Add initial files for Volvo SPA batteries

This commit is contained in:
Daniel 2024-02-29 13:28:13 +02:00
parent 738a3997ca
commit f4f32e0238
6 changed files with 415 additions and 0 deletions

View file

@ -41,6 +41,7 @@ jobs:
- RENAULT_KANGOO_BATTERY - RENAULT_KANGOO_BATTERY
- RENAULT_ZOE_BATTERY - RENAULT_ZOE_BATTERY
- TESLA_MODEL_3_BATTERY - TESLA_MODEL_3_BATTERY
- VOLVO_SPA_BATTERY
- TEST_FAKE_BATTERY - TEST_FAKE_BATTERY
# These are the emulated inverter communication protocols for which the code will be compiled. # These are the emulated inverter communication protocols for which the code will be compiled.
inverter: inverter:

View file

@ -44,6 +44,7 @@ jobs:
- RENAULT_KANGOO_BATTERY - RENAULT_KANGOO_BATTERY
- RENAULT_ZOE_BATTERY - RENAULT_ZOE_BATTERY
- TESLA_MODEL_3_BATTERY - TESLA_MODEL_3_BATTERY
- VOLVO_SPA_BATTERY
- TEST_FAKE_BATTERY - TEST_FAKE_BATTERY
# These are the emulated inverter communication protocols for which the code will be compiled. # These are the emulated inverter communication protocols for which the code will be compiled.
inverter: inverter:

View file

@ -17,6 +17,7 @@
//#define RENAULT_ZOE_BATTERY //#define RENAULT_ZOE_BATTERY
//#define SANTA_FE_PHEV_BATTERY //#define SANTA_FE_PHEV_BATTERY
//#define TESLA_MODEL_3_BATTERY //#define TESLA_MODEL_3_BATTERY
#define VOLVO_SPA_BATTERY
//#define TEST_FAKE_BATTERY //#define TEST_FAKE_BATTERY
/* Select inverter communication protocol. See Wiki for which to use with your inverter: https://github.com/dalathegreat/BYD-Battery-Emulator-For-Gen24/wiki */ /* Select inverter communication protocol. See Wiki for which to use with your inverter: https://github.com/dalathegreat/BYD-Battery-Emulator-For-Gen24/wiki */

View file

@ -43,6 +43,10 @@
#include "TEST-FAKE-BATTERY.h" //See this file for more Fake battery settings #include "TEST-FAKE-BATTERY.h" //See this file for more Fake battery settings
#endif #endif
#ifdef VOLVO_SPA_BATTERY
#include "VOLVO-SPA-BATTERY.h" //See this file for more XC40 Recharge/Polestar2 settings
#endif
#ifdef SERIAL_LINK_RECEIVER #ifdef SERIAL_LINK_RECEIVER
#include "SERIAL-LINK-RECEIVER-FROM-BATTERY.h" //See this file for more Serial-battery settings #include "SERIAL-LINK-RECEIVER-FROM-BATTERY.h" //See this file for more Serial-battery settings
#endif #endif

