Take into use greenoem method

This commit is contained in:
Daniel Öster 2025-07-15 15:44:56 +03:00
parent 917d27e134
commit e15f28ec40
3 changed files with 1132 additions and 139 deletions

View file

@ -326,6 +326,263 @@ inline const char* getFault(bool value) {
return value ? "ACTIVE" : "NOT_ACTIVE";
}
// Clamp DLC to 08 bytes for classic CAN
inline int getDataLen(uint8_t dlc) {
return std::min<int>(dlc, 8);
}
// Fast bitfield writer: writes 'bitLen' bits of 'value' starting at 'startBit'
inline void setBitField(uint8_t* data, int bytes, int startBit, int bitLen, uint64_t value) {
int bit = startBit;
for (int i = 0; i < bitLen && bit < bytes * 8; ++i, ++bit) {
uint8_t* p = data + (bit >> 3);
uint8_t m = uint8_t(1u << (bit & 7));
*p = (*p & ~m) | (uint8_t((value >> i) & 1) << (bit & 7));
}
}
/// Increment a counter field and recompute an 8bit checksum as part of a mux
void generateMuxFrameCounterChecksum(CAN_frame& f,
uint8_t frameCounter, // counter value
int ctrStartBit, // bit index of counter LSB
int ctrBitLength, // width of counter in bits
int csumStartBit, // bit index of checksum LSB
int csumBitLength // width of checksum in bits
) {
int bytes = getDataLen(f.DLC);
auto data = f.data.u8;
// Pack payload into a 64bit word
uint64_t w = 0;
for (uint8_t i = 0; i < bytes; ++i) {
w |= uint64_t(data[i]) << (8 * i);
}
// Increment the counter
{
uint64_t mask = (uint64_t(1) << ctrBitLength) - 1;
uint64_t ctr = frameCounter & mask; // External counter 0-15
w = (w & ~(mask << ctrStartBit)) | (ctr << ctrStartBit);
}
// Unpack back into the frame bytes
for (uint8_t i = 0; i < bytes; ++i) {
data[i] = uint8_t((w >> (8 * i)) & 0xFF);
}
// Build a small buffer and zero out the checksum bits
uint8_t buf[8];
for (uint8_t i = 0; i < bytes; ++i) {
buf[i] = data[i];
}
for (int bit = csumStartBit; bit < csumStartBit + csumBitLength; ++bit) {
int b = bit >> 3;
if (b >= bytes)
break;
buf[b] &= uint8_t(~(1u << (bit & 7)));
}
// Compute checksum offset from most significant hex digit of CAN ID
uint8_t checksum_offset = uint8_t((f.ID >> 8) & 0xF); // high nibble of top byte
// Sum the low byte of ID + buf[]
uint8_t sum = uint8_t(f.ID & 0xFF);
for (int i = 0; i < bytes; ++i) {
sum = uint8_t(sum + buf[i]);
}
uint8_t checksum = uint8_t(sum + checksum_offset);
// Write the checksum back into the frame
setBitField(data, bytes, csumStartBit, csumBitLength, checksum);
}
// Increment a counter field and recompute an 8bit checksum
void generateFrameCounterChecksum(CAN_frame& f,
int ctrStartBit, // bit index of counter LSB
int ctrBitLength, // width of counter in bits
int csumStartBit, // bit index of checksum LSB
int csumBitLength // width of checksum in bits
) {
int bytes = getDataLen(f.DLC);
auto data = f.data.u8;
// Pack payload into a 64bit word
uint64_t w = 0;
for (int i = 0; i < bytes; ++i) {
w |= uint64_t(data[i]) << (8 * i);
}
// Increment the counter by +1 modulo its width
{
uint64_t mask = (uint64_t(1) << ctrBitLength) - 1;
uint64_t ctr = ((w >> ctrStartBit) & mask) + 1;
ctr &= mask;
w = (w & ~(mask << ctrStartBit)) | (ctr << ctrStartBit);
}
// Unpack back into the frame bytes
for (int i = 0; i < bytes; ++i) {
data[i] = uint8_t((w >> (8 * i)) & 0xFF);
}
// Build a small buffer and zero out the checksum bits
uint8_t buf[8];
for (int i = 0; i < bytes; ++i) {
buf[i] = data[i];
}
for (int bit = csumStartBit; bit < csumStartBit + csumBitLength; ++bit) {
int b = bit >> 3;
if (b >= bytes)
break;
buf[b] &= uint8_t(~(1u << (bit & 7)));
}
// Compute checksum offset from most significant hex digit of CAN ID
uint8_t checksum_offset = uint8_t((f.ID >> 8) & 0xF); // high nibble of top byte
// Sum the low byte of ID + buf[]
uint8_t sum = uint8_t(f.ID & 0xFF);
for (int i = 0; i < bytes; ++i) {
sum = uint8_t(sum + buf[i]);
}
uint8_t checksum = uint8_t(sum + checksum_offset);
// Write the checksum back into the frame
setBitField(data, bytes, csumStartBit, csumBitLength, checksum);
}
// Function to write a value to a given CAN frame signal
void write_signal_value(CAN_frame* frame, uint16_t start_bit, uint8_t bit_length, int64_t value, bool is_signed) {
if (bit_length == 0 || bit_length > 64 || frame == nullptr)
return;
uint64_t uvalue;
if (is_signed) {
int64_t min_val = -(1LL << (bit_length - 1));
int64_t max_val = (1LL << (bit_length - 1)) - 1;
// Clamp to valid range
if (value < min_val)
value = min_val;
if (value > max_val)
value = max_val;
// Two's complement encoding
uvalue = static_cast<uint64_t>(value) & ((1ULL << bit_length) - 1);
} else {
uvalue = static_cast<uint64_t>(value) & ((1ULL << bit_length) - 1);
}
// Write value into frame->data.u8 using little-endian bit layout
for (uint8_t i = 0; i < bit_length; ++i) {
uint8_t bit_val = (uvalue >> i) & 1;
uint16_t bit_pos = start_bit + i;
uint8_t byte_index = bit_pos / 8;
uint8_t bit_index = bit_pos % 8;
if (byte_index >= frame->DLC)
continue; // Prevent overrun
if (bit_val)
frame->data.u8[byte_index] |= (1 << bit_index);
else
frame->data.u8[byte_index] &= ~(1 << bit_index);
}
}
void generateTESLA_229(CAN_frame& f) {
static const uint8_t checksumLookup[16] = {0x46, 0x44, 0x52, 0x6D, 0x43, 0x41, 0xDD, 0xF9,
0x4C, 0xA5, 0xF6, 0x8C, 0x49, 0x2F, 0x31, 0x3B};
// Safety, only run if this is the right ID
if (f.ID != 0x229)
return;
const int ctrStartBit = 8;
const int ctrBitLength = 4;
const int csumStartBit = 0;
const int csumBitLength = 8;
int bytes = getDataLen(f.DLC);
auto data = f.data.u8;
// Pack the first few bytes into a word
uint64_t w = 0;
for (int i = 0; i < bytes; ++i) {
w |= uint64_t(data[i]) << (8 * i);
}
// Extract current counter
uint64_t mask = (uint64_t(1) << ctrBitLength) - 1;
uint8_t ctr = (w >> ctrStartBit) & mask;
// Increment counter mod 16
ctr = (ctr + 1) & 0xF;
// Write updated counter back
w = (w & ~(mask << ctrStartBit)) | (uint64_t(ctr) << ctrStartBit);
for (int i = 0; i < bytes; ++i) {
data[i] = uint8_t((w >> (8 * i)) & 0xFF);
}
// Look up and insert checksum
uint8_t checksum = checksumLookup[ctr];
setBitField(data, bytes, csumStartBit, csumBitLength, checksum);
}
void generateTESLA_213(CAN_frame& f) {
static uint8_t counter = 0;
// Increment counter (wrap at 16)
counter = (counter + 1) & 0xF;
// Safety, only modify if ID is 0x213 and DLC is at least 2
if (f.ID != 0x213 || f.DLC < 2)
return;
// Byte 0: counter in high nibble
uint8_t value = counter << 4;
// Byte 1: checksum = value + 0x15
uint8_t checksum = (value + 0x15) & 0xFF;
f.data.u8[0] = value;
f.data.u8[1] = checksum;
}
// Function to check if a year is a leap year
bool isLeapYear(int year) {
if ((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)) {
return true;
}
return false;
}
// Function to convert year and day of year (i.e. Julian date) into human readable date
char* dayOfYearToDate(int year, int dayOfYear) {
// Arrays to hold the number of days in each month for standard/leap years
int daysInMonthStandard[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int daysInMonthLeap[] = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
// Select the appropriate array for the given year
int* daysInMonth = isLeapYear(year) ? daysInMonthLeap : daysInMonthStandard;
int month = 0;
// Find the month and the day within the month
while (dayOfYear > daysInMonth[month]) {
dayOfYear -= daysInMonth[month];
month++;
}
static char dateString[11]; // For "YYYY-MM-DD\0"
// Format the date string in "YYYY-MM-DD" format
snprintf(dateString, sizeof(dateString), "%d-%02d-%02d", year, month + 1, dayOfYear);
return dateString;
}
void TeslaBattery::
update_values() { //This function maps all the values fetched via CAN to the correct parameters used for modbus
//After values are mapped, we perform some safety checks, and do some serial printouts
@ -444,6 +701,10 @@ void TeslaBattery::
}
}
//Update 0x333 UI_chargeTerminationPct (bit 16, width 10) value to SOC max value - expose via UI?
