/* Do not change any code below this line unless you are sure what you are doing */ /* Only change battery specific settings in "USER_SETTINGS.h" */ #include #include "HardwareSerial.h" #include "USER_SETTINGS.h" #include "src/battery/BATTERIES.h" #include "src/devboard/config.h" #include "src/devboard/webserver/webserver.h" #include "src/inverter/INVERTERS.h" #include "src/lib/adafruit-Adafruit_NeoPixel/Adafruit_NeoPixel.h" #include "src/lib/eModbus-eModbus/Logging.h" #include "src/lib/eModbus-eModbus/ModbusServerRTU.h" #include "src/lib/eModbus-eModbus/scripts/mbServerFCs.h" #include "src/lib/miwagner-ESP32-Arduino-CAN/CAN_config.h" #include "src/lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h" // Interval settings int intervalUpdateValues = 4800; // Interval at which to update inverter values / Modbus registers const int interval10 = 10; // Interval for 10ms tasks unsigned long previousMillis10ms = 50; unsigned long previousMillisUpdateVal = 0; // CAN parameters CAN_device_t CAN_cfg; // CAN Config const int rx_queue_size = 10; // Receive Queue size #ifdef DUAL_CAN #include "src/lib/pierremolinaro-acan2515/ACAN2515.h" static const uint32_t QUARTZ_FREQUENCY = 8UL * 1000UL * 1000UL; // 8 MHz ACAN2515 can(MCP2515_CS, SPI, MCP2515_INT); static ACAN2515_Buffer16 gBuffer; #endif // ModbusRTU parameters #if defined(BYD_MODBUS) #define MB_RTU_NUM_VALUES 30000 #endif #if defined(LUNA2000_MODBUS) #define MB_RTU_NUM_VALUES 50000 #endif #if defined(BYD_MODBUS) || defined(LUNA2000_MODBUS) uint16_t mbPV[MB_RTU_NUM_VALUES]; // Process variable memory // Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout ModbusServerRTU MBserver(Serial2, 2000); #endif // Inverter parameters // Inverter states #define STANDBY 0 #define INACTIVE 1 #define DARKSTART 2 #define ACTIVE 3 #define FAULT 4 #define UPDATING 5 // Common inverter parameters uint16_t capacity_Wh_startup = BATTERY_WH_MAX; uint16_t max_power = 40960; // 41kW uint16_t max_voltage = ABSOLUTE_MAX_VOLTAGE; // If higher charging is not possible (goes into forced discharge) uint16_t min_voltage = ABSOLUTE_MIN_VOLTAGE; // If lower Gen24 disables battery uint16_t battery_voltage = 3700; uint16_t battery_current = 0; uint16_t SOC = 5000; // SOC 0-100.00% // Updates later on from CAN uint16_t StateOfHealth = 9900; // SOH 0-100.00% // Updates later on from CAN uint16_t capacity_Wh = BATTERY_WH_MAX; // Updates later on from CAN uint16_t remaining_capacity_Wh = BATTERY_WH_MAX; // Updates later on from CAN uint16_t max_target_discharge_power = 0; // 0W (0W > restricts to no discharge) // Updates later on from CAN uint16_t max_target_charge_power = 4312; // 4.3kW (during charge), both 307&308 can be set (>0) at the same time // Updates later on from CAN. Max value is 30000W uint16_t temperature_max = 50; // Reads from battery later uint16_t temperature_min = 60; // Reads from battery later uint16_t bms_char_dis_status; // 0 idle, 1 discharging, 2, charging uint16_t bms_status = ACTIVE; // ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING] uint16_t stat_batt_power = 0; // Power going in/out of battery uint16_t cell_max_voltage = 3700; // Stores the highest cell voltage value in the system uint16_t cell_min_voltage = 3700; // Stores the minimum cell voltage value in the system bool LFP_Chemistry = false; // LED parameters Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800); static uint8_t brightness = 0; static bool rampUp = true; const uint8_t