View file

@ -0,0 +1,374 @@
#include "VOLVO-SPA-BATTERY.h"
#include "../devboard/utils/events.h"
#include "../lib/miwagner-ESP32-Arduino-CAN/CAN_config.h"
#include "../lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"
/* Do not change code below unless you are sure what you are doing */
static unsigned long previousMillis100 = 0; // will store last time a 100ms CAN Message was send
static unsigned long previousMillis60s = 0; // will store last time a 60s CAN Message was send
static const int interval100 = 100; // interval (ms) at which send CAN Messages
static const int interval60s = 60000; // interval (ms) at which send CAN Messages
static uint8_t CANstillAlive = 12; //counter for checking if CAN is still alive
#define MAX_CELL_VOLTAGE 4210 //Battery is put into emergency stop if one cell goes over this value
#define MIN_CELL_VOLTAGE 2700 //Battery is put into emergency stop if one cell goes below this value
#define MAX_CELL_DEVIATION 500 //LED turns yellow on the board if mv delta exceeds this value
static float BATT_U = 0; //0x3A
static float MAX_U = 0; //0x3A
static float MIN_U = 0; //0x3A
static float BATT_I = 0; //0x3A
static int32_t CHARGE_ENERGY = 0; //0x1A1
static uint8_t BATT_ERR_INDICATION = 0; //0x413
static float BATT_T_MAX = 0; //0x413
static float BATT_T_MIN = 0; //0x413
static float BATT_T_AVG = 0; //0x413
static uint16_t SOC_BMS = 0; //0X37D
static uint16_t SOC_CALC = 0;
static uint16_t CELL_U_MAX = 0; //0x37D
static uint16_t CELL_U_MIN = 0; //0x37D
static uint8_t CELL_ID_U_MAX = 0; //0x37D
static uint16_t HvBattPwrLimDchaSoft = 0; //0x369
static uint8_t BatteryPackNumber = 0x10; // First battery module
static uint8_t battery_request_idx = 0;
static uint8_t rxConsecutiveFrames = 0;
static uint16_t min_max_voltage[2]; //contains cell min[0] and max[1] values in mV
static uint16_t cell_deviation_mV = 0; //contains the deviation between highest and lowest cell in mV
static uint8_t cellcounter = 0;
static uint32_t remaining_capacity = 0;
static uint16_t cell_voltages[108]; //array with all the cellvoltages
static bool waitingFirstBMSframe = true;
CAN_frame_t VOLVO_536 = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x536,
.data = {0x00, 0x40, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00}}; //Network manage frame
CAN_frame_t VOLVO_372 = {
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x372,
.data = {0x00, 0xA6, 0x07, 0x14, 0x04, 0x00, 0x80, 0x00}}; //Ambient Temp -->>VERIFY this data content!!!<<--
CAN_frame_t VOLVO_CELL_U_Req = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x735,
.data = {0x03, 0x22, 0x4B, 0x00, 0x00, 0x00, 0x00, 0x00}}; //Cell voltage request frame
CAN_frame_t VOLVO_FlowControl = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x735,
.data = {0x30, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00}}; //Flowcontrol
CAN_frame_t VOLVO_SOH_Req = {.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x735,
.data = {0x03, 0x22, 0x49, 0x6D, 0x00, 0x00, 0x00, 0x00}}; //Battery SOH request frame
void update_values_battery() { //This function maps all the values fetched via CAN to the correct parameters used for the inverter
uint8_t cnt = 0;
remaining_capacity = (78200 - CHARGE_ENERGY);
//system_real_SOC_pptt = SOC_BMS; // Use BMS reported SOC, havent figured out how to get the BMS to calibrate empty/full yet
SOC_CALC = remaining_capacity / 78; // Use calculated SOC based on remaining_capacity
system_real_SOC_pptt = SOC_CALC * 10;
if (BATT_U > MAX_U) // Protect if overcharged
{
system_real_SOC_pptt = 10000;
} else if (BATT_U < MIN_U) //Protect if undercharged
{
system_real_SOC_pptt = 0;
}
system_battery_voltage_dV = BATT_U * 10;
system_battery_current_dA = BATT_I * 10;
system_capacity_Wh = BATTERY_WH_MAX;
system_remaining_capacity_Wh = remaining_capacity; // Will wrap! Known limitation due to uint16_t size.
//system_max_discharge_power_W = HvBattPwrLimDchaSoft * 1000; // Use power limit reported from BMS, not trusted ATM
system_max_discharge_power_W = 30000;
system_max_charge_power_W = 30000;
system_active_power_W = (BATT_U)*BATT_I;
system_temperature_min_dC = BATT_T_MIN;
system_temperature_max_dC = BATT_T_MAX;
system_cell_max_voltage_mV = CELL_U_MAX * 10; // Use min/max reported from BMS
system_cell_min_voltage_mV = CELL_U_MIN * 10;