//One firmware version this was seen at bit 17 width 11
write_signal_value(&TESLA_333, 16, 10, static_cast<int64_t>(datalayer.battery.settings.max_percentage / 10), false);
// Update webserver datalayer
//0x20A
datalayer_extended.tesla.status_contactor = battery_contactor;
@ -459,7 +720,22 @@ void TeslaBattery::
datalayer_extended.tesla.battery_packCtrsResetRequestRequired = battery_packCtrsResetRequestRequired;
datalayer_extended.tesla.battery_dcLinkAllowedToEnergize = battery_dcLinkAllowedToEnergize;
//0x72A
memcpy(datalayer_extended.tesla.BMS_SerialNumber, BMS_SerialNumber, sizeof(BMS_SerialNumber));
if (parsed_battery_serialNumber && battery_serialNumber[13] != 0) {
memcpy(datalayer_extended.tesla.battery_serialNumber, battery_serialNumber, sizeof(battery_serialNumber));
//datalayer_extended.tesla.battery_manufactureDate = battery_manufactureDate;
//We have valid data and comms with the battery, attempt to query part number
if (!parsed_battery_partNumber && stateMachineBMSQuery == 0xFF) {
stateMachineBMSQuery = 0;
}
}
//Via UDS
if (parsed_battery_partNumber && battery_partNumber[11] != 0) {
memcpy(datalayer_extended.tesla.battery_partNumber, battery_partNumber, sizeof(battery_partNumber));
}
//0x3C4
if (parsed_PCS_partNumber && PCS_partNumber[11] != 0) {
memcpy(datalayer_extended.tesla.PCS_partNumber, PCS_partNumber, sizeof(PCS_partNumber));
}
//0x2B4
datalayer_extended.tesla.battery_dcdcLvBusVolt = battery_dcdcLvBusVolt;
datalayer_extended.tesla.battery_dcdcHvBusVolt = battery_dcdcHvBusVolt;
@ -538,6 +814,19 @@ void TeslaBattery::
datalayer_extended.tesla.BMS_notEnoughPowerForHeatPump = BMS_notEnoughPowerForHeatPump;
datalayer_extended.tesla.BMS_powerLimitState = BMS_powerLimitState;
datalayer_extended.tesla.BMS_inverterTQF = BMS_inverterTQF;
//0x300
datalayer_extended.tesla.BMS_info_buildConfigId = BMS_info_buildConfigId;
datalayer_extended.tesla.BMS_info_hardwareId = BMS_info_hardwareId;
datalayer_extended.tesla.BMS_info_componentId = BMS_info_componentId;
datalayer_extended.tesla.BMS_info_pcbaId = BMS_info_pcbaId;
datalayer_extended.tesla.BMS_info_assemblyId = BMS_info_assemblyId;
datalayer_extended.tesla.BMS_info_usageId = BMS_info_usageId;
datalayer_extended.tesla.BMS_info_subUsageId = BMS_info_subUsageId;
datalayer_extended.tesla.BMS_info_platformType = BMS_info_platformType;
datalayer_extended.tesla.BMS_info_appCrc = BMS_info_appCrc;
datalayer_extended.tesla.BMS_info_bootGitHash = BMS_info_bootGitHash;
datalayer_extended.tesla.BMS_info_bootUdsProtoVersion = BMS_info_bootUdsProtoVersion;
datalayer_extended.tesla.BMS_info_bootCrc = BMS_info_bootCrc;
//0x312
datalayer_extended.tesla.BMS_powerDissipation = BMS_powerDissipation;
datalayer_extended.tesla.BMS_flowRequest = BMS_flowRequest;
@ -548,6 +837,10 @@ void TeslaBattery::
datalayer_extended.tesla.BMS_packTMax = BMS_packTMax;
datalayer_extended.tesla.BMS_pcsNoFlowRequest = BMS_pcsNoFlowRequest;
datalayer_extended.tesla.BMS_noFlowRequest = BMS_noFlowRequest;
//0x3C4
datalayer_extended.tesla.PCS_info_buildConfigId = PCS_info_buildConfigId;
datalayer_extended.tesla.PCS_info_hardwareId = PCS_info_hardwareId;
datalayer_extended.tesla.PCS_info_componentId = PCS_info_componentId;
//0x2A4
datalayer_extended.tesla.PCS_dcdcTemp = PCS_dcdcTemp;
datalayer_extended.tesla.PCS_ambientTemp = PCS_ambientTemp;
@ -575,6 +868,10 @@ void TeslaBattery::
datalayer_extended.tesla.PCS_dcdcIntervalMinLvBusVolt = PCS_dcdcIntervalMinLvBusVolt;
datalayer_extended.tesla.PCS_dcdcIntervalMinLvOutputCurr = PCS_dcdcIntervalMinLvOutputCurr;
datalayer_extended.tesla.PCS_dcdc12vSupportLifetimekWh = PCS_dcdc12vSupportLifetimekWh;
//0x310
datalayer_extended.tesla.HVP_info_buildConfigId = HVP_info_buildConfigId;
datalayer_extended.tesla.HVP_info_hardwareId = HVP_info_hardwareId;
datalayer_extended.tesla.HVP_info_componentId = HVP_info_componentId;
//0x7AA
datalayer_extended.tesla.HVP_gpioPassivePyroDepl = HVP_gpioPassivePyroDepl;
datalayer_extended.tesla.HVP_gpioPyroIsoEn = HVP_gpioPyroIsoEn;
@ -633,6 +930,29 @@ void TeslaBattery::
datalayer_extended.tesla.HVP_shuntBarTempStatus = HVP_shuntBarTempStatus;
datalayer_extended.tesla.HVP_shuntAsicTempStatus = HVP_shuntAsicTempStatus;
//Safety checks for CAN message sesnding
if ((datalayer.system.status.inverter_allows_contactor_closing == true) &&
(datalayer.battery.status.bms_status != FAULT) && (!datalayer.system.settings.equipment_stop_active)) {
// Carry on: 0x221 DRIVE state & reset power down timer
vehicleState = 1;
powerDownTimer = 180; //0x221 50ms cyclic, 20 calls/second
} else {
// Faulted state, or inverter blocks contactor closing
// Shut down: 0x221 ACCESSORY state for 3 seconds, followed by GOING_DOWN, then OFF
if (powerDownTimer <= 180 && powerDownTimer > 120) {
vehicleState = 2; //ACCESSORY
powerDownTimer--;
}
if (powerDownTimer <= 120 && powerDownTimer > 60) {
vehicleState = 3; //GOING_DOWN
powerDownTimer--;
}
if (powerDownTimer <= 60 && powerDownTimer > 0) {
vehicleState = 0; //OFF
powerDownTimer--;
}
}
#ifdef DEBUG_LOG
printFaultCodesIfActive();
@ -1346,25 +1666,39 @@ void TeslaBattery::handle_incoming_can_frame(CAN_frame rx_frame) {
battery_BMS_a180_SW_ECU_reset_blocked = ((rx_frame.data.u8[7] >> 7) & (0x01U)); //63|1@1+ (1,0) [0|0] "" X
}
break;
case 0x72A: //1834 ID72ABMS_serialNumber
//Work in progress to display BMS Serial Number in ASCII: 00 54 47 33 32 31 32 30 (mux 0) .TG32120 + 01 32 30 30 33 41 48 58 (mux 1) .2003AHX = TG321202003AHX
if (rx_frame.data.u8[0] == 0x00) {
BMS_SerialNumber[0] = rx_frame.data.u8[1];
BMS_SerialNumber[1] = rx_frame.data.u8[2];
BMS_SerialNumber[2] = rx_frame.data.u8[3];
BMS_SerialNumber[3] = rx_frame.data.u8[4];
BMS_SerialNumber[4] = rx_frame.data.u8[5];
BMS_SerialNumber[5] = rx_frame.data.u8[6];
BMS_SerialNumber[6] = rx_frame.data.u8[7];
case 0x72A: //BMS_serialNumber
//Pack serial number in ASCII: 00 54 47 33 32 31 32 30 (mux 0) .TG32120 + 01 32 30 30 33 41 48 58 (mux 1) .2003AHX = TG321202003AHX
if (rx_frame.data.u8[0] == 0x00 && !parsed_battery_serialNumber) { // Serial number 1-7
battery_serialNumber[0] = rx_frame.data.u8[1];
battery_serialNumber[1] = rx_frame.data.u8[2];
battery_serialNumber[2] = rx_frame.data.u8[3];
battery_serialNumber[3] = rx_frame.data.u8[4];