maxBrightness = 100; uint8_t LEDcolor = GREEN; // Contactor parameters #ifdef CONTACTOR_CONTROL enum State { DISCONNECTED, PRECHARGE, NEGATIVE, POSITIVE, PRECHARGE_OFF, COMPLETED, SHUTDOWN_REQUESTED }; State contactorStatus = DISCONNECTED; #define MAX_ALLOWED_FAULT_TICKS 500 #define PRECHARGE_TIME_MS 160 #define NEGATIVE_CONTACTOR_TIME_MS 1000 #define POSITIVE_CONTACTOR_TIME_MS 2000 #ifdef PWM_CONTACTOR_CONTROL #define PWM_Freq 20000 // 20 kHz frequency, beyond audible range #define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100% #define PWM_Hold_Duty 250 #define POSITIVE_PWM_Ch 0 #define NEGATIVE_PWM_Ch 1 #endif unsigned long prechargeStartTime = 0; unsigned long negativeStartTime = 0; unsigned long timeSpentInFaultedMode = 0; #endif bool batteryAllowsContactorClosing = false; bool inverterAllowsContactorClosing = true; // Initialization void setup() { init_serial(); init_webserver(); init_CAN(); init_LED(); init_contactors(); init_modbus(); inform_user_on_inverter(); inform_user_on_battery(); } // Perform main program functions void loop() { // Input receive_can(); // Receive CAN messages. Runs as fast as possible #ifdef DUAL_CAN receive_can2(); #endif // Process if (millis() - previousMillis10ms >= interval10) // Every 10ms { previousMillis10ms = millis(); handle_LED_state(); // Set the LED color according to state #ifdef CONTACTOR_CONTROL handle_contactors(); // Take care of startup precharge/contactor closing #endif } if (millis() - previousMillisUpdateVal >= intervalUpdateValues) // Every 4.8s { previousMillisUpdateVal = millis(); update_values(); // Update values heading towards inverter. Prepare for sending on CAN, or write directly to Modbus. } // Output send_can(); // Send CAN messages #ifdef DUAL_CAN send_can2(); #endif } // Initialization functions void init_serial() { // Init Serial monitor Serial.begin(115200); while (!Serial) {} Serial.println("__ OK __"); } void init_CAN() { // CAN pins pinMode(CAN_SE_PIN, OUTPUT); digitalWrite(CAN_SE_PIN, LOW); CAN_cfg.speed = CAN_SPEED_500KBPS; CAN_cfg.tx_pin_id = GPIO_NUM_27; CAN_cfg.rx_pin_id = GPIO_NUM_26; CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t)); // Init CAN Module ESP32Can.CANInit(); Serial.println(CAN_cfg.speed); #ifdef DUAL_CAN Serial.println("Dual CAN Bus (ESP32+MCP2515) selected"); gBuffer.initWithSize(25); SPI.begin(MCP2515_SCK, MCP2515_MISO, MCP2515_MOSI); Serial.println("Configure ACAN2515"); ACAN2515Settings settings(QUARTZ_FREQUENCY, 500UL * 1000UL); // CAN bit rate 500 kb/s settings.mRequestedMode = ACAN2515Settings::NormalMode; // Select loopback mode can.begin(settings, [] { can.isr(); }); #endif } void init_LED() { // Init LED control pixels.begin(); } void init_contactors() { // Init contactor pins #ifdef CONTACTOR_CONTROL pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT); digitalWrite(POSITIVE_CONTACTOR_PIN, LOW); pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT); digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW); #ifdef PWM_CONTACTOR_CONTROL ledcSetup(POSITIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution ledcSetup(NEGATIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution ledcAttachPin(POSITIVE_CONTACTOR_PIN, POSITIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel ledcAttachPin(NEGATIVE_CONTACTOR_PIN, NEGATIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel ledcWrite(POSITIVE_PWM_Ch, 0); // Set Positive PWM to 0% ledcWrite(NEGATIVE_PWM_Ch, 0); // Set