Merge pull request #135 from dalathegreat/feature/64kWh

Feature: New batteries 🔋 Kia 64kWh & Hyundai 64kWh
This commit is contained in:
Daniel Öster 2024-01-18 22:41:00 +02:00 committed by GitHub
commit e9af540807
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 442 additions and 80 deletions

View file

@ -3,41 +3,198 @@
#include "../lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h" #include "../lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"
/* Do not change code below unless you are sure what you are doing */ /* Do not change code below unless you are sure what you are doing */
static unsigned long previousMillis10 = 0; // will store last time a 10ms CAN Message was send
static unsigned long previousMillis100 = 0; // will store last time a 100ms CAN Message was send static unsigned long previousMillis100 = 0; // will store last time a 100ms CAN Message was send
static const int interval10 = 10; // interval (ms) at which send CAN Messages static unsigned long previousMillis10ms = 0; // will store last time a 10s CAN Message was send
static const int interval100 = 100; // interval (ms) at which send CAN Messages static const int interval100 = 100; // interval (ms) at which send CAN Messages
static const int interval10ms = 10; // interval (ms) at which send CAN Messages
static uint8_t CANstillAlive = 12; //counter for checking if CAN is still alive static uint8_t CANstillAlive = 12; //counter for checking if CAN is still alive
#define LB_MAX_SOC 1000 //BMS never goes over this value. We use this info to rescale SOC% sent to Inverter #define MAX_SOC 1000 //BMS never goes over this value. We use this info to rescale SOC% sent to Inverter
#define LB_MIN_SOC 0 //BMS never goes below this value. We use this info to rescale SOC% sent to Inverter #define MIN_SOC 0 //BMS never goes below this value. We use this info to rescale SOC% sent to Inverter
#define MAX_CELL_VOLTAGE 4250 //Battery is put into emergency stop if one cell goes over this value
#define MIN_CELL_VOLTAGE 2950 //Battery is put into emergency stop if one cell goes below this value
#define MAX_CELL_DEVIATION 150 //LED turns yellow on the board if mv delta exceeds this value
static int SOC_1 = 0; static uint16_t soc_calculated = 0;
static int SOC_2 = 0; static uint16_t SOC_BMS = 0;
static int SOC_3 = 0; static uint16_t SOC_Display = 0;
static uint16_t batterySOH = 1000;
static uint8_t waterleakageSensor = 164;
static int16_t leadAcidBatteryVoltage = 0;
static uint16_t CellVoltMax_mV = 3700;
static uint8_t CellVmaxNo = 0;
static uint16_t CellVoltMin_mV = 3700;
static uint8_t CellVminNo = 0;
static uint16_t cell_deviation_mV = 0;
static int16_t allowedDischargePower = 0;
static int16_t allowedChargePower = 0;
static uint16_t batteryVoltage = 0;
static int16_t batteryAmps = 0;
static int16_t powerWatt = 0;
static int16_t temperatureMax = 0;
static int16_t temperatureMin = 0;
static int8_t temperature_water_inlet = 0;
static uint8_t batteryManagementMode = 0;
static uint8_t BMS_ign = 0;
static int16_t poll_data_pid = 0;
static int8_t heatertemp = 0;
static uint8_t batteryRelay = 0;
static int8_t powerRelayTemperature = 0;
static uint16_t inverterVoltageFrameHigh = 0;
static uint16_t inverterVoltage = 0;
static uint8_t startedUp = false;
static uint8_t counter_200 = 0;
CAN_frame_t KIA_HYUNDAI_200 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x200,
//.data = {0x00, 0x00, 0x00, 0x04, 0x00, 0x50, 0xD0, 0x00}}; //Initial value
.data = {0x00, 0x80, 0xD8, 0x04, 0x00, 0x17, 0xD0, 0x00}}; //Mid log value
CAN_frame_t KIA_HYUNDAI_523 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x523,