battery_serialNumber[4] = rx_frame.data.u8[5];
battery_serialNumber[5] = rx_frame.data.u8[6];
battery_serialNumber[6] = rx_frame.data.u8[7];
}
if (rx_frame.data.u8[0] == 0x01) {
BMS_SerialNumber[7] = rx_frame.data.u8[1];
BMS_SerialNumber[8] = rx_frame.data.u8[2];
BMS_SerialNumber[9] = rx_frame.data.u8[3];
BMS_SerialNumber[10] = rx_frame.data.u8[4];
BMS_SerialNumber[11] = rx_frame.data.u8[5];
BMS_SerialNumber[12] = rx_frame.data.u8[6];
BMS_SerialNumber[13] = rx_frame.data.u8[7];
if (rx_frame.data.u8[0] == 0x01 && !parsed_battery_serialNumber) { // Serial number 8-14
battery_serialNumber[7] = rx_frame.data.u8[1];
battery_serialNumber[8] = rx_frame.data.u8[2];
battery_serialNumber[9] = rx_frame.data.u8[3];
battery_serialNumber[10] = rx_frame.data.u8[4];
battery_serialNumber[11] = rx_frame.data.u8[5];
battery_serialNumber[12] = rx_frame.data.u8[6];
battery_serialNumber[13] = rx_frame.data.u8[7];
}
if (battery_serialNumber[6] != 0 && battery_serialNumber[12] != 0 &&
!parsed_battery_serialNumber) { // Serial number complete
//Manufacture year
char yearStr[5]; // Full year string (including the "20" prefix)
snprintf(yearStr, sizeof(yearStr), "20%c%c", battery_serialNumber[3], battery_serialNumber[4]);
int year = atoi(yearStr);
//Manufacture day (Julian calendar)
char dayStr[4];
snprintf(dayStr, sizeof(dayStr), "%c%c%c", battery_serialNumber[5], battery_serialNumber[6],
battery_serialNumber[7]);
int day = atoi(dayStr);
battery_manufactureDate = dayOfYearToDate(year, day);
parsed_battery_serialNumber = true;
}
break;
case 0x612: // CAN UDS responses for BMS ECU reset
@ -1416,16 +1750,8 @@ int index_1CF = 0;
int index_118 = 0;
void TeslaBattery::transmit_can(unsigned long currentMillis) {
/*From bielec: My fist 221 message, to close the contactors is 0x41, 0x11, 0x01, 0x00, 0x00, 0x00, 0x20, 0x96 and then,
to cause "hv_up_for_drive" I send an additional 221 message 0x61, 0x15, 0x01, 0x00, 0x00, 0x00, 0x20, 0xBA so
two 221 messages are being continuously transmitted. When I want to shut down, I stop the second message and only send
the first, for a few cycles, then stop all messages which causes the contactor to open. */
if (!cellvoltagesRead) {
return; //All cellvoltages not read yet, do not proceed with contactor closing
}
if (operate_contactors) {
if (operate_contactors) { //Special S/X mode
if ((datalayer.system.status.inverter_allows_contactor_closing) && (datalayer.battery.status.bms_status != FAULT)) {
if (currentMillis - lastSend1CF >= 10) {
transmit_can_frame(&can_msg_1CF[index_1CF], can_config.battery);
@ -1446,47 +1772,205 @@ the first, for a few cycles, then stop all messages which causes the contactor
}
}
//Send 10ms message
//Send 10ms messages
if (currentMillis - previousMillis10 >= INTERVAL_10_MS) {
previousMillis10 = currentMillis;
transmit_can_frame(&TESLA_129, can_config.battery);
//0x118 DI_systemStatus
transmit_can_frame(&TESLA_118, can_config.battery);
//0x2E1 VCFRONT_status
switch (muxNumber_TESLA_2E1) {
case 0:
transmit_can_frame(&TESLA_2E1_VEHICLE_AND_RAILS, can_config.battery);
muxNumber_TESLA_2E1++;
break;
case 1:
transmit_can_frame(&TESLA_2E1_HOMELINK, can_config.battery);
muxNumber_TESLA_2E1++;
break;
case 2:
transmit_can_frame(&TESLA_2E1_REFRIGERANT_SYSTEM, can_config.battery);
muxNumber_TESLA_2E1++;
break;
case 3:
transmit_can_frame(&TESLA_2E1_LV_BATTERY_DEBUG, can_config.battery);
muxNumber_TESLA_2E1++;
break;
case 4:
transmit_can_frame(&TESLA_2E1_MUX_5, can_config.battery);
muxNumber_TESLA_2E1++;
break;
case 5:
transmit_can_frame(&TESLA_2E1_BODY_CONTROLS, can_config.battery);
muxNumber_TESLA_2E1 = 0;
break;
default:
break;
}
//Generate next frames
generateFrameCounterChecksum(TESLA_118, 8, 4, 0, 8);
}
//Send 50ms message
//Send 50ms messages
if (currentMillis - previousMillis50 >= INTERVAL_50_MS) {
previousMillis50 = currentMillis;
if ((datalayer.system.status.inverter_allows_contactor_closing == true) &&
(datalayer.battery.status.bms_status != FAULT)) {
sendContactorClosingMessagesStill = 300;
transmit_can_frame(&TESLA_221_1, can_config.battery);
transmit_can_frame(&TESLA_221_2, can_config.battery);
} else { // Faulted state, or inverter blocks contactor closing
if (sendContactorClosingMessagesStill > 0) {
transmit_can_frame(&TESLA_221_1, can_config.battery);
sendContactorClosingMessagesStill--;
//0x221 VCFRONT_LVPowerState
if (vehicleState == 1) { // Drive
switch (muxNumber_TESLA_221) {
case 0:
generateMuxFrameCounterChecksum(TESLA_221_DRIVE_Mux0, frameCounter_TESLA_221, 52, 4, 56, 8);
transmit_can_frame(&TESLA_221_DRIVE_Mux0, can_config.battery);
muxNumber_TESLA_221++;
break;
case 1:
generateMuxFrameCounterChecksum(TESLA_221_DRIVE_Mux1, frameCounter_TESLA_221, 52, 4, 56, 8);
transmit_can_frame(&TESLA_221_DRIVE_Mux1, can_config.battery);
muxNumber_TESLA_221 = 0;
break;
default:
break;
}
//Generate next new frame
frameCounter_TESLA_221 = (frameCounter_TESLA_221 + 1) % 16;
}
if (vehicleState == 2) { // Accessory
switch (muxNumber_TESLA_221) {
case 0:
generateMuxFrameCounterChecksum(TESLA_221_ACCESSORY_Mux0, frameCounter_TESLA_221, 52, 4, 56, 8);
transmit_can_frame(&TESLA_221_ACCESSORY_Mux0, can_config.battery);
muxNumber_TESLA_221++;
break;
case 1:
generateMuxFrameCounterChecksum(TESLA_221_ACCESSORY_Mux1, frameCounter_TESLA_221, 52, 4, 56, 8);
transmit_can_frame(&TESLA_221_ACCESSORY_Mux1, can_config.battery);
muxNumber_TESLA_221 = 0;
break;
default:
break;
}
//Generate next new frame
frameCounter_TESLA_221 = (frameCounter_TESLA_221 + 1) % 16;
}
if (vehicleState == 3) { // Going down
switch (muxNumber_TESLA_221) {
case 0:
generateMuxFrameCounterChecksum(TESLA_221_GOING_DOWN_Mux0, frameCounter_TESLA_221, 52, 4, 56, 8);
transmit_can_frame(&TESLA_221_GOING_DOWN_Mux0, can_config.battery);
muxNumber_TESLA_221++;
break;
case 1:
generateMuxFrameCounterChecksum(TESLA_221_GOING_DOWN_Mux1, frameCounter_TESLA_221, 52, 4, 56, 8);
transmit_can_frame(&TESLA_221_GOING_DOWN_Mux1, can_config.battery);
muxNumber_TESLA_221 = 0;
break;
default:
break;
}
//Generate next new frame
frameCounter_TESLA_221 = (frameCounter_TESLA_221 + 1) % 16;
}
if (vehicleState == 0) { // Off
switch (muxNumber_TESLA_221) {
case 0:
generateMuxFrameCounterChecksum(TESLA_221_OFF_Mux0, frameCounter_TESLA_221, 52, 4, 56, 8);
transmit_can_frame(&TESLA_221_OFF_Mux0, can_config.battery);