//Map all cell voltages to the global array
for (int i = 0; i < 108; ++i) {
system_cellvoltages_mV[i] = cell_voltages[i];
}
/* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/
if (!CANstillAlive) {
system_bms_status = FAULT;
Serial.println("No CAN communication detected for 60s. Shutting down battery control.");
} else {
CANstillAlive--;
}
#ifdef DEBUG_VIA_USB
Serial.print("BMS reported SOC%: ");
Serial.println(SOC_BMS);
Serial.print("Calculated SOC%: ");
Serial.println(SOC_CALC);
Serial.print("Rescaled SOC%: ");
Serial.println(system_scaled_SOC_pptt / 10);
Serial.print("Battery current: ");
Serial.println(BATT_I);
Serial.print("Battery voltage: ");
Serial.println(BATT_U);
Serial.print("Battery maximum voltage limit: ");
Serial.println(MAX_U);
Serial.print("Battery minimum voltage limit: ");
Serial.println(MIN_U);
Serial.print("Remaining Energy: ");
Serial.println(remaining_capacity);
Serial.print("Discharge limit: ");
Serial.println(HvBattPwrLimDchaSoft);
Serial.print("Battery Error Indication: ");
Serial.println(BATT_ERR_INDICATION);
Serial.print("Maximum battery temperature: ");
Serial.println(BATT_T_MAX / 10);
Serial.print("Minimum battery temperature: ");
Serial.println(BATT_T_MIN / 10);
Serial.print("Average battery temperature: ");
Serial.println(BATT_T_AVG / 10);
Serial.print("BMS Highest cell voltage: ");
Serial.println(CELL_U_MAX * 10);
Serial.print("BMS Lowest cell voltage: ");
Serial.println(CELL_U_MIN * 10);
Serial.print("BMS Highest cell nr: ");
Serial.println(CELL_ID_U_MAX);
Serial.print("Highest cell voltage: ");
Serial.println(min_max_voltage[1]);
Serial.print("Lowest cell voltage: ");
Serial.println(min_max_voltage[0]);
Serial.print("Cell deviation voltage: ");
Serial.println(cell_deviation_mV);
Serial.print("Cell voltage,");
while (cnt < 108) {
Serial.print(cell_voltages[cnt++]);
Serial.print(",");
}
Serial.println(";");
#endif
}
void receive_can_battery(CAN_frame_t rx_frame) {
CANstillAlive = 12;
switch (rx_frame.MsgID) {
case 0x3A:
if (waitingFirstBMSframe == true) {
system_bms_status = ACTIVE; //Startout in active mode if we have CAN data
waitingFirstBMSframe = false;
}
if ((rx_frame.data.u8[6] & 0x80) == 0x80)
BATT_I = (0 - ((((rx_frame.data.u8[6] & 0x7F) * 256.0 + rx_frame.data.u8[7]) * 0.1) - 1638));
else {
BATT_I = 0;
Serial.println("BATT_I not valid");
}
if ((rx_frame.data.u8[2] & 0x08) == 0x08)
MAX_U = (((rx_frame.data.u8[2] & 0x07) * 256.0 + rx_frame.data.u8[3]) * 0.25);
else {
//MAX_U = 0;
//Serial.println("MAX_U not valid"); // Value toggles between true/false from BMS
}
if ((rx_frame.data.u8[4] & 0x08) == 0x08)
MIN_U = (((rx_frame.data.u8[4] & 0x07) * 256.0 + rx_frame.data.u8[5]) * 0.25);
else {
//MIN_U = 0;
//Serial.println("MIN_U not valid"); // Value toggles between true/false from BMS
}
if ((rx_frame.data.u8[0] & 0x08) == 0x08)
BATT_U = (((rx_frame.data.u8[0] & 0x07) * 256.0 + rx_frame.data.u8[1]) * 0.25);
else {
BATT_U = 0;
Serial.println("BATT_U not valid");
}
break;
case 0x1A1:
if ((rx_frame.data.u8[4] & 0x10) == 0x10)
CHARGE_ENERGY = ((((rx_frame.data.u8[4] & 0x0F) * 256.0 + rx_frame.data.u8[5]) * 50) - 500);
else {
CHARGE_ENERGY = 0;
Serial.println("CHARGE_ENERGY not valid");
}
break;
case 0x413:
if ((rx_frame.data.u8[0] & 0x80) == 0x80)
BATT_ERR_INDICATION = ((rx_frame.data.u8[0] & 0x40) >> 6);
else {
BATT_ERR_INDICATION = 0;
Serial.println("BATT_ERR_INDICATION not valid");
}
if ((rx_frame.data.u8[0] & 0x20) == 0x20) {
BATT_T_MAX = ((rx_frame.data.u8[2] & 0x1F) * 256.0 + rx_frame.data.u8[3]);
BATT_T_MIN = ((rx_frame.data.u8[4] & 0x1F) * 256.0 + rx_frame.data.u8[5]);
BATT_T_AVG = ((rx_frame.data.u8[0] & 0x1F) * 256.0 + rx_frame.data.u8[1]);
} else {
BATT_T_MAX = 0;
BATT_T_MIN = 0;
BATT_T_AVG = 0;
Serial.println("BATT_T not valid");
}
break;
case 0x369:
if ((rx_frame.data.u8[0] & 0x80) == 0x80) {
HvBattPwrLimDchaSoft = (((rx_frame.data.u8[6] & 0x03) * 256 + rx_frame.data.u8[6]) >> 2);
} else {
HvBattPwrLimDchaSoft = 0;
Serial.println("HvBattPwrLimDchaSoft not valid");
}
break;
case 0x37D:
if ((rx_frame.data.u8[0] & 0x40) == 0x40) {
SOC_BMS = ((rx_frame.data.u8[6] & 0x03) * 256 + rx_frame.data.u8[7]);
} else {
SOC_BMS = 0;
Serial.println("SOC_BMS not valid");
}
if ((rx_frame.data.u8[0] & 0x04) == 0x04)