//.data = {0x00, 0x38, 0x28, 0x28, 0x28, 0x28, 0x00, 0x01}}; //Initial value
.data = {0x08, 0x38, 0x36, 0x36, 0x33, 0x34, 0x00, 0x01}}; //Mid log value
CAN_frame_t KIA_HYUNDAI_524 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x524,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}; //Initial value
//553 Needed frame 200ms
CAN_frame_t KIA64_553 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x553,
.data = {0x04, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00}};
//57F Needed frame 100ms
CAN_frame_t KIA64_57F = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x57F,
.data = {0x80, 0x0A, 0x72, 0x00, 0x00, 0x00, 0x00, 0x72}};
//Needed frame 100ms
CAN_frame_t KIA64_2A1 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x2A1,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
CAN_frame_t KIA64_7E4_id1 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x7E4,
.data = {0x03, 0x22, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00}}; //Poll PID 03 22 01 01
CAN_frame_t KIA64_7E4_id2 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x7E4,
.data = {0x03, 0x22, 0x01, 0x02, 0x00, 0x00, 0x00, 0x00}}; //Poll PID 03 22 01 02
CAN_frame_t KIA64_7E4_id3 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x7E4,
.data = {0x03, 0x22, 0x01, 0x03, 0x00, 0x00, 0x00, 0x00}}; //Poll PID 03 22 01 03
CAN_frame_t KIA64_7E4_id4 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x7E4,
.data = {0x03, 0x22, 0x01, 0x04, 0x00, 0x00, 0x00, 0x00}}; //Poll PID 03 22 01 04
CAN_frame_t KIA64_7E4_id5 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x7E4,
.data = {0x03, 0x22, 0x01, 0x05, 0x00, 0x00, 0x00, 0x00}}; //Poll PID 03 22 01 05
CAN_frame_t KIA64_7E4_id6 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x7E4,
.data = {0x03, 0x22, 0x01, 0x06, 0x00, 0x00, 0x00, 0x00}}; //Poll PID 03 22 01 06
CAN_frame_t KIA64_7E4_ack = {
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x7E4,
.data = {0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}; //Ack frame, correct PID is returned
void update_values_kiaHyundai_64_battery() { //This function maps all the values fetched via CAN to the correct parameters used for modbus void update_values_kiaHyundai_64_battery() { //This function maps all the values fetched via CAN to the correct parameters used for modbus
bms_status = ACTIVE; //Startout in active mode
SOC; //Calculate the SOC% value to send to inverter
soc_calculated = SOC_Display;
soc_calculated = MIN_SOC + (MAX_SOC - MIN_SOC) * (soc_calculated - MINPERCENTAGE) / (MAXPERCENTAGE - MINPERCENTAGE);
if (soc_calculated < 0) { //We are in the real SOC% range of 0-20%, always set SOC sent to Inverter as 0%
soc_calculated = 0;
}
if (soc_calculated > 1000) { //We are in the real SOC% range of 80-100%, always set SOC sent to Inverter as 100%
soc_calculated = 1000;
}
SOC = (soc_calculated * 10); //increase SOC range from 0-100.0 -> 100.00
battery_voltage; StateOfHealth = (batterySOH * 10); //Increase decimals from 100.0% -> 100.00%
battery_current; battery_voltage = batteryVoltage; //value is *10 (3700 = 370.0)
battery_current = convertToUnsignedInt16(batteryAmps); //value is *10 (150 = 15.0)
capacity_Wh = BATTERY_WH_MAX; capacity_Wh = BATTERY_WH_MAX;
remaining_capacity_Wh; remaining_capacity_Wh = static_cast<int>((static_cast<double>(SOC) / 10000) * BATTERY_WH_MAX);
max_target_discharge_power; //max_target_charge_power = (uint16_t)allowedChargePower * 10; //From kW*100 to Watts
//The allowed charge power is not available. We estimate this value
if (SOC == 10000) { // When scaled SOC is 100%, set allowed charge power to 0
