#include "TESLA-MODEL-3-BATTERY.h" #include "../../ESP32CAN.h" #include "../../CAN_config.h" /* Do not change code below unless you are sure what you are doing */ /* Credits: Most of the code comes from Per Carlen's bms_comms_tesla_model3.py (https://gitlab.com/pelle8/batt2gen24/) */ static unsigned long previousMillis30 = 0; // will store last time a 30ms CAN Message was send static const int interval30 = 30; // interval (ms) at which send CAN Messages static uint8_t stillAliveCAN = 6; //counter for checking if CAN is still alive CAN_frame_t TESLA_221_1 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x221,.data = {0x41, 0x11, 0x01, 0x00, 0x00, 0x00, 0x20, 0x96}}; //Contactor frame 221 - close contactors CAN_frame_t TESLA_221_2 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x221,.data = {0x61, 0x15, 0x01, 0x00, 0x00, 0x00, 0x20, 0xBA}}; //Contactor Frame 221 - hv_up_for_drive static uint32_t temporaryvariable = 0; static uint32_t total_discharge = 0; static uint32_t total_charge = 0; static uint16_t volts = 0; // V static int16_t amps = 0; // A static uint16_t raw_amps = 0; // A static int16_t max_temp = 6; // C* static int16_t min_temp = 5; // C* static uint16_t energy_buffer = 0; static uint16_t energy_to_charge_complete = 0; static uint16_t expected_energy_remaining = 0; static uint8_t full_charge_complete = 0; static uint16_t ideal_energy_remaining = 0; static uint16_t nominal_energy_remaining = 0; static uint16_t nominal_full_pack_energy = 0; static uint16_t battery_charge_time_remaining = 0; // Minutes static uint16_t regenerative_limit = 0; static uint16_t discharge_limit = 0; static uint16_t max_heat_park = 0; static uint16_t hvac_max_power = 0; static uint16_t min_voltage = 0; static uint16_t max_discharge_current = 0; static uint16_t max_charge_current = 0; static uint16_t max_voltage = 0; static uint16_t high_voltage = 0; static uint16_t low_voltage = 0; static uint16_t output_current = 0; static uint16_t soc_min = 0; static uint16_t soc_max = 0; static uint16_t soc_vi = 0; static uint16_t soc_ave = 0; static uint16_t cell_max_v = 3700; static uint16_t cell_min_v = 3700; static uint16_t cell_deviation_mV = 0; //contains the deviation between highest and lowest cell in mV static uint8_t max_vno = 0; static uint8_t min_vno = 0; static uint8_t contactor = 0; //State of contactor static uint8_t hvil_status = 0; static uint8_t packContNegativeState = 0; static uint8_t packContPositiveState = 0; static uint8_t packContactorSetState = 0; static uint8_t packCtrsClosingAllowed = 0; static uint8_t pyroTestInProgress = 0; static uint8_t send221still = 10; static const char* contactorText[] = {"UNKNOWN(0)","OPEN","CLOSING","BLOCKED","OPENING","CLOSED","UNKNOWN(6)","WELDED","POS_CL","NEG_CL","UNKNOWN(10)","UNKNOWN(11)","UNKNOWN(12)"}; static const char* contactorState[] = {"SNA","OPEN","PRECHARGE","BLOCKED","PULLED_IN","OPENING","ECONOMIZED","WELDED","UNKNOWN(8)","UNKNOWN(9)","UNKNOWN(10)","UNKNOWN(11)"}; static const char* hvilStatusState[] = {"NOT OK","STATUS_OK","CURRENT_SOURCE_FAULT","INTERNAL_OPEN_FAULT","VEHICLE_OPEN_FAULT","PENTHOUSE_LID_OPEN_FAULT","UNKNOWN_LOCATION_OPEN_FAULT","VEHICLE_NODE_FAULT","NO_12V_SUPPLY","VEHICLE_OR_PENTHOUSE_LID_OPENFAULT","UNKNOWN(10)","UNKNOWN(11)","UNKNOWN(12)","UNKNOWN(13)","UNKNOWN(14)","UNKNOWN(15)"}; #define