#include "NISSAN-LEAF-BATTERY.h" #include "ESP32CAN.h" #include "CAN_config.h" /* Do not change code below unless you are sure what you are doing */ static unsigned long previousMillis10 = 0; // will store last time a 10ms CAN Message was send static unsigned long previousMillis100 = 0; // will store last time a 100ms CAN Message was send static const int interval10 = 10; // interval (ms) at which send CAN Messages static const int interval100 = 100; // interval (ms) at which send CAN Messages const int rx_queue_size = 10; // Receive Queue size uint16_t CANerror = 0; //counter on how many CAN errors encountered static uint8_t CANstillAlive = 12; //counter for checking if CAN is still alive static uint8_t errorCode = 0; //stores if we have an error code active from battery control logic static uint8_t mprun10r = 0; //counter 0-20 for 0x1F2 message static byte mprun10 = 0; //counter 0-3 static byte mprun100 = 0; //counter 0-3 CAN_frame_t LEAF_1F2 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x1F2,.data = {0x10, 0x64, 0x00, 0xB0, 0x00, 0x1E, 0x00, 0x8F}}; CAN_frame_t LEAF_50B = {.FIR = {.B = {.DLC = 7,.FF = CAN_frame_std,}},.MsgID = 0x50B,.data = {0x00, 0x00, 0x06, 0xC0, 0x00, 0x00, 0x00}}; CAN_frame_t LEAF_50C = {.FIR = {.B = {.DLC = 6,.FF = CAN_frame_std,}},.MsgID = 0x50C,.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}; CAN_frame_t LEAF_1D4 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x1D4,.data = {0x6E, 0x6E, 0x00, 0x04, 0x07, 0x46, 0xE0, 0x44}}; static uint8_t crctable[256] = {0,133,143,10,155,30,20,145,179,54,60,185,40,173,167,34,227,102,108,233,120,253,247,114,80,213,223,90,203,78,68,193,67, 198,204,73,216,93,87,210,240,117,127,250,107,238,228,97,160,37,47,170,59,190,180,49,19,150,156,25,136,13,7,130,134,3,9, 140,29,152,146,23,53,176,186,63,174,43,33,164,101,224,234,111,254,123,113,244,214,83,89,220,77,200,194,71,197,64,74,207, 94,219,209,84,118,243,249,124,237,104,98,231,38,163,169,44,189,56,50,183,149,16,26,159,14,139,129,4,137,12,6,131,18,151, 157,24,58,191,181,48,161,36,46,171,106,239,229,96,241,116,126,251,217,92,86,211,66,199,205,72,202,79,69,192,81,212,222, 91,121,252,246,115,226,103,109,232,41,172,166,35,178,55,61,184,154,31,21,144,1,132,142,11,15,138,128,5,148,17,27,158,188, 57,51,182,39,162,168,45,236,105,99,230,119,242,248,125,95,218,208,85,196,65,75,206,76,201,195,70,215,82,88,221,255,122, 112,245,100,225,235,110,175,42,32,165,52,177,187,62,28,153,147,22,135,2,8,141}; //Nissan LEAF battery parameters from CAN #define ZE0_BATTERY 0 #define AZE0_BATTERY 1 #define ZE1_BATTERY 2 static uint8_t LEAF_Battery_Type = ZE0_BATTERY; #define WH_PER_GID 77 //One GID is this amount of Watt hours #define LB_MAX_SOC 1000 //LEAF BMS never goes over this value. We use this info to rescale SOC% sent to Fronius #define LB_MIN_SOC 0 //LEAF BMS never goes below this value. We use this info to rescale SOC% sent to Fronius static uint16_t LB_Discharge_Power_Limit = 0; //Limit in kW static uint16_t LB_Charge_Power_Limit = 0; //Limit in kW static int16_t LB_MAX_POWER_FOR_CHARGER = 0; //Limit in kW static int16_t LB_SOC = 500; //0 - 100.0 % (0-1000) static uint16_t LB_TEMP = 0; //Temporary value used in status checks static uint16_t LB_Wh_Remaining = 0; //Amount of energy in battery, in Wh static uint16_t LB_GIDS = 0; static uint16_t LB_MAX = 0; static uint16_t LB_Max_GIDS = 273; //Startup in 