muxNumber_TESLA_221++;
break;
case 1:
generateMuxFrameCounterChecksum(TESLA_221_OFF_Mux1, frameCounter_TESLA_221, 52, 4, 56, 8);
transmit_can_frame(&TESLA_221_OFF_Mux1, can_config.battery);
muxNumber_TESLA_221 = 0;
break;
default:
break;
}
//Generate next new frame
frameCounter_TESLA_221 = (frameCounter_TESLA_221 + 1) % 16;
}
//Send 100ms message
//0x3C2 VCLEFT_switchStatus
switch (muxNumber_TESLA_3C2) {
case 0:
transmit_can_frame(&TESLA_3C2_Mux0, can_config.battery);
muxNumber_TESLA_3C2++;
break;
case 1:
transmit_can_frame(&TESLA_3C2_Mux1, can_config.battery);
muxNumber_TESLA_3C2 = 0;
break;
default:
break;
}
//0x39D IBST_status
transmit_can_frame(&TESLA_39D, can_config.battery);
if (battery_contactor == 4) { // Contactors closed
// Frames to be sent only when contactors closed
//0x3A1 VCFRONT_vehicleStatus, critical otherwise VCFRONT_MIA triggered
transmit_can_frame(&TESLA_3A1[frameCounter_TESLA_3A1], can_config.battery);
frameCounter_TESLA_3A1 = (frameCounter_TESLA_3A1 + 1) % 16;
}
//Generate next frame
generateFrameCounterChecksum(TESLA_39D, 8, 4, 0, 8);
}
//Send 100ms messages
if (currentMillis - previousMillis100 >= INTERVAL_100_MS) {
previousMillis100 = currentMillis;
transmit_can_frame(&TESLA_129, can_config.battery);
//0x102 VCLEFT_doorStatus, static
transmit_can_frame(&TESLA_102, can_config.battery);
//0x103 VCRIGHT_doorStatus, static
transmit_can_frame(&TESLA_103, can_config.battery);
//0x229 SCCM_rightStalk
transmit_can_frame(&TESLA_229, can_config.battery);
//0x241 VCFRONT_coolant, static
transmit_can_frame(&TESLA_241, can_config.battery);
transmit_can_frame(&TESLA_242, can_config.battery);
if (alternate243) {
transmit_can_frame(&TESLA_243_1, can_config.battery);
alternate243 = false;
} else {
transmit_can_frame(&TESLA_243_2, can_config.battery);
alternate243 = true;
//0x2D1 VCFRONT_okToUseHighPower, static
transmit_can_frame(&TESLA_2D1, can_config.battery);
//0x2A8 CMPD_state
transmit_can_frame(&TESLA_2A8, can_config.battery);
//0x2E8 EPBR_status
transmit_can_frame(&TESLA_2E8, can_config.battery);
//0x7FF GTW_carConfig
switch (muxNumber_TESLA_7FF) {
case 0:
transmit_can_frame(&TESLA_7FF_Mux1, can_config.battery);
muxNumber_TESLA_7FF++;
break;
case 1:
transmit_can_frame(&TESLA_7FF_Mux2, can_config.battery);
muxNumber_TESLA_7FF++;
break;
case 2:
transmit_can_frame(&TESLA_7FF_Mux3, can_config.battery);
muxNumber_TESLA_7FF++;
break;
case 3:
transmit_can_frame(&TESLA_7FF_Mux4, can_config.battery);
muxNumber_TESLA_7FF++;
break;
case 4:
transmit_can_frame(&TESLA_7FF_Mux5, can_config.battery);
muxNumber_TESLA_7FF = 0;
break;
default:
break;
}
//Generate next frames
generateTESLA_229(TESLA_229);
generateFrameCounterChecksum(TESLA_2A8, 52, 4, 56, 8);
generateFrameCounterChecksum(TESLA_2E8, 52, 4, 56, 8);
if (stateMachineClearIsolationFault != 0xFF) {
//This implementation should be rewritten to actually replying to the UDS replied sent by the BMS
//This implementation should be rewritten to actually reply to the UDS responses sent by the BMS
//While this may work, it is not the correct way to implement this clearing logic
switch (stateMachineClearIsolationFault) {
case 0:
@ -1527,9 +2011,10 @@ the first, for a few cycles, then stop all messages which causes the contactor
stateMachineClearIsolationFault = 0xFF;
break;
}
}
if (stateMachineBMSReset != 0xFF) {
//This implementation should be rewritten to actually replying to the UDS replied sent by the BMS
//While this may work, it is not the correct way to implement this clearing logic
//This implementation should be rewritten to actually reply to the UDS responses sent by the BMS
//While this may work, it is not the correct way to implement this reset logic
switch (stateMachineBMSReset) {
case 0:
TESLA_602.data = {0x02, 0x27, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00};
@ -1579,8 +2064,81 @@ the first, for a few cycles, then stop all messages which causes the contactor
break;
}
}
if (stateMachineBMSQuery != 0xFF) {
//This implementation should be rewritten to actually reply to the UDS responses sent by the BMS
//While this may work, it is not the correct way to implement this query logic
switch (stateMachineBMSQuery) {
case 0:
//Initial request
#ifdef DEBUG_LOG
logging.println("CAN UDS: Sending BMS query initial handshake");
#endif //DEBUG_LOG
TESLA_602.data = {0x02, 0x10, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00};
transmit_can_frame(&TESLA_602, can_config.battery);
break;
case 1:
//Send query
#ifdef DEBUG_LOG
logging.println("CAN UDS: Sending BMS query for pack part number");
#endif //DEBUG_LOG
TESLA_602.data = {0x03, 0x22, 0xF0, 0x14, 0x00, 0x00, 0x00, 0x00};
transmit_can_frame(&TESLA_602, can_config.battery);
break;
case 2:
//Flow control
#ifdef DEBUG_LOG
logging.println("CAN UDS: Sending BMS query flow control");
#endif //DEBUG_LOG
TESLA_602.data = {0x30, 0x00, 0x0A, 0x00, 0x00, 0x00, 0x00, 0x00};
transmit_can_frame(&TESLA_602, can_config.battery);
break;
case 3:
break;
case 4:
break;
default:
//Something went wrong. Reset all and cancel
stateMachineBMSQuery = 0xFF;
break;
}
}
}
//Send 500ms messages
if (currentMillis - previousMillis500 >= INTERVAL_500_MS) {
previousMillis500 = currentMillis;
transmit_can_frame(&TESLA_213, can_config.battery);
transmit_can_frame(&TESLA_284, can_config.battery);
transmit_can_frame(&TESLA_293, can_config.battery);
transmit_can_frame(&TESLA_313, can_config.battery);
transmit_can_frame(&TESLA_333, can_config.battery);
if (TESLA_334_INITIAL_SENT == false) {
transmit_can_frame(&TESLA_334_INITIAL, can_config.battery);
TESLA_334_INITIAL_SENT = true;
} else {
transmit_can_frame(&TESLA_334, can_config.battery);
}
transmit_can_frame(&TESLA_3B3, can_config.battery);
transmit_can_frame(&TESLA_55A, can_config.battery);
//Generate next frames
generateTESLA_213(TESLA_213);
generateFrameCounterChecksum(TESLA_293, 52, 4, 56, 8);
generateFrameCounterChecksum(TESLA_313, 52, 4, 56, 8);
generateFrameCounterChecksum(TESLA_334, 52, 4, 56, 8);
}
//Send 1000ms messages
if (currentMillis - previousMillis1000 >= INTERVAL_1_S) {
previousMillis1000 = currentMillis;
transmit_can_frame(&TESLA_082, can_config.battery);
transmit_can_frame(&TESLA_321, can_config.battery);
//Generate next frames
