Add base for SMA Tripower protocol

This commit is contained in:
Daniel 2024-02-14 17:16:51 +02:00
parent a238c8b925
commit fa69220c6a
5 changed files with 415 additions and 2 deletions

View file

@ -345,6 +345,9 @@ void inform_user_on_inverter() {
#ifdef SMA_CAN #ifdef SMA_CAN
Serial.println("SMA CAN protocol selected"); Serial.println("SMA CAN protocol selected");
#endif #endif
#ifdef SMA_TRIPOWER_CAN
Serial.println("SMA Tripower CAN protocol selected");
#endif
#ifdef SOFAR_CAN #ifdef SOFAR_CAN
Serial.println("SOFAR CAN protocol selected"); Serial.println("SOFAR CAN protocol selected");
#endif #endif
@ -439,6 +442,9 @@ void receive_can() { // This section checks if we have a complete CAN message i
#endif #endif
#ifdef SMA_CAN #ifdef SMA_CAN
receive_can_sma(rx_frame); receive_can_sma(rx_frame);
#endif
#ifdef SMA_TRIPOWER_CAN
receive_can_sma_tripower(rx_frame);
#endif #endif
// Charger // Charger
#ifdef CHEVYVOLT_CHARGER #ifdef CHEVYVOLT_CHARGER
@ -471,6 +477,9 @@ void send_can() {
#ifdef SMA_CAN #ifdef SMA_CAN
send_can_sma(); send_can_sma();
#endif #endif
#ifdef SMA_TRIPOWER_CAN
send_can_sma_tripower();
#endif
#ifdef SOFAR_CAN #ifdef SOFAR_CAN
send_can_sofar(); send_can_sofar();
#endif #endif
@ -730,6 +739,9 @@ void update_values() {
#ifdef SMA_CAN #ifdef SMA_CAN
update_values_can_sma(); update_values_can_sma();
#endif #endif
#ifdef SMA_TRIPOWER_CAN
update_values_can_sma_tripower();
#endif
#ifdef SOFAR_CAN #ifdef SOFAR_CAN
update_values_can_sofar(); update_values_can_sofar();
#endif #endif

View file

@ -25,6 +25,7 @@
//#define LUNA2000_MODBUS //Enable this line to emulate a "Luna2000 battery" over Modbus RTU //#define LUNA2000_MODBUS //Enable this line to emulate a "Luna2000 battery" over Modbus RTU
//#define PYLON_CAN //Enable this line to emulate a "Pylontech battery" over CAN bus //#define PYLON_CAN //Enable this line to emulate a "Pylontech battery" over CAN bus
//#define SMA_CAN //Enable this line to emulate a "BYD Battery-Box H 8.9kWh, 7 mod" over CAN bus //#define SMA_CAN //Enable this line to emulate a "BYD Battery-Box H 8.9kWh, 7 mod" over CAN bus
//#define SMA_TRIPOWER_CAN //Enable this line to emulate a "SMA Home Storage battery" over CAN bus
//#define SOFAR_CAN //Enable this line to emulate a "Sofar Energy Storage Inverter High Voltage BMS General Protocol (Extended Frame)" over CAN bus //#define SOFAR_CAN //Enable this line to emulate a "Sofar Energy Storage Inverter High Voltage BMS General Protocol (Extended Frame)" over CAN bus
//#define SOLAX_CAN //Enable this line to emulate a "SolaX Triple Power LFP" over CAN bus //#define SOLAX_CAN //Enable this line to emulate a "SolaX Triple Power LFP" over CAN bus

View file

@ -21,6 +21,10 @@
#include "SMA-CAN.h" #include "SMA-CAN.h"
#endif #endif
#ifdef SMA_TRIPOWER_CAN
#include "SMA-TRIPOWER-CAN.h"
#endif
#ifdef SOFAR_CAN #ifdef SOFAR_CAN
#include "SOFAR-CAN.h" #include "SOFAR-CAN.h"
#endif #endif