Negative PWM to 0% #endif pinMode(PRECHARGE_PIN, OUTPUT); digitalWrite(PRECHARGE_PIN, LOW); #endif } void init_modbus() { // Set up Modbus RTU Server pinMode(RS485_EN_PIN, OUTPUT); digitalWrite(RS485_EN_PIN, HIGH); pinMode(RS485_SE_PIN, OUTPUT); digitalWrite(RS485_SE_PIN, HIGH); pinMode(PIN_5V_EN, OUTPUT); digitalWrite(PIN_5V_EN, HIGH); #ifdef BYD_MODBUS // Init Static data to the RTU Modbus handle_static_data_modbus_byd(); #endif #if defined(BYD_MODBUS) || defined(LUNA2000_MODBUS) // Init Serial2 connected to the RTU Modbus RTUutils::prepareHardwareSerial(Serial2); Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN); // Register served function code worker for server MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03); MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06); MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16); MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23); // Start ModbusRTU background task MBserver.begin(Serial2); #endif } void inform_user_on_inverter() { // Inform user what Inverter is used #ifdef BYD_CAN Serial.println("BYD CAN protocol selected"); #endif #ifdef BYD_MODBUS Serial.println("BYD Modbus RTU protocol selected"); #endif #ifdef LUNA2000_MODBUS Serial.println("Luna2000 Modbus RTU protocol selected"); #endif #ifdef PYLON_CAN Serial.println("PYLON CAN protocol selected"); #endif #ifdef SMA_CAN Serial.println("SMA CAN protocol selected"); #endif #ifdef SOFAR_CAN Serial.println("SOFAR CAN protocol selected"); #endif #ifdef SOLAX_CAN inverterAllowsContactorClosing = false; // The inverter needs to allow first on this protocol intervalUpdateValues = 800; // This protocol also requires the values to be updated faster Serial.println("SOLAX CAN protocol selected"); #endif } void inform_user_on_battery() { // Inform user what battery is used #ifdef BMW_I3_BATTERY Serial.println("BMW i3 battery selected"); #endif #ifdef CHADEMO_BATTERY Serial.println("Chademo battery selected"); #endif #ifdef IMIEV_CZERO_ION_BATTERY Serial.println("Mitsubishi i-MiEV / Citroen C-Zero / Peugeot Ion battery selected"); #endif #ifdef KIA_HYUNDAI_64_BATTERY Serial.println("Kia Niro / Hyundai Kona 64kWh battery selected"); #endif #ifdef NISSAN_LEAF_BATTERY Serial.println("Nissan LEAF battery selected"); #endif #ifdef RENAULT_ZOE_BATTERY Serial.println("Renault Zoe / Kangoo battery selected"); #endif #ifdef TESLA_MODEL_3_BATTERY Serial.println("Tesla Model 3 battery selected"); #endif #ifdef TEST_FAKE_BATTERY Serial.println("Test mode with fake battery selected"); #endif #if !defined(ABSOLUTE_MAX_VOLTAGE) #error No battery selected! Choose one from the USER_SETTINGS.h file #endif } // Functions void receive_can() { // This section checks if we have a complete CAN message incoming // Depending on which battery/inverter is selected, we forward this to their respective CAN routines CAN_frame_t rx_frame; if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 3 * portTICK_PERIOD_MS) == pdTRUE) { if (rx_frame.FIR.B.FF == CAN_frame_std) { //printf("New standard frame"); // Battery #ifdef BMW_I3_BATTERY receive_can_i3_battery(rx_frame); #endif #ifdef CHADEMO_BATTERY receive_can_chademo_battery(rx_frame); #endif #ifdef IMIEV_CZERO_ION_BATTERY receive_can_imiev_battery(rx_frame); #endif #ifdef KIA_HYUNDAI_64_BATTERY receive_can_kiaHyundai_64_battery(rx_frame); #endif #ifdef NISSAN_LEAF_BATTERY receive_can_leaf_battery(rx_frame); #endif #ifdef RENAULT_ZOE_BATTERY