#include "SMA-CAN.h" #include "ESP32CAN.h" #include "CAN_config.h" /* Do not change code below unless you are sure what you are doing */ static unsigned long previousMillis2s = 0; // will store last time a 2s CAN Message was send static unsigned long previousMillis10s = 0; // will store last time a 10s CAN Message was send static unsigned long previousMillis60s = 0; // will store last time a 60s CAN Message was send static const int interval2s = 2000; // interval (ms) at which send CAN Messages static const int interval10s = 10000; // interval (ms) at which send CAN Messages static const int interval60s = 60000; // interval (ms) at which send CAN Messages //Constant startup messages const CAN_frame_t SMA_618 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x618,.data = {0x03, 0x16, 0x00, 0x66, 0x00, 0x33, 0x02, 0x09}}; //Actual content messages CAN_frame_t SMA_110 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x110,.data = {0x01, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}; static int discharge_current = 0; static int charge_current = 0; static int temperature_average = 0; static int inverter_voltage = 0; static int inverter_SOC = 0; void update_values_can_sma() { //This function maps all the values fetched from battery CAN to the correct CAN messages //Calculate values charge_current = ((max_target_charge_power*10)/max_volt_sma_can); //Charge power in W , max volt in V+1decimal (P=UI, solve for I) //The above calculation results in (30 000*10)/3700=81A charge_current = (charge_current*10); //Value needs a decimal before getting sent to inverter (81.0A) discharge_current = ((max_target_discharge_power*10)/max_volt_sma_can); //Charge power in W , max volt in V+1decimal (P=UI, solve for I) //The above calculation results in (30 000*10)/3700=81A discharge_current = (discharge_current*10); //Value needs a decimal before getting sent to inverter (81.0A) temperature_average = ((temperature_max + temperature_min)/2); //Map values to CAN messages //Maxvoltage (eg 400.0V = 4000 , 16bits long) //BYD_110.data.u8[0] = (max_volt_byd_can >> 8); //BYD_110.data.u8[1] = (max_volt_byd_can & 0x00FF); //Minvoltage (eg 300.0V = 3000 , 16bits long) //BYD_110.data.u8[2] = (min_volt_byd_can >> 8); //BYD_110.data.u8[3] = (min_volt_byd_can & 0x00FF); //Maximum discharge power allowed (Unit: A+1) //BYD_110.data.u8[4] = (discharge_current >> 8); //BYD_110.data.u8[5] = (discharge_current & 0x00FF); //Maximum charge power allowed (Unit: A+1) //BYD_110.data.u8[6] = (charge_current >> 8); //BYD_110.data.u8[7] = (charge_current & 0x00FF); //SOC (100.00%) //BYD_150.data.u8[0] = (SOC >> 8); //BYD_150.data.u8[1] = (SOC & 0x00FF); //StateOfHealth (100.00%) //BYD_150.data.u8[2] = (StateOfHealth >> 8); //BYD_150.data.u8[3] = (StateOfHealth & 0x00FF); //Maximum charge power allowed (Unit: A+1) //BYD_150.data.u8[4] = (charge_current >> 8); //BYD_150.data.u8[5] = (charge_current & 0x00FF); //Maximum discharge power allowed (Unit: A+1) //BYD_150.data.u8[6] = (discharge_current >> 8); //BYD_150.data.u8[7] = (discharge_current & 0x00FF); //Voltage (370.0) //BYD_1D0.data.u8[0] = (battery_voltage >> 8); //BYD_1D0.data.u8[1] = (battery_voltage & 0x00FF); //Current (TODO, SIGNED?) //BYD_1D0.data.u8[2] = (battery_current >> 8); //BYD_1D0.data.u8[3] = (battery_current & 0x00FF); //Temperature average //BYD_1D0.data.u8[4] = (temperature_average >> 8); //BYD_1D0.data.u8[5] = (temperature_average & 0x00FF); //Temperature max //BYD_210.data.u8[0] = (temperature_max >> 8); //BYD_210.data.u8[1] = (temperature_max & 0x00FF); //Temperature min //BYD_210.data.u8[2] = (temperature_min >> 8); //BYD_210.data.u8[3] = (temperature_min & 0x00FF); } void receive_can_sma(CAN_frame_t rx_frame) { switch (rx_frame.MsgID) { case 0x660: //Message originating from SMA inverter break; case 0x5E0: //Message originating from SMA inverter break; case 0x560: //Message originating from SMA inverter break; default: break; } } void send_can_sma() { unsigned long currentMillis = millis(); // Send 2s CAN Message if (currentMillis - previousMillis2s >= interval2s) { previousMillis2s = currentMillis; //ESP32Can.CANWriteFrame(&BYD_110); } // Send 10s CAN Message if (currentMillis - previousMillis10s >= interval10s) { previousMillis10s = currentMillis; //ESP32Can.CANWriteFrame(&BYD_150); //ESP32Can.CANWriteFrame(&BYD_1D0); //ESP32Can.CANWriteFrame(&BYD_210); } //Send 60s message if (currentMillis - previousMillis60s >= interval60s) { previousMillis60s = currentMillis; //ESP32Can.CANWriteFrame(&BYD_190); //Serial.println("CAN 60s done"); } }