View file

@ -0,0 +1,364 @@
#include "SMA-TRIPOWER-CAN.h"
#include "../lib/miwagner-ESP32-Arduino-CAN/CAN_config.h"
#include "../lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"
/* TODO:
- Figure out the manufacturer info needed in send_tripower_init() CAN messages
- CAN logs from real system might be needed
- Figure out how cellvoltages need to be displayed
- Figure out if sending send_tripower_init() like we do now is OK
- Figure out how to send the non-cyclic messages when needed
*/
/* Do not change code below unless you are sure what you are doing */
static unsigned long previousMillis500ms = 0; // will store last time a 100ms CAN Message was send
static const int interval500ms = 100; // interval (ms) at which send CAN Messages
//Actual content messages
static CAN_frame_t SMA_00D = { // Battery Limits
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x00D,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_00F = { // Battery State
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x00F,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_011 = { // Battery Energy
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x011,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_013 = { // Battery Measurements
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x013,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_014 = { // Battery Tempeartures and Cellvoltages
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x014,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_005 = { // Battery Alarms 1
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x005,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_007 = { // Battery Alarms 2
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x007,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_006 = { // Battery Error Codes
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x006,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_008 = { // Battery Events
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x008,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_015 = { // Battery Data 1
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x015,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_016 = { // Battery Data 2
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x016,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_017 = { // Battery Manufacturer
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x017,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static CAN_frame_t SMA_018 = { // Battery Name
.FIR = {.B =
{
.DLC = 8,
.FF = CAN_frame_std,
}},
.MsgID = 0x018,
.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static int discharge_current = 0;
static int charge_current = 0;
static int temperature_average = 0;
static int ampere_hours_remaining = 0;
static int ampere_hours_max = 0;
static bool batteryAlarm = false;
static bool BMSevent = false;
enum BatteryState { NA, INIT, BAT_STANDBY, OPERATE, WARNING, FAULTED, UPDATE, BAT_UPDATE };
BatteryState batteryState = OPERATE;
enum InverterControlFlags {
EMG_CHARGE_REQUEST,
EMG_DISCHARGE_REQUEST,
NOT_ENOUGH_ENERGY_FOR_START,
INVERTER_STAY_ON,
FORCED_BATTERY_SHUTDOWN,
RESERVED,
BATTERY_UPDATE_AVAILABLE,
NO_BATTERY_UPDATED_BY_INV
};
InverterControlFlags inverterControlFlags = BATTERY_UPDATE_AVAILABLE;
enum Events0 {
START_SOC_CALIBRATE,
STOP_SOC_CALIBRATE,
START_POWERLIMIT,
STOP_POWERLIMIT,
PREVENTATIVE_BAT_SHUTDOWN,
THERMAL_MANAGEMENT,
START_BALANCING,
STOP_BALANCING
};
Events0 events0 = START_BALANCING;
enum Events1 { START_BATTERY_SELFTEST, STOP_BATTERY_SELFTEST };
Events1 events1 = START_BATTERY_SELFTEST;
enum Command2Battery { IDLE, RUN, NOT_USED1, NOT_USED2, SHUTDOWN, FIRMWARE_UPDATE, BATSELFUPDATE, NOT_USED3 };
Command2Battery command2Battery = RUN;
enum InvInitState { SYSTEM_FREQUENCY, XPHASE_SYSTEM, BLACKSTART_OPERATION };
InvInitState invInitState = SYSTEM_FREQUENCY;
void update_values_can_sma_tripower() { //This function maps all the values fetched from battery CAN to the inverter CAN
//Calculate values
charge_current =
((max_target_charge_power * 10) / max_voltage); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
//The above calculation results in (30 000*10)/3700=81A
charge_current = (charge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
discharge_current = ((max_target_discharge_power * 10) /
max_voltage); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
//The above calculation results in (30 000*10)/3700=81A
discharge_current = (discharge_current * 10); //Value needs a decimal before getting sent to inverter (81.0A)
temperature_average = ((temperature_max + temperature_min) / 2);
ampere_hours_remaining =
((remaining_capacity_Wh / battery_voltage) * 100); //(WH[10000] * V+1[3600])*100 = 270 (27.0Ah)
ampere_hours_max = ((capacity_Wh / battery_voltage) * 100); //(WH[10000] * V+1[3600])*100 = 270 (27.0Ah)
batteryState = OPERATE;
inverterControlFlags = INVERTER_STAY_ON;
//Map values to CAN messages
// Battery Limits
//Battery Max Charge Voltage (eg 400.0V = 4000 , 16bits long)
SMA_00D.data.u8[0] = (max_voltage >> 8);
SMA_00D.data.u8[1] = (max_voltage & 0x00FF);
//Battery Min Discharge Voltage (eg 300.0V = 3000 , 16bits long)
SMA_00D.data.u8[2] = (min_voltage >> 8);
SMA_00D.data.u8[3] = (min_voltage & 0x00FF);
//Discharge limited current, 500 = 50A, (0.1, A)
SMA_00D.data.u8[4] = (discharge_current >> 8);
SMA_00D.data.u8[5] = (discharge_current & 0x00FF);
//Charge limited current, 125 =12.5A (0.1, A)