receive_can_zoe_battery(rx_frame); #endif #ifdef TESLA_MODEL_3_BATTERY receive_can_tesla_model_3_battery(rx_frame); #endif #ifdef TEST_FAKE_BATTERY receive_can_test_battery(rx_frame); #endif // Inverter #ifdef BYD_CAN receive_can_byd(rx_frame); #endif #ifdef SMA_CAN receive_can_sma(rx_frame); #endif } else { //printf("New extended frame"); #ifdef PYLON_CAN receive_can_pylon(rx_frame); #endif #ifdef SOFAR_CAN receive_can_sofar(rx_frame); #endif #ifdef SOLAX_CAN receive_can_solax(rx_frame); #endif } } } void send_can() { // Send CAN messages // Inverter #ifdef BYD_CAN send_can_byd(); #endif #ifdef SMA_CAN send_can_sma(); #endif #ifdef SOFAR_CAN send_can_sofar(); #endif // Battery #ifdef BMW_I3_BATTERY send_can_i3_battery(); #endif #ifdef CHADEMO_BATTERY send_can_chademo_battery(); #endif #ifdef IMIEV_CZERO_ION_BATTERY send_can_imiev_battery(); #endif #ifdef KIA_HYUNDAI_64_BATTERY send_can_kiaHyundai_64_battery(); #endif #ifdef NISSAN_LEAF_BATTERY send_can_leaf_battery(); #endif #ifdef RENAULT_ZOE_BATTERY send_can_zoe_battery(); #endif #ifdef TESLA_MODEL_3_BATTERY send_can_tesla_model_3_battery(); #endif #ifdef TEST_FAKE_BATTERY send_can_test_battery(); #endif } #ifdef DUAL_CAN void receive_can2() { // This function is similar to receive_can, but just takes care of inverters in the 2nd bus. // Depending on which inverter is selected, we forward this to their respective CAN routines CAN_frame_t rx_frame2; // Struct with ESP32Can library format, compatible with the rest of the program CANMessage MCP2515Frame; // Struct with ACAN2515 library format, needed to use thw MCP2515 library if (can.available()) { can.receive(MCP2515Frame); rx_frame2.MsgID = MCP2515Frame.id; rx_frame2.FIR.B.FF = MCP2515Frame.ext ? CAN_frame_ext : CAN_frame_std; rx_frame2.FIR.B.RTR = MCP2515Frame.rtr ? CAN_RTR : CAN_no_RTR; rx_frame2.FIR.B.DLC = MCP2515Frame.len; for (uint8_t i = 0; i < MCP2515Frame.len; i++) { rx_frame2.data.u8[i] = MCP2515Frame.data[i]; } if (rx_frame2.FIR.B.FF == CAN_frame_std) { //Serial.println("New standard frame"); #ifdef BYD_CAN receive_can_byd(rx_frame2); #endif } else { //Serial.println("New extended frame"); #ifdef PYLON_CAN receive_can_pylon(rx_frame2); #endif #ifdef SOLAX_CAN receive_can_solax(rx_frame2); #endif } } } void send_can2() { // Send CAN // Inverter #ifdef BYD_CAN send_can_byd(); #endif } #endif void handle_LED_state() { // Determine how bright the LED should be if (rampUp && brightness < maxBrightness) { brightness++; } else if (rampUp && brightness == maxBrightness) { rampUp = false; } else if (!rampUp && brightness > 0) { brightness--; } else if (!rampUp && brightness == 0) { rampUp = true; } switch (LEDcolor) { case GREEN: pixels.setPixelColor(0, pixels.Color(0, brightness, 0)); // Green pulsing LED break; case YELLOW: pixels.setPixelColor(0, pixels.Color(brightness, brightness, 0)); // Yellow pulsing LED break; case BLUE: pixels.setPixelColor(0, pixels.Color(0, 0, brightness)); // Blue pulsing LED break; case RED: pixels.setPixelColor(0, pixels.Color(150, 0, 0)); // Red LED full brightness break; case TEST_ALL_COLORS: pixels.setPixelColor(0, pixels.Color(brightness, abs((100 - brightness)), abs((50 - brightness)))); // RGB break; default: break; } // BMS in fault state overrides everything if (bms_status == FAULT) { pixels.setPixelColor(0, pixels.Color(255, 0, 0)); // Red LED full brightness } pixels.show(); // This sends the updated pixel color to the hardware. } #ifdef CONTACTOR_CONTROL void