wanted_num, size_t *translated_size, size_t *item_num)
{
if (src == NULL || dest == NULL) {
*translated_size = 0;
*item_num = 0;
return;
}
const rmt_item32_t bit0 = {{{ t0h_ticks, 1, t0l_ticks, 0 }}}; //Logical 0
const rmt_item32_t bit1 = {{{ t1h_ticks, 1, t1l_ticks, 0 }}}; //Logical 1
size_t size = 0;
size_t num = 0;
uint8_t *psrc = (uint8_t *)src;
rmt_item32_t *pdest = dest;
while (size < src_size && num < wanted_num) {
for (int i = 0; i < 8; i++) {
// MSB first
if (*psrc & (1 << (7 - i))) {
pdest->val = bit1.val;
} else {
pdest->val = bit0.val;
}
num++;
pdest++;
}
size++;
psrc++;
}
*translated_size = size;
*item_num = num;
}
#if defined(ESP_IDF_VERSION) static bool rmt_initialized = false;
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0) static bool rmt_adapter_initialized = false;
#define HAS_ESP_IDF_4
#endif
#endif
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
// to work with the Arduino version of the ESP-IDF (3.2) if (rmt_initialized == false) {
// Reserve channel
rmt_channel_t channel = 0;
#if defined(HAS_ESP_IDF_4)
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel);
config.clk_div = 2;
#else
// Match default TX config from ESP-IDF version 3.4
rmt_config_t config = {
.rmt_mode = RMT_MODE_TX,
.channel = channel,
.gpio_num = pin,
.clk_div = 2,
.mem_block_num = 1,
.tx_config = {
.carrier_freq_hz = 38000,
.carrier_level = RMT_CARRIER_LEVEL_HIGH,
.idle_level = RMT_IDLE_LEVEL_LOW,
.carrier_duty_percent = 33,
.carrier_en = false,
.loop_en = false,
.idle_output_en = true,
}
};
#endif
rmt_config(&config);
rmt_driver_install(config.channel, 0, 0);
// Convert NS timings to ticks
uint32_t counter_clk_hz = 0;
#if defined(HAS_ESP_IDF_4)
rmt_get_counter_clock(channel, &counter_clk_hz);
#else
// this emulates the rmt_get_counter_clock() function from ESP-IDF 3.4
if (RMT_LL_HW_BASE->conf_ch[config.channel].conf1.ref_always_on == RMT_BASECLK_REF) {
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
counter_clk_hz = REF_CLK_FREQ / (div);
} else {
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
counter_clk_hz = APB_CLK_FREQ / (div);
}
#endif
// NS to tick converter
float ratio = (float)counter_clk_hz / 1e9;
if (is800KHz) {
t0h_ticks = (uint32_t)(ratio * WS2812_T0H_NS);
t0l_ticks = (uint32_t)(ratio * WS2812_T0L_NS);
t1h_ticks = (uint32_t)(ratio * WS2812_T1H_NS);
t1l_ticks = (uint32_t)(ratio * WS2812_T1L_NS);
} else {
t0h_ticks = (uint32_t)(ratio * WS2811_T0H_NS);
t0l_ticks = (uint32_t)(ratio * WS2811_T0L_NS);
t1h_ticks = (uint32_t)(ratio * WS2811_T1H_NS);
t1l_ticks = (uint32_t)(ratio * WS2811_T1L_NS);
}
// Initialize automatic timing translator
rmt_translator_init(0, ws2812_rmt_adapter);
rmt_initialized = true;
}
#define WS2812_T0H_NS (400) // Write and wait to finish
#define WS2812_T0L_NS (850) rmt_write_sample(0, pixels, (size_t)numBytes, false);
#define WS2812_T1H_NS (800) //rmt_wait_tx_done(config.channel, pdMS_TO_TICKS(100));
#define WS2812_T1L_NS (450)
// Free channel again
#define WS2811_T0H_NS (500) //rmt_driver_uninstall(config.channel);
#define WS2811_T0L_NS (2000) //rmt_reserved_channels[channel] = false;
#define WS2811_T1H_NS (1200)
#define WS2811_T1L_NS (1300) //gpio_set_direction(pin, GPIO_MODE_OUTPUT);
}
static uint32_t t0h_ticks = 0;
static uint32_t t1h_ticks = 0; #endif // ifndef IDF5
static uint32_t t0l_ticks = 0;
static uint32_t t1l_ticks = 0;
#endif // ifdef(ESP32)
// Limit the number of RMT channels available for the Neopixels. Defaults to all
// channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free
// any channels with a higher number for other uses, such as IR send-and-recieve
// libraries. Redefine as 1 to restrict Neopixels to only a single channel.