MAX_SOC 1000 //BMS never goes over this value. We use this info to rescale SOC% sent to inverter #define MIN_SOC 0 //BMS never goes below this value. We use this info to rescale SOC% sent to inverter #define MAX_CELL_VOLTAGE 4250 //Battery is put into emergency stop if one cell goes over this value (These values might need tweaking based on chemistry) #define MIN_CELL_VOLTAGE 2950 //Battery is put into emergency stop if one cell goes below this value (These values might need tweaking based on chemistry) #define MAX_CELL_DEVIATION 500 //LED turns yellow on the board if mv delta exceeds this value void print_int_with_units(char *header, int value, char *units) { Serial.print(header); Serial.print(value); Serial.print(units); } void print_SOC(char *header, int SOC) { Serial.print(header); Serial.print(SOC / 100); Serial.print("."); int hundredth = SOC % 100; if(hundredth < 10) Serial.print(0); Serial.print(hundredth); Serial.println("%"); } void update_values_tesla_model_3_battery() { //This function maps all the values fetched via CAN to the correct parameters used for modbus //After values are mapped, we perform some safety checks, and do some serial printouts StateOfHealth = 9900; //Hardcoded to 99%SOH //Calculate the SOC% value to send to inverter soc_vi = MIN_SOC + (MAX_SOC - MIN_SOC) * (soc_vi - MINPERCENTAGE) / (MAXPERCENTAGE - MINPERCENTAGE); if (soc_vi < 0) { //We are in the real SOC% range of 0-20%, always set SOC sent to Inverter as 0% soc_vi = 0; } if (soc_vi > 1000) { //We are in the real SOC% range of 80-100%, always set SOC sent to Inverter as 100% soc_vi = 1000; } SOC = (soc_vi * 10); //increase SOC range from 0-100.0 -> 100.00 battery_voltage = (volts*10); //One more decimal needed (370 -> 3700) battery_current = amps; //TODO, this needs verifying if scaling is right capacity_Wh = (nominal_full_pack_energy * 100); //Scale up 75.2kWh -> 75200Wh if(capacity_Wh > 60000) { capacity_Wh = 60000; } remaining_capacity_Wh = (expected_energy_remaining * 100); //Scale up 60.3kWh -> 60300Wh //Calculate the allowed discharge power, cap it if it gets too large temporaryvariable = (max_discharge_current * volts); if(temporaryvariable > 60000){ max_target_discharge_power = 60000; } else{ max_target_discharge_power = temporaryvariable; } //The allowed charge power behaves strangely. We instead estimate this value if(SOC == 10000){ max_target_charge_power = 0; //When battery is 100% full, set allowed charge W to 0 } else{ max_target_charge_power = 15000; //Otherwise we can push 15kW into the pack! } stat_batt_power = (volts * amps); //TODO, check if scaling is OK min_temp = (min_temp * 10); temperature_min = convert2unsignedInt16(min_temp); max_temp = (max_temp * 10); temperature_max = convert2unsignedInt16(max_temp); cell_max_voltage = cell_max_v; cell_min_voltage = cell_min_v; /* Value mapping is completed. Start to check all safeties */ bms_status = ACTIVE; //Startout in active mode before checking if we have any faults /* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/ if(!stillAliveCAN) { bms_status = FAULT; Serial.println("ERROR: No CAN communication