max_target_charge_power = 0;
} else { // No limits, max charging power allowed
max_target_charge_power = MAXCHARGEPOWERALLOWED;
}
//max_target_discharge_power = (uint16_t)allowedDischargePower * 10; //From kW*100 to Watts
if (SOC < 100) { // When scaled SOC is <1%, set allowed charge power to 0
max_target_discharge_power = 0;
} else { // No limits, max charging power allowed
max_target_discharge_power = MAXDISCHARGEPOWERALLOWED;
}
max_target_charge_power; powerWatt = ((batteryVoltage * batteryAmps) / 100);
stat_batt_power; stat_batt_power = convertToUnsignedInt16(powerWatt); //Power in watts, Negative = charging batt
temperature_min; temperature_min = convertToUnsignedInt16(temperatureMin * 10); //Increase decimals, 17C -> 17.0C
temperature_max; temperature_max = convertToUnsignedInt16(temperatureMax * 10); //Increase decimals, 18C -> 18.0C
cell_max_voltage = CellVoltMax_mV;
cell_min_voltage = CellVoltMin_mV;
bms_status = ACTIVE; //Startout in active mode. Then check safeties
/* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/ /* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/
if (!CANstillAlive) { if (!CANstillAlive) {
@ -47,65 +204,203 @@ void update_values_kiaHyundai_64_battery() { //This function maps all the value
CANstillAlive--; CANstillAlive--;
} }
#ifdef DEBUG_VIA_USB if (waterleakageSensor == 0) {
Serial.print("SOC% candidate 1: "); Serial.println("Water leakage inside battery detected. Operation halted. Inspect battery!");
Serial.println(SOC_1); bms_status = FAULT;
Serial.print("SOC% candidate 2: ");
Serial.println(SOC_2);
Serial.print("SOC% candidate 3: ");
Serial.println(SOC_3);
#endif
} }
if (leadAcidBatteryVoltage < 110) {
Serial.println("12V battery source below required voltage to safely close contactors. Inspect the supply/battery!");
LEDcolor = YELLOW;
}
// Check if cell voltages are within allowed range
cell_deviation_mV = (cell_max_voltage - cell_min_voltage);
if (cell_max_voltage >= MAX_CELL_VOLTAGE) {
bms_status = FAULT;
Serial.println("ERROR: CELL OVERVOLTAGE!!! Stopping battery charging and discharging. Inspect battery!");
}
if (cell_min_voltage <= MIN_CELL_VOLTAGE) {
bms_status = FAULT;
Serial.println("ERROR: CELL UNDERVOLTAGE!!! Stopping battery charging and discharging. Inspect battery!");
}
if (cell_deviation_mV > MAX_CELL_DEVIATION) {
LEDcolor = YELLOW;
Serial.println("ERROR: HIGH CELL DEVIATION!!! Inspect battery!");
}
if (bms_status == FAULT) { //Incase we enter a critical fault state, zero out the allowed limits
max_target_charge_power = 0;
max_target_discharge_power = 0;
}
/* Safeties verified. Perform USB serial printout if configured to do so */
#ifdef DEBUG_VIA_USB
Serial.println(); //sepatator
Serial.println("Values from battery: ");
Serial.print("SOC BMS: ");
Serial.print((uint16_t)SOC_BMS / 10.0, 1);
Serial.print("% | SOC Display: ");
Serial.print((uint16_t)SOC_Display / 10.0, 1);
Serial.print("% | SOH ");
Serial.print((uint16_t)batterySOH / 10.0, 1);
Serial.println("%");
Serial.print((int16_t)batteryAmps / 10.0, 1);
Serial.print(" Amps | ");
Serial.print((uint16_t)batteryVoltage / 10.0, 1);
Serial.print(" Volts | ");
Serial.print((int16_t)stat_batt_power);
Serial.println(" Watts");
Serial.print("Allowed Charge ");
Serial.print((uint16_t)allowedChargePower * 10);
Serial.print(" W | Allowed Discharge ");
Serial.print((uint16_t)allowedDischargePower * 10);
Serial.println(" W");
Serial.print("MaxCellVolt ");
Serial.print(CellVoltMax_mV);
Serial.print(" mV No ");
Serial.print(CellVmaxNo);
Serial.print(" | MinCellVolt ");
Serial.print(CellVoltMin_mV);
Serial.print(" mV No ");