handle_contactors() { // First check if we have any active errors, incase we do, turn off the battery if (bms_status == FAULT) { timeSpentInFaultedMode++; } else { timeSpentInFaultedMode = 0; } if (timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS) { contactorStatus = SHUTDOWN_REQUESTED; } if (contactorStatus == SHUTDOWN_REQUESTED) { digitalWrite(PRECHARGE_PIN, LOW); digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW); digitalWrite(POSITIVE_CONTACTOR_PIN, LOW); return; // A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured) } // After that, check if we are OK to start turning on the battery if (contactorStatus == DISCONNECTED) { digitalWrite(PRECHARGE_PIN, LOW); #ifdef PWM_CONTACTOR_CONTROL ledcWrite(POSITIVE_PWM_Ch, 0); ledcWrite(NEGATIVE_PWM_Ch, 0); #endif if (batteryAllowsContactorClosing && inverterAllowsContactorClosing) { contactorStatus = PRECHARGE; } } // In case the inverter requests contactors to open, set the state accordingly if (contactorStatus == COMPLETED) { if (!inverterAllowsContactorClosing) contactorStatus = DISCONNECTED; // Skip running the state machine below if it has already completed return; } unsigned long currentTime = millis(); // Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge switch (contactorStatus) { case PRECHARGE: digitalWrite(PRECHARGE_PIN, HIGH); prechargeStartTime = currentTime; contactorStatus = NEGATIVE; break; case NEGATIVE: if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) { digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH); #ifdef PWM_CONTACTOR_CONTROL ledcWrite(NEGATIVE_PWM_Ch, 1023); #endif negativeStartTime = currentTime; contactorStatus = POSITIVE; } break; case POSITIVE: if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) { digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH); #ifdef PWM_CONTACTOR_CONTROL ledcWrite(POSITIVE_PWM_Ch, 1023); #endif contactorStatus = PRECHARGE_OFF; } break; case PRECHARGE_OFF: if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) { digitalWrite(PRECHARGE_PIN, LOW); #ifdef PWM_CONTACTOR_CONTROL ledcWrite(NEGATIVE_PWM_Ch, PWM_Hold_Duty); ledcWrite(POSITIVE_PWM_Ch, PWM_Hold_Duty); #endif contactorStatus = COMPLETED; } break; default: break; } } #endif void update_values() { // Battery #ifdef BMW_I3_BATTERY update_values_i3_battery(); // Map the values to the correct registers #endif #ifdef CHADEMO_BATTERY update_values_chademo_battery(); // Map the values to the correct registers #endif #ifdef IMIEV_CZERO_ION_BATTERY update_values_imiev_battery(); // Map the values to the correct registers #endif #ifdef KIA_HYUNDAI_64_BATTERY update_values_kiaHyundai_64_battery(); // Map the values to the correct registers #endif #ifdef NISSAN_LEAF_BATTERY update_values_leaf_battery(); // Map the values to the correct registers #endif #ifdef RENAULT_ZOE_BATTERY update_values_zoe_battery(); // Map the values to the correct registers #endif #ifdef TESLA_MODEL_3_BATTERY update_values_tesla_model_3_battery(); // Map the values to the correct registers #endif #ifdef TEST_FAKE_BATTERY update_values_test_battery(); // Map the fake values to the correct registers #endif // Inverter #ifdef BYD_CAN update_values_can_byd(); #endif #ifdef BYD_MODBUS update_modbus_registers_byd(); #endif #ifdef LUNA2000_MODBUS update_modbus_registers_luna2000(); #endif #ifdef PYLON_CAN update_values_can_pylon(); #endif #ifdef SMA_CAN update_values_can_sma(); #endif #ifdef SOLAX_CAN update_values_can_solax(); #endif }