detected for 60s. Shutting down battery control."); } else { stillAliveCAN--; } if (hvil_status == 3){ //INTERNAL_OPEN_FAULT - Someone disconnected a high voltage cable while battery was in use bms_status = FAULT; Serial.println("ERROR: High voltage cable removed while battery running. Opening contactors!"); } if(cell_max_v >= MAX_CELL_VOLTAGE){ bms_status = FAULT; Serial.println("ERROR: CELL OVERVOLTAGE!!! Stopping battery charging and discharging. Inspect battery!"); } if(cell_min_v <= MIN_CELL_VOLTAGE){ bms_status = FAULT; Serial.println("ERROR: CELL UNDERVOLTAGE!!! Stopping battery charging and discharging. Inspect battery!"); } cell_deviation_mV = (cell_max_v - cell_min_v); if(cell_deviation_mV > MAX_CELL_DEVIATION){ LEDcolor = YELLOW; Serial.println("ERROR: HIGH CELL DEVIATION!!! Inspect battery!"); } /* Safeties verified. Perform USB serial printout if configured to do so */ #ifdef DEBUG_VIA_USB if (packCtrsClosingAllowed == 0) { Serial.println("ERROR: Check high voltage connectors and interlock circuit! Closing contactor not allowed! Values: "); } if (pyroTestInProgress == 1) { Serial.println("ERROR: Please wait for Pyro Connection check to finish, HV cables successfully seated!"); } Serial.print("STATUS: Contactor: "); Serial.print(contactorText[contactor]); //Display what state the contactor is in Serial.print(", HVIL: "); Serial.print(hvilStatusState[hvil_status]); Serial.print(", NegativeState: "); Serial.print(contactorState[packContNegativeState]); Serial.print(", PositiveState: "); Serial.print(contactorState[packContPositiveState]); Serial.print(", setState: "); Serial.print(contactorState[packContactorSetState]); Serial.print(", close allowed: "); Serial.print(packCtrsClosingAllowed); Serial.print(", Pyrotest: "); Serial.println(pyroTestInProgress); Serial.print("Battery values: "); Serial.print(" Vi SOC: "); Serial.print(soc_vi); Serial.print(", SOC max: "); Serial.print(soc_max); Serial.print(", SOC min: "); Serial.print(soc_min); Serial.print(", SOC avg: "); Serial.print(soc_ave); print_int_with_units(", Battery voltage: ", volts, "V"); print_int_with_units(", Battery current: ", amps, "A"); Serial.println(""); print_int_with_units("Discharge limit battery: ", discharge_limit, "kW"); Serial.print(", "); print_int_with_units("Charge limit battery: ", regenerative_limit, "kW"); Serial.print("kW"); Serial.print(", Fully charged?: "); if(full_charge_complete) Serial.print("YES, "); else Serial.print("NO, "); print_int_with_units("Min voltage allowed: ", min_voltage, "V"); Serial.print(", "); print_int_with_units("Max voltage allowed: ", max_voltage, "V"); Serial.println(""); print_int_with_units("Max charge current: ", max_charge_current, "A"); Serial.print(", "); print_int_with_units("Max discharge current: ", max_discharge_current, "A"); Serial.println(""); Serial.print("Cellstats, Max: "); Serial.print(cell_max_v); Serial.print("mV (cell "); Serial.print(max_vno); Serial.print("), Min: "); Serial.print(cell_min_v); Serial.print("mV (cell "); Serial.print(min_vno); Serial.print("), Imbalance: "); Serial.print(cell_deviation_mV); Serial.println("mV."); print_int_with_units("High Voltage Output Pins: ", high_voltage, "V"); Serial.print(", "); print_int_with_units("Low