generateFrameCounterChecksum(TESLA_321, 52, 4, 56, 8);
}
}
void printDebugIfActive(uint8_t symbol, const char* message) {
@ -1763,6 +2321,15 @@ void TeslaModel3YBattery::setup(void) { // Performs one time setup at startup
*allows_contactor_closing = true;
}
//0x7FF GTW CAN frame values
//Mux1
write_signal_value(&TESLA_7FF_Mux1, 16, 16, GTW_country, false);
write_signal_value(&TESLA_7FF_Mux1, 11, 1, GTW_rightHandDrive, false);
//Mux3
write_signal_value(&TESLA_7FF_Mux3, 8, 4, GTW_mapRegion, false);
write_signal_value(&TESLA_7FF_Mux3, 18, 3, GTW_chassisType, false);
write_signal_value(&TESLA_7FF_Mux3, 32, 5, GTW_packEnergy, false);
strncpy(datalayer.system.info.battery_protocol, Name, 63);
datalayer.system.info.battery_protocol[63] = '\0';
#ifdef LFP_CHEMISTRY

View file

@ -43,7 +43,25 @@ class TeslaBattery : public CanBattery {
static const int MAXDISCHARGEPOWERALLOWED =
60000; // 60000W we use a define since the value supplied by Tesla is always 0
/* Do not change the defines below */
// Set this to true to try to close contactors/full startup even with no inverter defined/connected
bool batteryTestOverride = false;
// 0x7FF gateway config, "Gen3" vehicles only, not applicable to Gen2 "classic" Model S and Model X
//
// ** MANUALLY SET FOR NOW **, TODO: change based on USER_SETTINGS.h or preset
//
static const uint16_t GTW_country =
18242; // "US" (USA): 21843, "CA" (Canada): 17217, "GB" (UK & N Ireland): 18242, "DK" (Denmark): 17483, "DE" (Germany): 17477, "AU" (Australia): 16725 [HVP shows errors if EU/US region mismatch for example]
// GTW_country is ISO 3166-1 Alpha-2 code, each letter converted to binary (8-bit chunks), those 8-bit chunks concatenated and then converted to decimal
static const uint8_t GTW_rightHandDrive =
1; // Left: 0, Right: 1 (not sure this matters but there for consistency in emulating the car - make sure correct for GTW_country, e.g. 0 for USA)
static const uint8_t GTW_mapRegion =
1; // "ME": 8, "NONE": 2, "CN": 3, "TW": 6, "JP": 5, "US": 0, "KR": 7, "AU": 4, "EU": 1 (not sure this matters but there for consistency)
static const uint8_t GTW_chassisType =
2; // "MODEL_3_CHASSIS": 2, "MODEL_Y_CHASSIS": 3 ("MODEL_S_CHASSIS": 0, "MODEL_X_CHASSIS": 1)
static const uint8_t GTW_packEnergy = 1; // "PACK_50_KWH": 0, "PACK_74_KWH": 1, "PACK_62_KWH": 2, "PACK_100_KWH": 3
/* Do not change anything below this line! */
static const int RAMPDOWN_SOC = 900; // 90.0 SOC% to start ramping down from max charge power towards 0 at 100.00%
static const int RAMPDOWNPOWERALLOWED = 10000; // What power we ramp down from towards top balancing
static const int FLOAT_MAX_POWER_W = 200; // W, what power to allow for top balancing battery
@ -75,53 +93,391 @@ class TeslaBattery : public CanBattery {
unsigned long previousMillis100 = 0; // will store last time a 100ms CAN Message was sent
unsigned long previousMillis500 = 0; // will store last time a 500ms CAN Message was sent
unsigned long previousMillis1000 = 0; // will store last time a 1000ms CAN Message was sent
bool alternate243 = false;
//0x221 545 VCFRONT_LVPowerState: "GenMsgCycleTime" 50ms
CAN_frame TESLA_221_1 = {
.FD = false,
//UDS session tracker
//static bool uds_SessionInProgress = false; // Future use
//0x221 VCFRONT_LVPowerState
uint8_t muxNumber_TESLA_221 = 0;
uint8_t frameCounter_TESLA_221 = 15; // Start at 15 for Mux 0
uint8_t vehicleState = 1; // "OFF": 0, "DRIVE": 1, "ACCESSORY": 2, "GOING_DOWN": 3
uint16_t powerDownTimer = 180; // Car power down (i.e. contactor open) tracking timer, 3 seconds per sendingState
//0x2E1 VCFRONT_status, 6 mux tracker
uint8_t muxNumber_TESLA_2E1 = 0;
//0x334 UI
bool TESLA_334_INITIAL_SENT = false;
//0x3A1 VCFRONT_vehicleStatus, 15 frame counter (temporary)
uint8_t frameCounter_TESLA_3A1 = 0;
//0x3C2 VCLEFT_switchStatus
uint8_t muxNumber_TESLA_3C2 = 0;
//0x504 TWC_status
bool TESLA_504_INITIAL_SENT = false;
//0x7FF GTW_carConfig, 5 mux tracker
uint8_t muxNumber_TESLA_7FF = 0;
//Max percentage charge tracker
uint16_t previous_max_percentage = datalayer.battery.settings.max_percentage;
//0x082 UI_tripPlanning: "cycle_time" 1000ms
CAN_frame TESLA_082 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x082,
.data = {0x00, 0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80}};
//0x102 VCLEFT_doorStatus: "cycle_time" 100ms
CAN_frame TESLA_102 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x102,
.data = {0x22, 0x33, 0x00, 0x00, 0xC0, 0x38, 0x21, 0x08}};
//0x103 VCRIGHT_doorStatus: "cycle_time" 100ms
CAN_frame TESLA_103 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x103,
.data = {0x22, 0x33, 0x00, 0x00, 0x30, 0xF2, 0x20, 0x02}};
//0x118 DI_systemStatus: "cycle_time" 50ms, DI_systemStatusChecksum/DI_systemStatusCounter generated via generateFrameCounterChecksum
CAN_frame TESLA_118 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x118,
.data = {0xAB, 0x60, 0x2A, 0x00, 0x00, 0x08, 0x00, 0x00}};
//0x2A8 CMPD_state: "cycle_time" 100ms, different depending on firmware, semi-manual increment for now
CAN_frame TESLA_2A8 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x2A8,
.data = {0x02, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x2C}};
//0x213 UI_cruiseControl: "cycle_time" 500ms, UI_speedLimitTick/UI_cruiseControlCounter - different depending on firmware, semi-manual increment for now
CAN_frame TESLA_213 = {.FD = false, .ext_ID = false, .DLC = 2, .ID = 0x213, .data = {0x00, 0x15}};
//0x221 These frames will/should eventually be migrated to 2 base frames (1 per mux), and then just the relevant bits changed
//0x221 VCFRONT_LVPowerState "Drive"
//VCFRONT_vehiclePowerState VEHICLE_POWER_STATE_DRIVE (Mux0, Counter 15): "cycle_time" 50ms each mux/LVPowerStateIndex, VCFRONT_LVPowerStateChecksum/VCFRONT_LVPowerStateCounter generated via generateMuxFrameCounterChecksum
CAN_frame TESLA_221_DRIVE_Mux0 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x221,
.data = {0x41, 0x11, 0x01, 0x00, 0x00, 0x00, 0x20, 0x96}}; //Contactor frame 221 - close contactors
CAN_frame TESLA_221_2 = {
.FD = false,
.data = {0x60, 0x55, 0x55, 0x15, 0x54, 0x51, 0xF1, 0xD8}};
//0x221 VCFRONT_LVPowerState "Drive"
//VCFRONT_vehiclePowerState VEHICLE_POWER_STATE_DRIVE (Mux1, Counter 0): "cycle_time" 50ms each mux/LVPowerStateIndex, VCFRONT_LVPowerStateChecksum/VCFRONT_LVPowerStateCounter generated via generateMuxFrameCounterChecksum