Serial.println(CellVminNo);
Serial.print("TempHi ");
Serial.print((int16_t)temperatureMax);
Serial.print("°C TempLo ");
Serial.print((int16_t)temperatureMin);
Serial.print("°C WaterInlet ");
Serial.print((int8_t)temperature_water_inlet);
Serial.print("°C PowerRelay ");
Serial.print((int8_t)powerRelayTemperature * 2);
Serial.println("°C");
Serial.print("Aux12volt: ");
Serial.print((int16_t)leadAcidBatteryVoltage / 10.0, 1);
Serial.println("V | ");
Serial.print("BmsManagementMode ");
Serial.print((uint8_t)batteryManagementMode, BIN);
if (bitRead((uint8_t)BMS_ign, 2) == 1) {
Serial.print(" | BmsIgnition ON");
} else {
Serial.print(" | BmsIgnition OFF");
}
if (bitRead((uint8_t)batteryRelay, 0) == 1) {
Serial.print(" | PowerRelay ON");
} else {
Serial.print(" | PowerRelay OFF");
}
Serial.print(" | Inverter ");
Serial.print(inverterVoltage);
Serial.println(" Volts");
}
#endif
void receive_can_kiaHyundai_64_battery(CAN_frame_t rx_frame) { void receive_can_kiaHyundai_64_battery(CAN_frame_t rx_frame) {
CANstillAlive = 12;
switch (rx_frame.MsgID) { switch (rx_frame.MsgID) {
case 0x3F6:
break;
case 0x491:
break;
case 0x493:
break;
case 0x497:
break;
case 0x498:
break;
case 0x4DD:
break;
case 0x4DE: case 0x4DE:
break; break;
case 0x4E2: case 0x542: //BMS SOC
break; CANstillAlive = 12; //We use this message to verify that BMS is still alive
case 0x542: SOC_Display = rx_frame.data.u8[0] * 5; //100% = 200 ( 200 * 5 = 1000 )
SOC_1 = rx_frame.data.u8[0];
break; break;
case 0x594: case 0x594:
SOC_2 = rx_frame.data.u8[5]; SOC_BMS = rx_frame.data.u8[5] * 5; //100% = 200 ( 200 * 5 = 1000 )
break; break;
case 0x595: case 0x595:
batteryVoltage = (rx_frame.data.u8[7] << 8) + rx_frame.data.u8[6];
batteryAmps = (rx_frame.data.u8[5] << 8) + rx_frame.data.u8[4];
if (counter_200 > 3) {
KIA_HYUNDAI_524.data.u8[0] = (uint8_t)(batteryVoltage / 10);
KIA_HYUNDAI_524.data.u8[1] = (uint8_t)((batteryVoltage / 10) >> 8);
} //VCU measured voltage sent back to bms
break; break;
case 0x596: case 0x596:
break; leadAcidBatteryVoltage = rx_frame.data.u8[1]; //12v Battery Volts
case 0x597: temperatureMin = rx_frame.data.u8[6]; //Lowest temp in battery
temperatureMax = rx_frame.data.u8[7]; //Highest temp in battery
break; break;
case 0x598: case 0x598:
SOC_3 = (rx_frame.data.u8[4] * 256.0 + rx_frame.data.u8[5]);
break;
case 0x599:
break;
case 0x59C:
break;
case 0x59E:
break;
case 0x5A3:
break; break;
case 0x5D5: case 0x5D5:
break; waterleakageSensor = rx_frame.data.u8[3]; //Water sensor inside pack, value 164 is no water --> 0 is short
case 0x5D6: powerRelayTemperature = rx_frame.data.u8[7];
break;
case 0x5D7:
break; break;
case 0x5D8: case 0x5D8:
startedUp = 1;
//PID data is polled after last message sent from battery:
if (poll_data_pid >= 10) { //polling one of ten PIDs at 100ms, resolution = 1s
poll_data_pid = 0;
}
poll_data_pid++;
if (poll_data_pid == 1) {
ESP32Can.CANWriteFrame(&KIA64_7E4_id1);
} else if (poll_data_pid == 2) {
ESP32Can.CANWriteFrame(&KIA64_7E4_id2);
} else if (poll_data_pid == 5) {
ESP32Can.CANWriteFrame(&KIA64_7E4_id5);
} else if (poll_data_pid == 6) {
ESP32Can.CANWriteFrame(&KIA64_7E4_id6);
} else if (poll_data_pid == 8) {
} else if (poll_data_pid == 9) {
} else if (poll_data_pid == 10) {
}
break;
case 0x7EC: //Data From polled PID group, BigEndian
switch (rx_frame.data.u8[0]) {
case 0x10: //"PID Header"
if (rx_frame.data.u8[4] == poll_data_pid) {
ESP32Can.CANWriteFrame(&KIA64_7E4_ack); //Send ack to BMS if the same frame is sent as polled
}
break;
case 0x21: //First frame in PID group
if (poll_data_pid == 1) {
allowedChargePower = ((rx_frame.data.u8[3] << 8) + rx_frame.data.u8[4]);