Voltage: ", low_voltage, "V"); Serial.println(""); print_int_with_units("Current Output: ", output_current, "A"); Serial.println(""); Serial.println("Values passed to the inverter: "); print_SOC(" SOC: ", SOC); print_int_with_units(" Max discharge power: ", max_target_discharge_power, "W"); Serial.print(", "); print_int_with_units(" Max charge power: ", max_target_charge_power, "W"); Serial.println(""); print_int_with_units(" Max temperature: ", temperature_max, "C"); Serial.print(", "); print_int_with_units(" Min temperature: ", temperature_min, "C"); Serial.println(""); #endif } void receive_can_tesla_model_3_battery(CAN_frame_t rx_frame) { static int mux = 0; static int temp = 0; switch (rx_frame.MsgID) { case 0x352: //SOC nominal_full_pack_energy = (((rx_frame.data.u8[1] & 0x0F) << 8) | (rx_frame.data.u8[0])); //Example 752 (75.2kWh) nominal_energy_remaining = (((rx_frame.data.u8[2] & 0x3F) << 5) | ((rx_frame.data.u8[1] & 0xF8) >> 3)) * 0.1; //Example 1247 * 0.1 = 124.7kWh expected_energy_remaining = (((rx_frame.data.u8[4] & 0x01) << 10) | (rx_frame.data.u8[3] << 2) | ((rx_frame.data.u8[2] & 0xC0) >> 6)); //Example 622 (62.2kWh) ideal_energy_remaining = (((rx_frame.data.u8[5] & 0x0F) << 7) | ((rx_frame.data.u8[4] & 0xFE) >> 1)) * 0.1; //Example 311 * 0.1 = 31.1kWh energy_to_charge_complete = (((rx_frame.data.u8[6] & 0x7F) << 4) | ((rx_frame.data.u8[5] & 0xF0) >> 4)) * 0.1; //Example 147 * 0.1 = 14.7kWh energy_buffer = (((rx_frame.data.u8[7] & 0x7F) << 1) | ((rx_frame.data.u8[6] & 0x80) >> 7)) * 0.1; //Example 1 * 0.1 = 0 full_charge_complete = ((rx_frame.data.u8[7] & 0x80) >> 7); break; case 0x20A: //Contactor state packContNegativeState = (rx_frame.data.u8[0] & 0x07); packContPositiveState = (rx_frame.data.u8[0] & 0x38) >> 3; contactor = (rx_frame.data.u8[1] & 0x0F); packContactorSetState = (rx_frame.data.u8[1] & 0x0F); packCtrsClosingAllowed = (rx_frame.data.u8[4] & 0x08) >> 3; pyroTestInProgress = (rx_frame.data.u8[4] & 0x20) >> 5; hvil_status = (rx_frame.data.u8[5] & 0x0F); break; case 0x252: //Limits regenerative_limit = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]) * 0.01; //Example 4715 * 0.01 = 47.15kW discharge_limit = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]) * 0.013; //Example 2009 * 0.013 = 26.117??? max_heat_park = (((rx_frame.data.u8[5] & 0x03) << 8) | rx_frame.data.u8[4]) * 0.01; //Example 500 * 0.01 = 5kW hvac_max_power = (((rx_frame.data.u8[7] << 6) | ((rx_frame.data.u8[6] & 0xFC) >> 2))) * 0.02; //Example 1000 * 0.02 = 20kW? break; case 0x132: //battery amps/volts volts = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]) * 0.01; //Example 37030mv * 0.01 = 370V amps = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]); //Example 65492 (-4.3A) OR 225 (22.5A) if (amps > 32768) { amps = - (65535 - amps); } amps = amps * 0.1; raw_amps = ((rx_frame.data.u8[5] << 8) | rx_frame.data.u8[4]) * -0.05; //Example 10425 * -0.05 = ? battery_charge_time_remaining = (((rx_frame.data.u8[7] & 0x0F) << 8) | rx_frame.data.u8[6]) * 0.1; //Example 228 * 0.1 = 22.8min if(battery_charge_time_remaining == 4095) { battery_charge_time_remaining = 0; } break; case 0x3D2: // total charge/discharge kwh total_discharge = ((rx_frame.data.u8[3] << 24) | (rx_frame.data.u8[2] << 16) | (rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]) * 0.001; total_charge = ((rx_frame.data.u8[7] << 24) | (rx_frame.data.u8[6] << 16) | (rx_frame.data.u8[5] << 8) | rx_frame.data.u8[4]) * 0.001; break; case 0x332: //min/max hist values mux = (rx_frame.data.u8[0] & 0x03); if(mux == 1) //Cell voltages { temp = ((rx_frame.data.u8[1] << 6) | (rx_frame.data.u8[0] >> 2)); temp = (temp & 0xFFF); cell_max_v = temp*2; temp = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]); temp = (temp & 0xFFF); cell_min_v = temp*2; max_vno = 1 + (rx_frame.data.u8[4] & 0x7F); //This cell has highest voltage min_vno = 1 + (rx_frame.data.u8[5] & 0x7F); //This cell has lowest voltage } if(mux == 0)//Temperature sensors { temp = rx_frame.data.u8[2]; max_temp = (temp * 0.5) - 40; //in celcius, Example 24 temp = rx_frame.data.u8[3]; min_temp = (temp * 0.5) - 40; //in celcius , Example 24 } break; case 0x2d2: //Min / max limits min_voltage = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]) * 0.01 * 2; //Example 24148mv * 0.01 = 241.48 V max_voltage = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]) * 0.01 * 2; //Example 40282mv * 0.01 = 402.82 V max_charge_current = (((rx_frame.data.u8[5] & 0x3F) << 8) | rx_frame.data.u8[4]) * 0.1; //Example 1301? * 0.1 = 130.1? max_discharge_current = (((rx_frame.data.u8[7] & 0x3F) << 8) | rx_frame.data.u8[6]) * 0.128; //Example 430? * 0.128 = 55.4? break; case 0x2b4: low_voltage = (((rx_frame.data.u8[1] & 0x03) << 8) | rx_frame.data.u8[0]) * 0.0390625; high_voltage = (((rx_frame.data.u8[2] << 6) | ((rx_frame.data.u8[1] & 0xFC) >> 2))) * 0.146484; output_current = (((rx_frame.data.u8[4] & 0x0F) << 8) | rx_frame.data.u8[3]) / 100; break; case 0x292: stillAliveCAN = 12; //We are getting CAN messages from the BMS, set the CAN detect counter soc_min = (((rx_frame.data.u8[1] & 0x03) << 8) | rx_frame.data.u8[0]); soc_vi = (((rx_frame.data.u8[2] & 0x0F) << 6) | ((rx_frame.data.u8[1] & 0xFC) >> 2)); soc_max = (((rx_frame.data.u8[3] & 0x3F) << 4) | ((rx_frame.data.u8[2] & 0xF0) >> 4)); soc_ave = ((rx_frame.data.u8[4] << 2) | ((rx_frame.data.u8[3] & 0xC0) >> 6)); break; default: break; } } void send_can_tesla_model_3_battery() { /*From bielec: My fist 221 message, to close the contactors is 0x41, 0x11, 0x01, 0x00, 0x00, 0x00, 0x20, 0x96 and then, to cause "hv_up_for_drive" I send an additional 221 message 0x61, 0x15, 0x01, 0x00, 0x00, 0x00, 0x20, 0xBA so two 221 messages are being continuously transmitted. When I want to shut down, I stop the second message and only send the first, for a few cycles, then stop all messages which causes the contactor to open. */ unsigned long currentMillis = millis(); //Send 30ms message if (currentMillis - previousMillis30 >= interval30) { previousMillis30 = currentMillis; if(bms_status == ACTIVE){ send221still = 10; ESP32Can.CANWriteFrame(&TESLA_221_1); ESP32Can.CANWriteFrame(&TESLA_221_2); } else{ //bms_status == FAULT if(send221still > 0){ ESP32Can.CANWriteFrame(&TESLA_221_1); send221still--; } } } } uint16_t convert2unsignedInt16(int16_t signed_value) { if(signed_value < 0){ return(65535 + signed_value); } else{ return (uint16_t)signed_value; } }