CAN_frame TESLA_221_DRIVE_Mux1 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x221,
.data = {0x61, 0x15, 0x01, 0x00, 0x00, 0x00, 0x20, 0xBA}}; //Contactor Frame 221 - hv_up_for_drive
//0x241 VCFRONT_coolant 100ms
.data = {0x61, 0x05, 0x55, 0x05, 0x00, 0x00, 0x00, 0xE3}};
//0x221 VCFRONT_LVPowerState "Accessory"
//VCFRONT_vehiclePowerState VEHICLE_POWER_STATE_ACCESSORY (Mux0, Counter 15): "cycle_time" 50ms each mux/LVPowerStateIndex, VCFRONT_LVPowerStateChecksum/VCFRONT_LVPowerStateCounter generated via generateMuxFrameCounterChecksum
CAN_frame TESLA_221_ACCESSORY_Mux0 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x221,
.data = {0x40, 0x55, 0x55, 0x05, 0x54, 0x51, 0xF5, 0xAC}};
//0x221 VCFRONT_LVPowerState "Accessory"
//VCFRONT_vehiclePowerState VEHICLE_POWER_STATE_ACCESSORY (Mux1, Counter 0): "cycle_time" 50ms each mux/LVPowerStateIndex, VCFRONT_LVPowerStateChecksum/VCFRONT_LVPowerStateCounter generated via generateMuxFrameCounterChecksum
CAN_frame TESLA_221_ACCESSORY_Mux1 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x221,
.data = {0x41, 0x05, 0x55, 0x55, 0x01, 0x00, 0x04, 0x18}};
//0x221 VCFRONT_LVPowerState "Going Down"
//VCFRONT_vehiclePowerState VEHICLE_POWER_STATE_OFF, key parts GOING_DOWN (Mux0, Counter 15): "cycle_time" 50ms each mux/LVPowerStateIndex, VCFRONT_LVPowerStateChecksum/VCFRONT_LVPowerStateCounter generated via generateMuxFrameCounterChecksum
CAN_frame TESLA_221_GOING_DOWN_Mux0 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x221,
.data = {0x00, 0x89, 0x55, 0x06, 0xA4, 0x51, 0xF1, 0xED}};
//0x221 VCFRONT_LVPowerState "Going Down"
//VCFRONT_vehiclePowerState VEHICLE_POWER_STATE_OFF, key parts GOING_DOWN (Mux1, Counter 0): "cycle_time" 50ms each mux/LVPowerStateIndex, VCFRONT_LVPowerStateChecksum/VCFRONT_LVPowerStateCounter generated via generateMuxFrameCounterChecksum
CAN_frame TESLA_221_GOING_DOWN_Mux1 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x221,
.data = {0x01, 0x09, 0x55, 0x59, 0x00, 0x00, 0x00, 0xDB}};
//0x221 VCFRONT_LVPowerState "Off"
//VCFRONT_vehiclePowerState VEHICLE_POWER_STATE_OFF, key parts OFF (Mux0, Counter 15): "cycle_time" 50ms each mux/LVPowerStateIndex, VCFRONT_LVPowerStateChecksum/VCFRONT_LVPowerStateCounter generated via generateMuxFrameCounterChecksum
CAN_frame TESLA_221_OFF_Mux0 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x221,
.data = {0x00, 0x01, 0x00, 0x00, 0x00, 0x50, 0xF1, 0x65}};
//0x221 VCFRONT_LVPowerState "Off"
//VCFRONT_vehiclePowerState VEHICLE_POWER_STATE_OFF, key parts OFF (Mux1, Counter 0): "cycle_time" 50ms each mux/LVPowerStateIndex, VCFRONT_LVPowerStateChecksum/VCFRONT_LVPowerStateCounter generated via generateMuxFrameCounterChecksum
CAN_frame TESLA_221_OFF_Mux1 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x221,
.data = {0x01, 0x01, 0x01, 0x50, 0x00, 0x00, 0x00, 0x76}};
//0x229 SCCM_rightStalk: "cycle_time" 100ms, SCCM_rightStalkChecksum/SCCM_rightStalkCounter generated via dedicated generateTESLA_229 function for now
//CRC seemingly related to AUTOSAR ID array... "autosarDataIds": [124,182,240,47,105,163,221,28,86,144,202,9,67,125,183,241] found in Model 3 firmware
CAN_frame TESLA_229 = {.FD = false, .ext_ID = false, .DLC = 3, .ID = 0x229, .data = {0x46, 0x00, 0x00}};
//0x241 VCFRONT_coolant: "cycle_time" 100ms
CAN_frame TESLA_241 = {.FD = false,
.ext_ID = false,
.DLC = 7,
.ID = 0x241,
.data = {0x3C, 0x78, 0x2C, 0x0F, 0x1E, 0x5B, 0x00}};
//0x242 VCLEFT_LVPowerState 100ms
CAN_frame TESLA_242 = {.FD = false, .ext_ID = false, .DLC = 2, .ID = 0x242, .data = {0x10, 0x95}};
//0x243 VCRIGHT_hvacStatus 50ms
CAN_frame TESLA_243_1 = {.FD = false,
.data = {0x35, 0x34, 0x0C, 0x0F, 0x8F, 0x55, 0x00}};
//0x2D1 VCFRONT_okToUseHighPower: "cycle_time" 100ms
CAN_frame TESLA_2D1 = {.FD = false, .ext_ID = false, .DLC = 2, .ID = 0x2D1, .data = {0xFF, 0x01}};
//0x2E1, 6 muxes
//0x2E1 VCFRONT_status: "cycle_time" 10ms each mux/statusIndex
CAN_frame TESLA_2E1_VEHICLE_AND_RAILS = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x243,
.data = {0xC9, 0x00, 0xEB, 0xD4, 0x31, 0x32, 0x02, 0x00}};
CAN_frame TESLA_243_2 = {.FD = false,
.ID = 0x2E1,
.data = {0x29, 0x0A, 0x00, 0xFF, 0x0F, 0x00, 0x00, 0x00}};
//{0x29, 0x0A, 0x00, 0xFF, 0x0F, 0x00, 0x00, 0x00} INIT
//{0x29, 0x0A, 0x0D, 0xFF, 0x0F, 0x00, 0x00, 0x00} DRIVE
//{0x29, 0x0A, 0x09, 0xFF, 0x0F, 0x00, 0x00, 0x00} HV_UP_STANDBY
//{0x29, 0x0A, 0x0A, 0xFF, 0x0F, 0x00, 0x00, 0x00} ACCESSORY
//{0x29, 0x0A, 0x06, 0xFF, 0x0F, 0x00, 0x00, 0x00} SLEEP_STANDBY
//0x2E1 VCFRONT_status: "cycle_time" 10ms each mux/statusIndex
CAN_frame TESLA_2E1_HOMELINK = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x243,
.data = {0x08, 0x81, 0x42, 0x60, 0x92, 0x2C, 0x0E, 0x09}};
//0x129 SteeringAngle 10ms
CAN_frame TESLA_129 = {.FD = false,
.ID = 0x2E1,
.data = {0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00}};
//0x2E1 VCFRONT_status: "cycle_time" 10ms each mux/statusIndex
CAN_frame TESLA_2E1_REFRIGERANT_SYSTEM = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x129,
.data = {0x21, 0x24, 0x36, 0x5F, 0x00, 0x20, 0xFF, 0x3F}};
//0x612 UDS diagnostic requests - on demand
.ID = 0x2E1,
.data = {0x03, 0x6D, 0x99, 0x02, 0x1B, 0x57, 0x00, 0x00}};
//0x2E1 VCFRONT_status: "cycle_time" 10ms each mux/statusIndex
CAN_frame TESLA_2E1_LV_BATTERY_DEBUG = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x2E1,
.data = {0xFC, 0x1B, 0xD1, 0x99, 0x9A, 0xD8, 0x09, 0x00}};
//0x2E1 VCFRONT_status: "cycle_time" 10ms each mux/statusIndex
CAN_frame TESLA_2E1_MUX_5 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x2E1,
.data = {0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
//0x2E1 VCFRONT_status: "cycle_time" 10ms each mux/statusIndex
CAN_frame TESLA_2E1_BODY_CONTROLS = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x2E1,
.data = {0x08, 0x21, 0x04, 0x6E, 0xA0, 0x88, 0x06, 0x04}};
//0x2E8 EPBR_status: "cycle_time" 100ms
CAN_frame TESLA_2E8 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x2E8,
.data = {0x02, 0x00, 0x10, 0x00, 0x00, 0x80, 0x00, 0x6C}};
//0x284 UI_vehicleModes: "cycle_time" 500ms
CAN_frame TESLA_284 = {.FD = false, .ext_ID = false, .DLC = 5, .ID = 0x284, .data = {0x10, 0x00, 0x00, 0x00, 0x00}};