allowedDischargePower = ((rx_frame.data.u8[5] << 8) + rx_frame.data.u8[6]);
batteryRelay = rx_frame.data.u8[7];
}
break;
case 0x22: //Second datarow in PID group
if (poll_data_pid == 6) {
batteryManagementMode = rx_frame.data.u8[5];
}
break;
case 0x23: //Third datarow in PID group
if (poll_data_pid == 1) {
temperature_water_inlet = rx_frame.data.u8[6];
CellVoltMax_mV = (rx_frame.data.u8[7] * 20); //(volts *50) *20 =mV
}
if (poll_data_pid == 5) {
heatertemp = rx_frame.data.u8[7];
}
break;
case 0x24: //Fourth datarow in PID group
if (poll_data_pid == 1) {
CellVmaxNo = rx_frame.data.u8[1];
CellVminNo = rx_frame.data.u8[3];
CellVoltMin_mV = (rx_frame.data.u8[2] * 20); //(volts *50) *20 =mV
} else if (poll_data_pid == 5) {
batterySOH = ((rx_frame.data.u8[2] << 8) + rx_frame.data.u8[3]);
}
break;
case 0x25: //Fifth datarow in PID group
break;
case 0x26: //Sixth datarow in PID group
break;
case 0x27: //Seventh datarow in PID group
if (poll_data_pid == 1) {
BMS_ign = rx_frame.data.u8[6];
inverterVoltageFrameHigh = rx_frame.data.u8[7];
}
break;
case 0x28: //Eighth datarow in PID group
if (poll_data_pid == 1) {
inverterVoltage = (inverterVoltageFrameHigh << 8) + rx_frame.data.u8[1];
}
break;
}
break; break;
default: default:
break; break;
@ -113,12 +408,74 @@ void receive_can_kiaHyundai_64_battery(CAN_frame_t rx_frame) {
} }
void send_can_kiaHyundai_64_battery() { void send_can_kiaHyundai_64_battery() {
unsigned long currentMillis = millis(); unsigned long currentMillis = millis();
// Send 100ms CAN Message //Send 100ms message
if (currentMillis - previousMillis100 >= interval100) { if (currentMillis - previousMillis100 >= interval100) {
previousMillis100 = currentMillis; previousMillis100 = currentMillis;
ESP32Can.CANWriteFrame(&KIA64_553);
ESP32Can.CANWriteFrame(&KIA64_57F);
ESP32Can.CANWriteFrame(&KIA64_2A1);
} }
//Send 10ms message // Send 10ms CAN Message
if (currentMillis - previousMillis10 >= interval10) { if (currentMillis - previousMillis10ms >= interval10ms) {
previousMillis10 = currentMillis; previousMillis10ms = currentMillis;
switch (counter_200) {
case 0:
KIA_HYUNDAI_200.data.u8[5] = 0x17;
++counter_200;
break;
case 1:
KIA_HYUNDAI_200.data.u8[5] = 0x57;
++counter_200;
break;
case 2:
KIA_HYUNDAI_200.data.u8[5] = 0x97;
++counter_200;
break;
case 3:
KIA_HYUNDAI_200.data.u8[5] = 0xD7;
if (startedUp) {
++counter_200;
} else {
counter_200 = 0;
}
break;
case 4:
KIA_HYUNDAI_200.data.u8[3] = 0x10;
KIA_HYUNDAI_200.data.u8[5] = 0xFF;
++counter_200;
break;
case 5:
KIA_HYUNDAI_200.data.u8[5] = 0x3B;
++counter_200;
break;
case 6:
KIA_HYUNDAI_200.data.u8[5] = 0x7B;
++counter_200;
break;
case 7:
KIA_HYUNDAI_200.data.u8[5] = 0xBB;
++counter_200;
break;
case 8:
KIA_HYUNDAI_200.data.u8[5] = 0xFB;
counter_200 = 5;
break;
}
ESP32Can.CANWriteFrame(&KIA_HYUNDAI_200);
ESP32Can.CANWriteFrame(&KIA_HYUNDAI_523);
ESP32Can.CANWriteFrame(&KIA_HYUNDAI_524);
}
}
uint16_t convertToUnsignedInt16(int16_t signed_value) {
if (signed_value < 0) {
return (65535 + signed_value);
} else {
return (uint16_t)signed_value;
} }
} }

View file

@ -8,27 +8,32 @@
#define ABSOLUTE_MAX_VOLTAGE \ #define ABSOLUTE_MAX_VOLTAGE \
4040 // 404.4V,if battery voltage goes over this, charging is not possible (goes into forced discharge) 4040 // 404.4V,if battery voltage goes over this, charging is not possible (goes into forced discharge)
#define ABSOLUTE_MIN_VOLTAGE 3100 // 310.0V if battery voltage goes under this, discharging further is disabled #define ABSOLUTE_MIN_VOLTAGE 3100 // 310.0V if battery voltage goes under this, discharging further is disabled
#define MAXCHARGEPOWERALLOWED 10000
