kostal: CyclicData -> CYCLIC_DATA

This commit is contained in:
Bernhard Urban-Forster 2025-02-22 22:28:50 +01:00
parent 84edfbe368
commit da9117ba20

View file

@ -48,9 +48,9 @@ uint8_t BATTERY_INFO[40] = {
0x4D, // CRC 0x4D, // CRC
0x00}; // 0x00}; //
// values in CyclicData will be overwritten at update_modbus_registers_inverter() // values in CYCLIC_DATA will be overwritten at update_modbus_registers_inverter()
uint8_t CyclicData[64] = { uint8_t CYCLIC_DATA[64] = {
0x00, // First zero byte pointer 0x00, // First zero byte pointer
0xE2, 0xFF, 0x02, 0xFF, 0x29, // Frame header 0xE2, 0xFF, 0x02, 0xFF, 0x29, // Frame header
0x1D, 0x5A, 0x85, 0x43, // Current Voltage (float32) Bytes 6- 9 Modbus register 216 0x1D, 0x5A, 0x85, 0x43, // Current Voltage (float32) Bytes 6- 9 Modbus register 216
@ -209,9 +209,9 @@ void update_RS485_registers_inverter() {
if (datalayer.system.status.battery_allows_contactor_closing & if (datalayer.system.status.battery_allows_contactor_closing &
datalayer.system.status.inverter_allows_contactor_closing) { datalayer.system.status.inverter_allows_contactor_closing) {
float2frame(CyclicData, (float)datalayer.battery.status.voltage_dV / 10, 6); // Confirmed OK mapping float2frame(CYCLIC_DATA, (float)datalayer.battery.status.voltage_dV / 10, 6); // Confirmed OK mapping
} else { } else {
float2frame(CyclicData, 0.0, 6); float2frame(CYCLIC_DATA, 0.0, 6);
} }
// Set nominal voltage to value between min and max voltage set by battery (Example 400 and 300 results in 350V) // Set nominal voltage to value between min and max voltage set by battery (Example 400 and 300 results in 350V)
nominal_voltage_dV = nominal_voltage_dV =
@ -219,73 +219,73 @@ void update_RS485_registers_inverter() {
datalayer.battery.info.min_design_voltage_dV); datalayer.battery.info.min_design_voltage_dV);
float2frame(BATTERY_INFO, (float)nominal_voltage_dV / 10, 6); float2frame(BATTERY_INFO, (float)nominal_voltage_dV / 10, 6);
float2frame(CyclicData, (float)datalayer.battery.info.max_design_voltage_dV / 10, 10); float2frame(CYCLIC_DATA, (float)datalayer.battery.info.max_design_voltage_dV / 10, 10);
float2frame(CyclicData, (float)average_temperature_dC / 10, 14); float2frame(CYCLIC_DATA, (float)average_temperature_dC / 10, 14);
#ifdef BMW_SBOX #ifdef BMW_SBOX
float2frame(CyclicData, (float)(datalayer.shunt.measured_amperage_mA / 100) / 10, 18); float2frame(CYCLIC_DATA, (float)(datalayer.shunt.measured_amperage_mA / 100) / 10, 18);
float2frame(CyclicData, (float)(datalayer.shunt.measured_avg1S_amperage_mA / 100) / 10, 22); float2frame(CYCLIC_DATA, (float)(datalayer.shunt.measured_avg1S_amperage_mA / 100) / 10, 22);
if (datalayer.shunt.contactors_engaged) { if (datalayer.shunt.contactors_engaged) {
CyclicData[59] = 0; CYCLIC_DATA[59] = 0;
} else { } else {
CyclicData[59] = 2; CYCLIC_DATA[59] = 2;
} }
if (datalayer.shunt.precharging || datalayer.shunt.contactors_engaged) { if (datalayer.shunt.precharging || datalayer.shunt.contactors_engaged) {
CyclicData[56] = 1; CYCLIC_DATA[56] = 1;
float2frame(CyclicData, (float)datalayer.battery.status.max_discharge_current_dA / 10, float2frame(CYCLIC_DATA, (float)datalayer.battery.status.max_discharge_current_dA / 10,
26); // Maximum discharge current 26); // Maximum discharge current
float2frame(CyclicData, (float)datalayer.battery.status.max_charge_current_dA / 10, 34); // Maximum charge current float2frame(CYCLIC_DATA, (float)datalayer.battery.status.max_charge_current_dA / 10, 34); // Maximum charge current
} else { } else {
CyclicData[56] = 0; CYCLIC_DATA[56] = 0;
float2frame(CyclicData, 0.0, 26); float2frame(CYCLIC_DATA, 0.0, 26);
float2frame(CyclicData, 0.0, 34); float2frame(CYCLIC_DATA, 0.0, 34);
} }
#else #else