SMA_00D.data.u8[6] = (charge_current >> 8);
SMA_00D.data.u8[7] = (charge_current & 0x00FF);
// Battery State
//SOC (100.00%)
SMA_00F.data.u8[0] = (SOC >> 8);
SMA_00F.data.u8[1] = (SOC & 0x00FF);
//StateOfHealth (100.00%)
SMA_00F.data.u8[2] = (StateOfHealth >> 8);
SMA_00F.data.u8[3] = (StateOfHealth & 0x00FF);
//State of charge (AH, 0.1)
SMA_00F.data.u8[4] = (ampere_hours_remaining >> 8);
SMA_00F.data.u8[5] = (ampere_hours_remaining & 0x00FF);
//Fully charged (AH, 0.1)
SMA_00F.data.u8[6] = (ampere_hours_max >> 8);
SMA_00F.data.u8[7] = (ampere_hours_max & 0x00FF);
// Battery Energy
//Charged Energy Counter TODO: are these needed?
//SMA_011.data.u8[0] = (X >> 8);
//SMA_011.data.u8[1] = (X & 0x00FF);
//SMA_011.data.u8[2] = (X >> 8);
//SMA_011.data.u8[3] = (X & 0x00FF);
//Discharged Energy Counter TODO: are these needed?
//SMA_011.data.u8[4] = (X >> 8);
//SMA_011.data.u8[5] = (X & 0x00FF);
//SMA_011.data.u8[6] = (X >> 8);
//SMA_011.data.u8[7] = (X & 0x00FF);
// Battery Measurements
//Voltage (370.0)
SMA_013.data.u8[0] = (battery_voltage >> 8);
SMA_013.data.u8[1] = (battery_voltage & 0x00FF);
//Current (TODO: signed OK?)
SMA_013.data.u8[2] = (battery_current >> 8);
SMA_013.data.u8[3] = (battery_current & 0x00FF);
//Temperature average
SMA_013.data.u8[4] = (temperature_average >> 8);
SMA_013.data.u8[5] = (temperature_average & 0x00FF);
//Battery state
SMA_013.data.u8[6] = batteryState;
SMA_013.data.u8[6] = inverterControlFlags;
// Battery Temperature and Cellvoltages
// Battery max temperature
SMA_014.data.u8[0] = (temperature_max >> 8);
SMA_014.data.u8[1] = (temperature_max & 0x00FF);
// Battery min temperature
SMA_014.data.u8[2] = (temperature_min >> 8);
SMA_014.data.u8[3] = (temperature_min & 0x00FF);
// Battery Cell Voltage (sum)
//SMA_014.data.u8[4] = (??? >> 8); //TODO scaling?
//SMA_014.data.u8[5] = (??? & 0x00FF); //TODO scaling?
// Cell voltage min
//SMA_014.data.u8[6] = (??? >> 8); //TODO scaling? 0-255
// Cell voltage max
//SMA_014.data.u8[7] = (??? >> 8); //TODO scaling? 0-255
//SMA_006.data.u8[0] = (ErrorCode >> 8);
//SMA_006.data.u8[1] = (ErrorCode & 0x00FF);
//SMA_006.data.u8[2] = ModuleNumber;
//SMA_006.data.u8[3] = ErrorLevel;
//SMA_008.data.u8[0] = Events0;
//SMA_008.data.u8[1] = Events1;
//SMA_005.data.u8[0] = BMSalarms0;
//SMA_005.data.u8[1] = BMSalarms1;
//SMA_005.data.u8[2] = BMSalarms2;
//SMA_005.data.u8[3] = BMSalarms3;
//SMA_005.data.u8[4] = BMSalarms4;
//SMA_005.data.u8[5] = BMSalarms5;
//SMA_005.data.u8[6] = BMSalarms6;
//SMA_005.data.u8[7] = BMSalarms7;
//SMA_007.data.u8[0] = DCDCalarms0;
//SMA_007.data.u8[1] = DCDCalarms1;
//SMA_007.data.u8[2] = DCDCalarms2;
//SMA_007.data.u8[3] = DCDCalarms3;
//SMA_007.data.u8[4] = DCDCwarnings0;
//SMA_007.data.u8[5] = DCDCwarnings1;
//SMA_007.data.u8[6] = DCDCwarnings2;
//SMA_007.data.u8[7] = DCDCwarnings3;
//SMA_015.data.u8[0] = BatterySystemVersion;
//SMA_015.data.u8[1] = BatterySystemVersion;
//SMA_015.data.u8[2] = BatterySystemVersion;
//SMA_015.data.u8[3] = BatterySystemVersion;
//SMA_015.data.u8[4] = BatteryCapacity;
//SMA_015.data.u8[5] = BatteryCapacity;
//SMA_015.data.u8[6] = NumberOfModules;
//SMA_015.data.u8[7] = BatteryManufacturerID;
//SMA_016.data.u8[0] = SerialNumber;
//SMA_016.data.u8[1] = SerialNumber;
//SMA_016.data.u8[2] = SerialNumber;
//SMA_016.data.u8[3] = SerialNumber;
//SMA_016.data.u8[4] = ManufacturingDate;
//SMA_016.data.u8[5] = ManufacturingDate;
//SMA_016.data.u8[6] = ManufacturingDate;
//SMA_016.data.u8[7] = ManufacturingDate;
//SMA_017.data.u8[0] = Multiplex;
//SMA_017.data.u8[1] = ManufacturerName;
//SMA_017.data.u8[2] = ManufacturerName;
//SMA_017.data.u8[3] = ManufacturerName;
//SMA_017.data.u8[4] = ManufacturerName;
//SMA_017.data.u8[5] = ManufacturerName;
//SMA_017.data.u8[6] = ManufacturerName;
//SMA_017.data.u8[7] = ManufacturerName;
//SMA_018.data.u8[0] = Multiplex;
//SMA_018.data.u8[1] = BatteryName;
//SMA_018.data.u8[2] = BatteryName;
//SMA_018.data.u8[3] = BatteryName;
//SMA_018.data.u8[4] = BatteryName;
//SMA_018.data.u8[5] = BatteryName;
//SMA_018.data.u8[6] = BatteryName;
//SMA_018.data.u8[7] = BatteryName;
}
void receive_can_sma_tripower(CAN_frame_t rx_frame) {
switch (rx_frame.MsgID) {
case 0x00D: //Inverter Measurements
break;
case 0x00F: //Inverter Feedback
break;
case 0x010: //Time from inverter
break;
case 0x015: //Initialization message from inverter
send_tripower_init();
break;
case 0x017: //Initialization message from inverter 2
//send_tripower_init();
break;
default:
break;
}
}
void send_can_sma_tripower() {
unsigned long currentMillis = millis();
// Send CAN Message every 500ms
if (currentMillis - previousMillis500ms >= interval500ms) {
previousMillis500ms = currentMillis;
ESP32Can.CANWriteFrame(&SMA_00D); //Battery limits
ESP32Can.CANWriteFrame(&SMA_00F); // Battery state
ESP32Can.CANWriteFrame(&SMA_011); // Battery Energy
ESP32Can.CANWriteFrame(&SMA_013); // Battery Measurements
ESP32Can.CANWriteFrame(&SMA_014); // Battery Temperatures and cellvoltages
}
if (batteryAlarm) { //Non-cyclic
ESP32Can.CANWriteFrame(&SMA_005); // Battery Alarms 1
ESP32Can.CANWriteFrame(&SMA_007); // Battery Alarms 2
}
if (BMSevent) { //Non-cyclic
ESP32Can.CANWriteFrame(&SMA_006); // Battery Errorcode
ESP32Can.CANWriteFrame(&SMA_008); // Battery Events
}
}
void send_tripower_init() {
ESP32Can.CANWriteFrame(&SMA_015); // Battery Data 1
ESP32Can.CANWriteFrame(&SMA_016); // Battery Data 2
ESP32Can.CANWriteFrame(&SMA_017); // Battery Manufacturer
ESP32Can.CANWriteFrame(&SMA_018); // Battery Name
}