//0x293 UI_chassisControl: "cycle_time" 500ms, UI_chassisControlChecksum/UI_chassisControlCounter generated via generateFrameCounterChecksum
CAN_frame TESLA_293 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x293,
.data = {0x01, 0x0C, 0x55, 0x91, 0x55, 0x15, 0x01, 0xF3}};
//0x3A1 VCFRONT_vehicleStatus: "cycle_time" 50ms, VCFRONT_vehicleStatusChecksum/VCFRONT_vehicleStatusCounter eventually need to be generated via generateMuxFrameCounterChecksum
//Looks like 2 muxes, counter at bit 52 width 4 and checksum at bit 56 width 8? Need later software Model3_ETH.compact.json signal file or DBC.
//Migrated to an array until figured out
CAN_frame TESLA_3A1[16] = {
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0xC3, 0xFF, 0xFF, 0xFF, 0x3D, 0x00, 0xD0, 0x01}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0x08, 0x62, 0x0B, 0x18, 0x00, 0x28, 0xE2, 0xCB}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0xC3, 0xFF, 0xFF, 0xFF, 0x3D, 0x00, 0xF0, 0x21}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0x08, 0x62, 0x0B, 0x18, 0x00, 0x28, 0x02, 0xEB}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0xC3, 0xFF, 0xFF, 0xFF, 0x3D, 0x00, 0x10, 0x41}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0x08, 0x62, 0x0B, 0x18, 0x00, 0x28, 0x22, 0x0B}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0xC3, 0xFF, 0xFF, 0xFF, 0x3D, 0x00, 0x30, 0x61}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0x08, 0x62, 0x0B, 0x18, 0x00, 0x28, 0x42, 0x2B}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0xC3, 0xFF, 0xFF, 0xFF, 0x3D, 0x00, 0x50, 0x81}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0x08, 0x62, 0x0B, 0x18, 0x00, 0x28, 0x62, 0x4B}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0xC3, 0xFF, 0xFF, 0xFF, 0x3D, 0x00, 0x70, 0xA1}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0x08, 0x62, 0x0B, 0x18, 0x00, 0x28, 0x82, 0x6B}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0xC3, 0xFF, 0xFF, 0xFF, 0x3D, 0x00, 0x90, 0xC1}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0x08, 0x62, 0x0B, 0x18, 0x00, 0x28, 0xA2, 0x8B}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0xC3, 0xFF, 0xFF, 0xFF, 0x3D, 0x00, 0xB0, 0xE1}},
{.FD = false, .ext_ID = false, .DLC = 8, .ID = 0x3A1, .data = {0x08, 0x62, 0x0B, 0x18, 0x00, 0x28, 0xC2, 0xAB}}};
//0x313 UI_powertrainControl: "cycle_time" 500ms, UI_powertrainControlChecksum/UI_powertrainControlCounter generated via generateFrameCounterChecksum
CAN_frame TESLA_313 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x313,
.data = {0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x1B}};
//0x321 VCFRONT_sensors: "cycle_time" 1000ms
CAN_frame TESLA_321 = {
.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x321,
.data = {0xEC, 0x71, 0xA7, 0x6E, 0x02, 0x6C, 0x00, 0x04}}; // Last 2 bytes are counter and checksum
//0x333 UI_chargeRequest: "cycle_time" 500ms, UI_chargeTerminationPct value = 900 [bit 16, width 10, scale 0.1, min 25, max 100]
CAN_frame TESLA_333 = {.FD = false, .ext_ID = false, .DLC = 5, .ID = 0x333, .data = {0x84, 0x30, 0x84, 0x07, 0x02}};
//0x334 UI request: "cycle_time" 500ms, initial frame car sends
CAN_frame TESLA_334_INITIAL = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x334,
.data = {0x3F, 0x3F, 0xC8, 0x00, 0xE2, 0x3F, 0x80, 0x1E}};
//0x334 UI request: "cycle_time" 500ms, generated via generateFrameCounterChecksum
CAN_frame TESLA_334 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x334,
.data = {0x3F, 0x3F, 0x00, 0x0F, 0xE2, 0x3F, 0x90, 0x75}};
//0x3B3 UI_vehicleControl2: "cycle_time" 500ms
CAN_frame TESLA_3B3 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x3B3,
.data = {0x90, 0x80, 0x05, 0x08, 0x00, 0x00, 0x00, 0x01}};
//0x39D IBST_status: "cycle_time" 50ms, IBST_statusChecksum/IBST_statusCounter generated via generateFrameCounterChecksum
CAN_frame TESLA_39D = {.FD = false, .ext_ID = false, .DLC = 5, .ID = 0x39D, .data = {0xE1, 0x59, 0xC1, 0x27, 0x00}};
//0x3C2 VCLEFT_switchStatus (Mux0, initial frame car sends): "cycle_time" 50ms, sent once
CAN_frame TESLA_3C2_INITIAL = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x3C2,
.data = {0x00, 0x55, 0x55, 0x55, 0x00, 0x00, 0x5A, 0x05}};
//0x3C2 VCLEFT_switchStatus (Mux0): "cycle_time" 50ms each mux/SwitchStatusIndex
CAN_frame TESLA_3C2_Mux0 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x3C2,
.data = {0x00, 0x55, 0x55, 0x55, 0x00, 0x00, 0x5A, 0x45}};
//0x3C2 VCLEFT_switchStatus (Mux1): "cycle_time" 50ms each mux/SwitchStatusIndex
CAN_frame TESLA_3C2_Mux1 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x3C2,
.data = {0x29, 0x55, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
//0x504 Initially sent
CAN_frame TESLA_504_INITIAL = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x504,
.data = {0x00, 0x1B, 0x06, 0x03, 0x00, 0x01, 0x00, 0x01}};
//0x55A Unknown but always sent: "cycle_time" 500ms
CAN_frame TESLA_55A = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x55A,
.data = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
//0x7FF GTW_carConfig: "cycle_time" 100ms each mux/carConfigMultiplexer (UK/RHD)
CAN_frame TESLA_7FF_Mux1 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x7FF,
.data = {0x01, 0x49, 0x42, 0x47, 0x00, 0x03, 0x15, 0x01}};
//0x7FF GTW_carConfig: "cycle_time" 100ms each mux/carConfigMultiplexer
CAN_frame TESLA_7FF_Mux2 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x7FF,
.data = {0x02, 0x66, 0x32, 0x24, 0x04, 0x49, 0x95, 0x82}};
//0x7FF GTW_carConfig: "cycle_time" 100ms each mux/carConfigMultiplexer (EU/Long Range)
CAN_frame TESLA_7FF_Mux3 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x7FF,
.data = {0x03, 0x01, 0x08, 0x48, 0x01, 0x00, 0x00, 0x12}};
//0x7FF GTW_carConfig: "cycle_time" 100ms each mux/carConfigMultiplexer
CAN_frame TESLA_7FF_Mux4 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x7FF,
.data = {0x04, 0x73, 0x03, 0x67, 0x5C, 0x00, 0x00, 0x00}};
//0x7FF GTW_carConfig: "cycle_time" 100ms each mux/carConfigMultiplexer
CAN_frame TESLA_7FF_Mux5 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x7FF,
.data = {0x05, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00}};
//0x7FF GTW_carConfig: "cycle_time" 100ms each mux/carConfigMultiplexer - later firmware has muxes 6 & 7, needed?