#define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX
#define RMT_LL_HW_BASE (&RMT)
bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX];
static void IRAM_ATTR ws2812_rmt_adapter(const void* src, rmt_item32_t* dest, size_t src_size, size_t wanted_num,
size_t* translated_size, size_t* item_num) {
if (src == NULL || dest == NULL) {
*translated_size = 0;
*item_num = 0;
return;
}
const rmt_item32_t bit0 = {{{t0h_ticks, 1, t0l_ticks, 0}}}; //Logical 0
const rmt_item32_t bit1 = {{{t1h_ticks, 1, t1l_ticks, 0}}}; //Logical 1
size_t size = 0;
size_t num = 0;
uint8_t* psrc = (uint8_t*)src;
rmt_item32_t* pdest = dest;
while (size < src_size && num < wanted_num) {
for (int i = 0; i < 8; i++) {
// MSB first
if (*psrc & (1 << (7 - i))) {
pdest->val = bit1.val;
} else {
pdest->val = bit0.val;
}
num++;
pdest++;
}
size++;
psrc++;
}
*translated_size = size;
*item_num = num;
}
static bool rmt_initialized = false;
static bool rmt_adapter_initialized = false;
void espShow(uint8_t pin, uint8_t* pixels, uint32_t numBytes, boolean is800KHz) {
if (rmt_initialized == false) {
// Reserve channel
rmt_channel_t channel = 0;
#if defined(HAS_ESP_IDF_4)
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel);
config.clk_div = 2;
#else
// Match default TX config from ESP-IDF version 3.4
rmt_config_t config = {.rmt_mode = RMT_MODE_TX,
.channel = channel,
.gpio_num = pin,
.clk_div = 2,
.mem_block_num = 1,
.tx_config = {
.carrier_freq_hz = 38000,
.carrier_level = RMT_CARRIER_LEVEL_HIGH,
.idle_level = RMT_IDLE_LEVEL_LOW,
.carrier_duty_percent = 33,
.carrier_en = false,
.loop_en = false,
.idle_output_en = true,
}};
#endif
rmt_config(&config);
rmt_driver_install(config.channel, 0, 0);
// Convert NS timings to ticks
uint32_t counter_clk_hz = 0;
#if defined(HAS_ESP_IDF_4)
rmt_get_counter_clock(channel, &counter_clk_hz);
#else
// this emulates the rmt_get_counter_clock() function from ESP-IDF 3.4
if (RMT_LL_HW_BASE->conf_ch[config.channel].conf1.ref_always_on == RMT_BASECLK_REF) {
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
counter_clk_hz = REF_CLK_FREQ / (div);
} else {
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
counter_clk_hz = APB_CLK_FREQ / (div);
}
#endif
// NS to tick converter
float ratio = (float)counter_clk_hz / 1e9;
if (is800KHz) {
t0h_ticks = (uint32_t)(ratio * WS2812_T0H_NS);
t0l_ticks = (uint32_t)(ratio * WS2812_T0L_NS);
t1h_ticks = (uint32_t)(ratio * WS2812_T1H_NS);
t1l_ticks = (uint32_t)(ratio * WS2812_T1L_NS);
} else {
t0h_ticks = (uint32_t)(ratio * WS2811_T0H_NS);
t0l_ticks = (uint32_t)(ratio * WS2811_T0L_NS);
t1h_ticks = (uint32_t)(ratio * WS2811_T1H_NS);
t1l_ticks = (uint32_t)(ratio * WS2811_T1L_NS);
}
// Initialize automatic timing translator
rmt_translator_init(0, ws2812_rmt_adapter);
rmt_initialized = true;
}
// Write and wait to finish
rmt_write_sample(0, pixels, (size_t)numBytes, false);
}
#endif