#define MAXDISCHARGEPOWERALLOWED 10000
// These parameters need to be mapped for the Gen24 // These parameters need to be mapped for the Gen24
extern uint16_t SOC; extern uint16_t SOC; //SOC%, 0-100.00 (0-10000)
extern uint16_t StateOfHealth; extern uint16_t StateOfHealth; //SOH%, 0-100.00 (0-10000)
extern uint16_t battery_voltage; extern uint16_t battery_voltage; //V+1, 0-500.0 (0-5000)
extern uint16_t battery_current; extern uint16_t battery_current; //A+1, Goes thru convert2unsignedint16 function (5.0A = 50, -5.0A = 65485)
extern uint16_t capacity_Wh; extern uint16_t capacity_Wh; //Wh, 0-60000
extern uint16_t remaining_capacity_Wh; extern uint16_t remaining_capacity_Wh; //Wh, 0-60000
extern uint16_t max_target_discharge_power; extern uint16_t max_target_discharge_power; //W, 0-60000
extern uint16_t max_target_charge_power; extern uint16_t max_target_charge_power; //W, 0-60000
extern uint8_t bms_status; extern uint8_t bms_status; //Enum, 0-5
extern uint8_t bms_char_dis_status; extern uint8_t bms_char_dis_status; //Enum, 0-2
extern uint16_t stat_batt_power; extern uint16_t stat_batt_power; //W, Goes thru convert2unsignedint16 function (5W = 5, -5W = 65530)
extern uint16_t temperature_min; extern uint16_t temperature_min; //C+1, Goes thru convert2unsignedint16 function (15.0C = 150, -15.0C = 65385)
extern uint16_t temperature_max; extern uint16_t temperature_max; //C+1, Goes thru convert2unsignedint16 function (15.0C = 150, -15.0C = 65385)
extern uint16_t CANerror; extern uint16_t cell_max_voltage; //mV, 0-4350
extern uint16_t cell_min_voltage; //mV, 0-4350
extern uint8_t LEDcolor; //Enum, 0-10
extern bool batteryAllowsContactorClosing; //Bool, 1=true, 0=false extern bool batteryAllowsContactorClosing; //Bool, 1=true, 0=false
extern bool inverterAllowsContactorClosing; //Bool, 1=true, 0=false extern bool inverterAllowsContactorClosing; //Bool, 1=true, 0=false
void update_values_kiaHyundai_64_battery(); void update_values_kiaHyundai_64_battery();
void receive_can_kiaHyundai_64_battery(CAN_frame_t rx_frame); void receive_can_kiaHyundai_64_battery(CAN_frame_t rx_frame);
void send_can_kiaHyundai_64_battery(); void send_can_kiaHyundai_64_battery();
uint16_t convertToUnsignedInt16(int16_t signed_value);
#endif #endif

View file

@ -264,12 +264,12 @@ String processor(const String& var) {
float tempMaxFloat = 0; float tempMaxFloat = 0;
float tempMinFloat = 0; float tempMinFloat = 0;
if (temperature_max > 32767) { //Handle negative values on this unsigned value if (temperature_max > 32767) { //Handle negative values on this unsigned value
tempMaxFloat = static_cast<float>(-(65535 - temperature_max)) / 10.0; // Convert to float and divide by 10 tempMaxFloat = static_cast<float>(-(65536 - temperature_max)) / 10.0; // Convert to float and divide by 10
} else { } else {
tempMaxFloat = static_cast<float>(temperature_max) / 10.0; // Convert to float and divide by 10 tempMaxFloat = static_cast<float>(temperature_max) / 10.0; // Convert to float and divide by 10
} }
if (temperature_min > 32767) { //Handle negative values on this unsigned value if (temperature_min > 32767) { //Handle negative values on this unsigned value
tempMinFloat = static_cast<float>(-(65535 - temperature_min)) / 10.0; // Convert to float and divide by 10 tempMinFloat = static_cast<float>(-(65536 - temperature_min)) / 10.0; // Convert to float and divide by 10
} else { } else {
tempMinFloat = static_cast<float>(temperature_min) / 10.0; // Convert to float and divide by 10 tempMinFloat = static_cast<float>(temperature_min) / 10.0; // Convert to float and divide by 10
} }