#include "DALY-BMS.h" #include #include "../datalayer/datalayer.h" #include "../devboard/utils/events.h" #include "../include.h" /* Do not change code below unless you are sure what you are doing */ static uint32_t lastPacket = 0; static int16_t temperature_min_dC = 0; static int16_t temperature_max_dC = 0; static int16_t current_dA = 0; static uint16_t voltage_dV = 0; static uint32_t remaining_capacity_mAh = 0; static uint16_t cellvoltages_mV[48] = {0}; static uint16_t cellvoltage_min_mV = 0; static uint16_t cellvoltage_max_mV = 0; static uint16_t SOC = 0; static bool has_fault = false; void DalyBms::update_values() { datalayer.battery.status.real_soc = SOC; datalayer.battery.status.voltage_dV = voltage_dV; //value is *10 (3700 = 370.0) datalayer.battery.status.current_dA = current_dA; //value is *10 (150 = 15.0) datalayer.battery.status.remaining_capacity_Wh = (remaining_capacity_mAh * (uint32_t)voltage_dV) / 10000; datalayer.battery.status.max_charge_power_W = (BATTERY_MAX_CHARGE_AMP * voltage_dV) / 100; datalayer.battery.status.max_discharge_power_W = (BATTERY_MAX_DISCHARGE_AMP * voltage_dV) / 100; // limit power when SoC is low or high uint32_t adaptive_power_limit = 999999; if (SOC < 2000) adaptive_power_limit = ((uint32_t)(SOC + 100) * POWER_PER_PERCENT) / 100; else if (SOC > 8000) adaptive_power_limit = ((10000 - (uint32_t)SOC) * POWER_PER_PERCENT) / 100; if (adaptive_power_limit < datalayer.battery.status.max_charge_power_W) datalayer.battery.status.max_charge_power_W = adaptive_power_limit; if (SOC < 2000 && adaptive_power_limit < datalayer.battery.status.max_discharge_power_W) datalayer.battery.status.max_discharge_power_W = adaptive_power_limit; int32_t temperature_limit = POWER_PER_DEGREE_C * (int32_t)temperature_min_dC / 10 + POWER_AT_0_DEGREE_C; if (temperature_limit <= 0 || temperature_min_dC < BATTERY_MINTEMPERATURE || temperature_max_dC > BATTERY_MAXTEMPERATURE) temperature_limit = 0; if (temperature_limit < datalayer.battery.status.max_discharge_power_W) datalayer.battery.status.max_discharge_power_W = temperature_limit; if (temperature_limit < datalayer.battery.status.max_charge_power_W) datalayer.battery.status.max_charge_power_W = temperature_limit; memcpy(datalayer.battery.status.cell_voltages_mV, cellvoltages_mV, sizeof(cellvoltages_mV)); datalayer.battery.status.cell_min_voltage_mV = cellvoltage_min_mV; datalayer.battery.status.cell_max_voltage_mV = cellvoltage_max_mV; datalayer.battery.status.temperature_min_dC = temperature_min_dC; datalayer.battery.status.temperature_max_dC = temperature_max_dC; datalayer.battery.status.real_bms_status = has_fault ? BMS_FAULT : BMS_ACTIVE; } void DalyBms::setup(void) { // Performs one time setup at startup strncpy(datalayer.system.info.battery_protocol, Name, 63); datalayer.system.info.battery_protocol[63] = '\0'; datalayer.battery.info.number_of_cells = CELL_COUNT; datalayer.battery.info.max_design_voltage_dV = MAX_PACK_VOLTAGE_DV; datalayer.battery.info.min_design_voltage_dV = MIN_PACK_VOLTAGE_DV; datalayer.battery.info.max_cell_voltage_mV = MAX_CELL_VOLTAGE_MV; datalayer.battery.info.min_cell_voltage_mV = MIN_CELL_VOLTAGE_MV; datalayer.battery.info.total_capacity_Wh = BATTERY_WH_MAX; datalayer.system.status.battery_allows_contactor_closing = true; auto rx_pin = esp32hal->RS485_RX_PIN(); auto tx_pin = esp32hal->RS485_TX_PIN(); if (!esp32hal->alloc_pins(Name, rx_pin, tx_pin)) { return; } Serial2.begin(baud_rate(), SERIAL_8N1, rx_pin, tx_pin); } uint8_t calculate_checksum(uint8_t buff[12]) { uint8_t check = 0; for (uint8_t i = 0; i < 12; i++) { check += buff[i]; } return check; } uint16_t decode_uint16be(uint8_t data[8], uint8_t offset) { uint16_t upper = data[offset]; uint16_t lower = data[offset + 1]; return (upper << 8) | lower; } int16_t decode_int16be(uint8_t data[8], uint8_t offset) { int16_t upper = data[offset]; int16_t lower = data[offset + 1]; return (upper << 8) | lower; } uint32_t decode_uint32be(uint8_t data[8], uint8_t offset) { return (((uint32_t)data[offset]) << 24) | (((uint32_t)data[offset + 1]) << 16) | (((uint32_t)data[offset + 2]) << 8) | ((uint32_t)data[offset + 3]); } #ifdef DEBUG_VIA_USB void dump_buff(const char* msg, uint8_t* buff, uint8_t len) { Serial.print("[DALY-BMS] "); Serial.print(msg); for (int i = 0; i < len; i++) { Serial.print(buff[i] >> 4, HEX); Serial.print(buff[i] & 0xf, HEX); Serial.print(" "); } Serial.println(); } #endif void decode_packet(uint8_t command, uint8_t data[8]) { datalayer.battery.status.CAN_battery_still_alive = CAN_STILL_ALIVE; switch (command) { case 0x90: voltage_dV = decode_uint16be(data, 0); current_dA = decode_int16be(data, 4) - 30000; SOC = decode_uint16be(data, 6) * 10; break; case 0x91: cellvoltage_max_mV = decode_uint16be(data, 0); cellvoltage_min_mV = decode_uint16be(data, 3); break; case 0x92: temperature_max_dC = (data[0] - 40) * 10; temperature_min_dC = (data[2] - 40) * 10; break; case 0x93: remaining_capacity_mAh = decode_uint32be(data, 4); break; case 0x94: break; case 0x95: if (data[0] > 0 && data[0] <= 16) { uint8_t frame_index = (data[0] - 1) * 3; cellvoltages_mV[frame_index + 0] = decode_uint16be(data, 1); cellvoltages_mV[frame_index + 1] = decode_uint16be(data, 3); cellvoltages_mV[frame_index + 2] = decode_uint16be(data, 5); } break; case 0x96: break; case 0x97: break; case 0x98: // for now we do not handle individual faults. All of them are 0 when ok, and 1 when a fault occurs has_fault = false; for (int i = 0; i < 8; i++) { if (data[i] != 0x00) { has_fault = true; } } break; } } void DalyBms::transmit_rs485(unsigned long currentMillis) { static uint8_t nextCommand = 0x90; if (currentMillis - lastPacket > 60) { lastPacket = currentMillis; uint8_t tx_buff[13] = {0}; tx_buff[0] = 0xA5; tx_buff[1] = 0x40; tx_buff[2] = nextCommand; tx_buff[3] = 8; tx_buff[12] = calculate_checksum(tx_buff); #ifdef DEBUG_VIA_USB dump_buff("transmitting: ", tx_buff, 13); #endif Serial2.write(tx_buff, 13); nextCommand++; if (nextCommand > 0x98) nextCommand = 0x90; } } void DalyBms::receive() { static uint8_t recv_buff[13] = {0}; static uint8_t recv_len = 0; while (Serial2.available()) { recv_buff[recv_len] = Serial2.read(); recv_len++; if (recv_len > 0 && recv_buff[0] != 0xA5 || recv_len > 1 && recv_buff[1] != 0x01 || recv_len > 2 && (recv_buff[2] < 0x90 || recv_buff[2] > 0x98) || recv_len > 3 && recv_buff[3] != 8 || recv_len > 12 && recv_buff[12] != calculate_checksum(recv_buff)) { #ifdef DEBUG_VIA_USB dump_buff("dropping partial rx: ", recv_buff, recv_len); #endif recv_len = 0; } if (recv_len > 12) { #ifdef DEBUG_VIA_USB dump_buff("decoding successfull rx: ", recv_buff, recv_len); #endif decode_packet(recv_buff[2], &recv_buff[4]); recv_len = 0; lastPacket = millis(); } } }