float2frame(CyclicData, (float)datalayer.battery.status.current_dA / 10, 18); // Last current float2frame(CYCLIC_DATA, (float)datalayer.battery.status.current_dA / 10, 18); // Last current
float2frame(CyclicData, (float)datalayer.battery.status.current_dA / 10, 22); // Should be Avg current(1s) float2frame(CYCLIC_DATA, (float)datalayer.battery.status.current_dA / 10, 22); // Should be Avg current(1s)
// On startup, byte 56 seems to be always 0x00 couple of frames,. // On startup, byte 56 seems to be always 0x00 couple of frames,.
if (f2_startup_count < 9) { if (f2_startup_count < 9) {
CyclicData[56] = 0x00; CYCLIC_DATA[56] = 0x00;
} else { } else {
CyclicData[56] = 0x01; CYCLIC_DATA[56] = 0x01;
} }
// On startup, byte 59 seems to be always 0x02 couple of frames,. // On startup, byte 59 seems to be always 0x02 couple of frames,.
if (f2_startup_count < 14) { if (f2_startup_count < 14) {
CyclicData[59] = 0x02; CYCLIC_DATA[59] = 0x02;
} else { } else {
CyclicData[59] = 0x00; CYCLIC_DATA[59] = 0x00;
} }
#endif #endif
float2frame(CyclicData, (float)datalayer.battery.status.max_discharge_current_dA / 10, 26); float2frame(CYCLIC_DATA, (float)datalayer.battery.status.max_discharge_current_dA / 10, 26);
// When SOC = 100%, drop down allowed charge current down. // When SOC = 100%, drop down allowed charge current down.
if ((datalayer.battery.status.reported_soc / 100) < 100) { if ((datalayer.battery.status.reported_soc / 100) < 100) {
float2frame(CyclicData, (float)datalayer.battery.status.max_charge_current_dA / 10, 34); float2frame(CYCLIC_DATA, (float)datalayer.battery.status.max_charge_current_dA / 10, 34);
} else { } else {
float2frame(CyclicData, 0.0, 34); float2frame(CYCLIC_DATA, 0.0, 34);
} }
if (nominal_voltage_dV > 0) { if (nominal_voltage_dV > 0) {
float2frame(CyclicData, (float)(datalayer.battery.info.total_capacity_Wh / nominal_voltage_dV * 10), float2frame(CYCLIC_DATA, (float)(datalayer.battery.info.total_capacity_Wh / nominal_voltage_dV * 10),
30); // BAttery capacity Ah 30); // BAttery capacity Ah
} }
float2frame(CyclicData, (float)datalayer.battery.status.temperature_max_dC / 10, 38); float2frame(CYCLIC_DATA, (float)datalayer.battery.status.temperature_max_dC / 10, 38);
float2frame(CyclicData, (float)datalayer.battery.status.temperature_min_dC / 10, 42); float2frame(CYCLIC_DATA, (float)datalayer.battery.status.temperature_min_dC / 10, 42);
float2frame(CyclicData, (float)datalayer.battery.status.cell_max_voltage_mV / 1000, 46); float2frame(CYCLIC_DATA, (float)datalayer.battery.status.cell_max_voltage_mV / 1000, 46);
float2frame(CyclicData, (float)datalayer.battery.status.cell_min_voltage_mV / 1000, 50); float2frame(CYCLIC_DATA, (float)datalayer.battery.status.cell_min_voltage_mV / 1000, 50);
CyclicData[58] = (byte)(datalayer.battery.status.reported_soc / 100); // Confirmed OK mapping CYCLIC_DATA[58] = (byte)(datalayer.battery.status.reported_soc / 100); // Confirmed OK mapping
register_content_ok = true; register_content_ok = true;
@ -354,11 +354,11 @@ void receive_RS485() // Runs as fast as possible to handle the serial stream
f2_startup_count++; f2_startup_count++;
} }
byte tmpframe[64]; //copy values to prevent data manipulation during rewrite/crc calculation byte tmpframe[64]; //copy values to prevent data manipulation during rewrite/crc calculation
memcpy(tmpframe, CyclicData, 64); memcpy(tmpframe, CYCLIC_DATA, 64);
tmpframe[62] = calculate_kostal_crc(tmpframe, 62); tmpframe[62] = calculate_kostal_crc(tmpframe, 62);
null_stuffer(tmpframe, 64); null_stuffer(tmpframe, 64);
send_kostal(tmpframe, 64); send_kostal(tmpframe, 64);
CyclicData[61] = 0x00; CYCLIC_DATA[61] = 0x00;
} }
if (code == 0x84a) { if (code == 0x84a) {
//Send battery info //Send battery info