CELL_U_MAX = ((rx_frame.data.u8[2] & 0x01) * 256 + rx_frame.data.u8[3]);
else {
CELL_U_MAX = 0;
Serial.println("CELL_U_MAX not valid");
}
if ((rx_frame.data.u8[0] & 0x02) == 0x02)
CELL_U_MIN = ((rx_frame.data.u8[0] & 0x01) * 256.0 + rx_frame.data.u8[1]);
else {
CELL_U_MIN = 0;
Serial.println("CELL_U_MIN not valid");
}
if ((rx_frame.data.u8[0] & 0x08) == 0x08)
CELL_ID_U_MAX = ((rx_frame.data.u8[4] & 0x01) * 256.0 + rx_frame.data.u8[5]);
else {
CELL_ID_U_MAX = 0;
Serial.println("CELL_ID_U_MAX not valid");
}
break;
case 0x635: // Diag request response
if ((rx_frame.data.u8[0] == 0x07) && (rx_frame.data.u8[1] == 0x62) && (rx_frame.data.u8[2] == 0x49) &&
(rx_frame.data.u8[3] == 0x6D)) // SOH response frame
{
system_SOH_pptt = ((rx_frame.data.u8[6] << 8) | rx_frame.data.u8[7]);
} else if ((rx_frame.data.u8[0] == 0x10) && (rx_frame.data.u8[1] == 0x0B) && (rx_frame.data.u8[2] == 0x62) &&
(rx_frame.data.u8[3] == 0x4B)) // First response frame of cell voltages
{
cell_voltages[battery_request_idx++] = ((rx_frame.data.u8[5] << 8) | rx_frame.data.u8[6]);
cell_voltages[battery_request_idx] = (rx_frame.data.u8[7] << 8);
ESP32Can.CANWriteFrame(&VOLVO_FlowControl); // Send flow control
rxConsecutiveFrames = 1;
} else if ((rx_frame.data.u8[0] == 0x21) && (rxConsecutiveFrames == 1)) {
cell_voltages[battery_request_idx++] = cell_voltages[battery_request_idx] | rx_frame.data.u8[1];
cell_voltages[battery_request_idx++] = (rx_frame.data.u8[2] << 8) | rx_frame.data.u8[3];
cell_voltages[battery_request_idx++] = (rx_frame.data.u8[4] << 8) | rx_frame.data.u8[5];
if (BatteryPackNumber <= 0x2A) // Run until last pack is read
{
VOLVO_CELL_U_Req.data.u8[3] = BatteryPackNumber++;
ESP32Can.CANWriteFrame(&VOLVO_CELL_U_Req); //Send cell voltage read request for next module
} else {
min_max_voltage[0] = 9999;
min_max_voltage[1] = 0;
for (cellcounter = 0; cellcounter < 108; cellcounter++) {
if (min_max_voltage[0] > cell_voltages[cellcounter])
min_max_voltage[0] = cell_voltages[cellcounter];
if (min_max_voltage[1] < cell_voltages[cellcounter])
min_max_voltage[1] = cell_voltages[cellcounter];
}
cell_deviation_mV = (min_max_voltage[1] - min_max_voltage[0]);
if (cell_deviation_mV > MAX_CELL_DEVIATION) {
set_event(EVENT_CELL_DEVIATION_HIGH, 0);
#ifdef DEBUG_VIA_USB
Serial.println("HIGH CELL DEVIATION!!! Inspect battery!");
#endif
}
if (min_max_voltage[1] >= MAX_CELL_VOLTAGE) {
system_bms_status = FAULT;
set_event(EVENT_CELL_OVER_VOLTAGE, 0);
#ifdef DEBUG_VIA_USB
Serial.println("CELL OVERVOLTAGE!!! Stopping battery charging and discharging. Inspect battery!");
#endif
}
if (min_max_voltage[0] <= MIN_CELL_VOLTAGE) {
system_bms_status = FAULT;
set_event(EVENT_CELL_UNDER_VOLTAGE, 0);
#ifdef DEBUG_VIA_USB
Serial.println("CELL UNDERVOLTAGE!!! Stopping battery charging and discharging. Inspect battery!");
#endif
}
ESP32Can.CANWriteFrame(&VOLVO_SOH_Req); //Send SOH read request
}
rxConsecutiveFrames = 0;
}
break;
default:
break;
}
}
void readCellVoltages() {
battery_request_idx = 0;
BatteryPackNumber = 0x10;
rxConsecutiveFrames = 0;
VOLVO_CELL_U_Req.data.u8[3] = BatteryPackNumber++;
ESP32Can.CANWriteFrame(&VOLVO_CELL_U_Req); //Send cell voltage read request for first module
}
void send_can_battery() {
unsigned long currentMillis = millis();
// Send 100ms CAN Message
if (currentMillis - previousMillis100 >= interval100) {
previousMillis100 = currentMillis;
ESP32Can.CANWriteFrame(&VOLVO_536); //Send 0x536 Network managing frame to keep BMS alive
ESP32Can.CANWriteFrame(&VOLVO_372); //Send 0x372 ECMAmbientTempCalculated
if (system_bms_status == ACTIVE) {
batteryAllowsContactorClosing = true;
} else { //system_bms_status == FAULT or inverter requested opening contactors
batteryAllowsContactorClosing = false;
}
}
if (currentMillis - previousMillis60s >= interval60s) {
previousMillis60s = currentMillis;
if (system_bms_status == ACTIVE) {
readCellVoltages();
}
}
}
void setup_battery(void) { // Performs one time setup at startup
Serial.println("Volvo SPA XC40 Recharge / Polestar2 78kWh battery selected");
system_number_of_cells = 108;
system_max_design_voltage_dV = 4540; // 454.0V, over this, charging is not possible (goes into forced discharge)
system_min_design_voltage_dV = 2938; // 293.8V under this, discharging further is disabled
}