View file

@ -0,0 +1,32 @@
#ifndef SMA_CAN_TRIPOWER_H
#define SMA_CAN_TRIPOWER_H
#include <Arduino.h>
#include "../../USER_SETTINGS.h"
#include "../devboard/config.h" // Needed for all defines
#include "../lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"
extern uint16_t SOC; //SOC%, 0-100.00 (0-10000)
extern uint16_t StateOfHealth; //SOH%, 0-100.00 (0-10000)
extern uint16_t battery_voltage; //V+1, 0-500.0 (0-5000)
extern uint16_t battery_current; //A+1, Goes thru convert2unsignedint16 function (5.0A = 50, -5.0A = 65485)
extern uint16_t capacity_Wh; //Wh, 0-60000
extern uint16_t remaining_capacity_Wh; //Wh, 0-60000
extern uint16_t max_target_discharge_power; //W, 0-60000
extern uint16_t max_target_charge_power; //W, 0-60000
extern uint8_t bms_char_dis_status; //Enum, 0-2
extern uint16_t stat_batt_power; //W, Goes thru convert2unsignedint16 function (5W = 5, -5W = 65530)
extern uint16_t temperature_min; //C+1, Goes thru convert2unsignedint16 function (15.0C = 150, -15.0C = 65385)
extern uint16_t temperature_max; //C+1, Goes thru convert2unsignedint16 function (15.0C = 150, -15.0C = 65385)
extern uint16_t cell_max_voltage; //mV, 0-4350
extern uint16_t cell_min_voltage; //mV, 0-4350
extern uint16_t min_voltage;
extern uint16_t max_voltage;
extern bool batteryAllowsContactorClosing; //Bool, 1=true, 0=false
extern bool inverterAllowsContactorClosing; //Bool, 1=true, 0=false
void update_values_can_sma_tripower();
void send_can_sma_tripower();
void receive_can_sma_tripower(CAN_frame_t rx_frame);
void send_tripower_init();
#endif