CAN_frame TESLA_7FF_Mux6 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x7FF,
.data = {0x06, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0xD0}};
//0x7FF GTW_carConfig: "cycle_time" 100ms each mux/carConfigMultiplexer - later firmware has muxes 6 & 7, needed?
CAN_frame TESLA_7FF_Mux7 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x7FF,
.data = {0x07, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00}};
//0x722 BMS_bmbKeepAlive: "cycle_time" 100ms, should only be sent when testing packs or diagnosing problems
CAN_frame TESLA_722 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x722,
.data = {0x02, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}};
//0x25D CP_status: "cycle_time" 100ms, stops some cpMia errors, but not necessary for standalone pack operation so not used/necessary. Note CP_type for different regions, the below has "IEC_CCS"
CAN_frame TESLA_25D = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x25D,
.data = {0x37, 0x41, 0x01, 0x16, 0x08, 0x00, 0x00, 0x00}};
//0x602 BMS UDS diagnostic request: on demand
CAN_frame TESLA_602 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x602,
.data = {0x02, 0x27, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00}};
.data = {0x02, 0x27, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00}}; // Define initial UDS request
//0x610 BMS Query UDS request: on demand
CAN_frame TESLA_610 = {.FD = false,
.ext_ID = false,
.DLC = 8,
.ID = 0x610,
.data = {0x02, 0x10, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}}; // Define initial UDS request
uint8_t stateMachineClearIsolationFault = 0xFF;
uint8_t stateMachineBMSReset = 0xFF;
uint8_t stateMachineBMSQuery = 0xFF;
uint16_t sendContactorClosingMessagesStill = 300;
uint16_t battery_cell_max_v = 3300;
uint16_t battery_cell_min_v = 3300;
@ -217,7 +573,28 @@ class TeslaBattery : public CanBattery {
bool battery_fcCtrsResetRequestRequired = false; // Change to bool
bool battery_fcLinkAllowedToEnergize = false; // Change to bool
//0x72A: BMS_serialNumber
uint8_t BMS_SerialNumber[14] = {0}; // Stores raw HEX values for ASCII chars
uint8_t battery_serialNumber[14] = {0}; // Stores raw HEX values for ASCII chars
bool parsed_battery_serialNumber = false;
char* battery_manufactureDate; // YYYY-MM-DD\0
//Via UDS
uint8_t battery_partNumber[12] = {0}; //stores raw HEX values for ASCII chars
bool parsed_battery_partNumber = false;
//Via UDS
//static uint8_t BMS_partNumber[12] = {0}; //stores raw HEX values for ASCII chars
//static bool parsed_BMS_partNumber = false;
//0x300: BMS_info
uint16_t BMS_info_buildConfigId = 0;
uint16_t BMS_info_hardwareId = 0;
uint16_t BMS_info_componentId = 0;
uint8_t BMS_info_pcbaId = 0;
uint8_t BMS_info_assemblyId = 0;
uint16_t BMS_info_usageId = 0;
uint16_t BMS_info_subUsageId = 0;
uint8_t BMS_info_platformType = 0;
uint32_t BMS_info_appCrc = 0;
uint64_t BMS_info_bootGitHash = 0;
uint8_t BMS_info_bootUdsProtoVersion = 0;
uint32_t BMS_info_bootCrc = 0;
//0x212: 530 BMS_status
bool battery_BMS_hvacPowerRequest = false; //Change to bool
bool battery_BMS_notEnoughPowerForDrive = false; //Change to bool
@ -268,6 +645,22 @@ class TeslaBattery : public CanBattery {
uint16_t BMS_packTMax = 0;
bool BMS_pcsNoFlowRequest = false;
bool BMS_noFlowRequest = false;
//0x3C4: PCS_info
uint8_t PCS_partNumber[12] = {0}; //stores raw HEX values for ASCII chars
bool parsed_PCS_partNumber = false;
uint16_t PCS_info_buildConfigId = 0;
uint16_t PCS_info_hardwareId = 0;
uint16_t PCS_info_componentId = 0;
uint8_t PCS_info_pcbaId = 0;
uint8_t PCS_info_assemblyId = 0;
uint16_t PCS_info_usageId = 0;
uint16_t PCS_info_subUsageId = 0;
uint8_t PCS_info_platformType = 0;
uint32_t PCS_info_appCrc = 0;
uint32_t PCS_info_cpu2AppCrc = 0;
uint64_t PCS_info_bootGitHash = 0;
uint8_t PCS_info_bootUdsProtoVersion = 0;
uint32_t PCS_info_bootCrc = 0;
//0x2A4; 676 PCS_thermalStatus
int16_t PCS_chgPhATemp = 0;
int16_t PCS_chgPhBTemp = 0;
@ -330,6 +723,18 @@ class TeslaBattery : public CanBattery {
bool HVP_shuntRefVoltageMismatch = false; //Change to bool
bool HVP_shuntThermistorMia = false; //Change to bool
bool HVP_shuntHwMia = false; //Change to bool
uint16_t HVP_info_buildConfigId = 0;
uint16_t HVP_info_hardwareId = 0;
uint16_t HVP_info_componentId = 0;
uint8_t HVP_info_pcbaId = 0;
uint8_t HVP_info_assemblyId = 0;
uint16_t HVP_info_usageId = 0;
uint16_t HVP_info_subUsageId = 0;
uint8_t HVP_info_platformType = 0;
uint32_t HVP_info_appCrc = 0;
uint64_t HVP_info_bootGitHash = 0;
uint8_t HVP_info_bootUdsProtoVersion = 0;
uint32_t HVP_info_bootCrc = 0;
int16_t HVP_dcLinkVoltage = 0;
int16_t HVP_packVoltage = 0;
int16_t HVP_fcLinkVoltage = 0;

View file

@ -541,6 +541,27 @@ typedef struct {
uint8_t HVP_shuntAuxCurrentStatus = 0;
uint8_t HVP_shuntBarTempStatus = 0;
uint8_t HVP_shuntAsicTempStatus = 0;
uint16_t BMS_info_buildConfigId = 0;
uint16_t BMS_info_hardwareId = 0;
uint16_t BMS_info_componentId = 0;
uint8_t BMS_info_pcbaId = 0;
uint8_t BMS_info_assemblyId = 0;
uint16_t BMS_info_usageId = 0;
uint16_t BMS_info_subUsageId = 0;
uint8_t BMS_info_platformType = 0;
uint32_t BMS_info_appCrc = 0;
uint64_t BMS_info_bootGitHash = 0;
uint8_t BMS_info_bootUdsProtoVersion = 0;
uint32_t BMS_info_bootCrc = 0;
uint16_t HVP_info_buildConfigId = 0;
uint16_t HVP_info_hardwareId = 0;
uint16_t HVP_info_componentId = 0;
uint8_t battery_serialNumber[14] = {0}; // Stores raw HEX values for ASCII chars
uint8_t battery_partNumber[12] = {0};
uint8_t PCS_partNumber[12] = {0}; //stores raw HEX values for ASCII chars
uint16_t PCS_info_buildConfigId = 0;
uint16_t PCS_info_hardwareId = 0;
uint16_t PCS_info_componentId = 0;
} DATALAYER_INFO_TESLA;
typedef struct {