View file

@ -0,0 +1,34 @@
#ifndef VOLVO_SPA_BATTERY_H
#define VOLVO_SPA_BATTERY_H
#include <Arduino.h>
#include "../../USER_SETTINGS.h"
#include "../devboard/config.h" // Needed for all defines
#include "../lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"
#define BATTERY_SELECTED
// These parameters need to be mapped for the inverter
extern uint32_t system_capacity_Wh; //Wh, 0-150000Wh
extern uint32_t system_remaining_capacity_Wh; //Wh, 0-150000Wh
extern int16_t system_temperature_min_dC; //C+1, -50.0 - 50.0
extern int16_t system_temperature_max_dC; //C+1, -50.0 - 50.0
extern int16_t system_active_power_W; //W, -32000 to 32000
extern int16_t system_battery_current_dA; //A+1, -1000 - 1000
extern uint16_t system_battery_voltage_dV; //V+1, 0-500.0 (0-5000)
extern uint16_t system_max_design_voltage_dV; //V+1, 0-500.0 (0-5000)
extern uint16_t system_min_design_voltage_dV; //V+1, 0-500.0 (0-5000)
extern uint16_t system_scaled_SOC_pptt; //SOC%, 0-100.00 (0-10000)
extern uint16_t system_real_SOC_pptt; //SOC%, 0-100.00 (0-10000)
extern uint16_t system_SOH_pptt; //SOH%, 0-100.00 (0-10000)
extern uint16_t system_max_discharge_power_W; //W, 0-65000
extern uint16_t system_max_charge_power_W; //W, 0-65000
extern uint16_t system_cell_max_voltage_mV; //mV, 0-5000, Stores the highest cell millivolt value
extern uint16_t system_cell_min_voltage_mV; //mV, 0-5000, Stores the minimum cell millivolt value
extern uint16_t system_cellvoltages_mV[MAX_AMOUNT_CELLS]; //Array with all cell voltages in mV
extern uint8_t system_number_of_cells; //Total number of cell voltages, set by each battery
extern uint8_t system_bms_status; //Enum 0-5
extern bool batteryAllowsContactorClosing; //Bool, true/false
void setup_battery(void);
#endif