24kWh mode static uint16_t LB_StateOfHealth = 99; //State of health % static uint16_t LB_Total_Voltage = 370; //Battery voltage (0-450V) static int16_t LB_Current = 0; //Current in A going in/out of battery static int16_t LB_Power = 0; //Watts going in/out of battery static int16_t LB_HistData_Temperature_MAX = 6; //-40 to 86*C static int16_t LB_HistData_Temperature_MIN = 5; //-40 to 86*C static uint8_t LB_Relay_Cut_Request = 0; //LB_FAIL static uint8_t LB_Failsafe_Status = 0; //LB_STATUS = 000b = normal start Request //001b = Main Relay OFF Request //010b = Charging Mode Stop Request //011b = Main Relay OFF Request //100b = Caution Lamp Request //101b = Caution Lamp Request & Main Relay OFF Request //110b = Caution Lamp Request & Charging Mode Stop Request //111b = Caution Lamp Request & Main Relay OFF Request static byte LB_Interlock = 1; //Contains info on if HV leads are seated (Note, to use this both HV connectors need to be inserted) static byte LB_Full_CHARGE_flag = 0; //LB_FCHGEND , Goes to 1 if battery is fully charged static byte LB_MainRelayOn_flag = 0; //No-Permission=0, Main Relay On Permission=1 static byte LB_Capacity_Empty = 0; //LB_EMPTY, , Goes to 1 if battery is empty void update_values_leaf_battery() { //This function maps all the values fetched via CAN to the correct parameters used for modbus bms_status = ACTIVE; //Startout in active mode StateOfHealth = (LB_StateOfHealth * 100); //Increase range from 99% -> 99.00% //Calculate the SOC% value to send to Fronius LB_SOC = LB_MIN_SOC + (LB_MAX_SOC - LB_MIN_SOC) * (LB_SOC - MINPERCENTAGE) / (MAXPERCENTAGE - MINPERCENTAGE); if (LB_SOC < 0) { //We are in the real SOC% range of 0-20%, always set SOC sent to Fronius as 0% LB_SOC = 0; } if (LB_SOC > 1000) { //We are in the real SOC% range of 80-100%, always set SOC sent to Fronius as 100% LB_SOC = 1000; } SOC = (LB_SOC * 10); //increase LB_SOC range from 0-100.0 -> 100.00 battery_voltage = (LB_Total_Voltage*10); //One more decimal needed battery_current = LB_Current; capacity_Wh = (LB_Max_GIDS * WH_PER_GID); remaining_capacity_Wh = LB_Wh_Remaining; /* Define power able to be discharged from battery */ if(LB_Discharge_Power_Limit > 30) //if >30kW can be pulled from battery { max_target_discharge_power = 30000; //cap value so we don't go over the Fronius limits } else { max_target_discharge_power = (LB_Discharge_Power_Limit * 1000); //kW to W } if(SOC == 0) //Scaled SOC% value is 0.00%, we should not discharge battery further { max_target_discharge_power = 0; } /* Define power able to be put into the battery */ if(LB_Charge_Power_Limit > 30) //if >30kW can be put into the battery { max_target_charge_power = 30000; //cap value so we don't go over the Fronius limits } if(LB_Charge_Power_Limit < 0) //LB_MAX_POWER_FOR_CHARGER can actually go to -10kW { max_target_charge_power = 0; //cap calue so we dont do under the Fronius limits } else { max_target_charge_power = (LB_Charge_Power_Limit * 1000); //kW to W } if(SOC == 10000) //Scaled SOC% value is 100.00% { max_target_charge_power = 0; //No need to charge further, set max power to 0 } /*Extra safeguards*/ if(LB_GIDS < 10) //800Wh left in battery { //Battery is running abnormally low, some discharge logic might have failed. Zero it all out. SOC = 0; max_target_discharge_power = 0; } if(LB_Full_CHARGE_flag) { //Battery reports that it is fully charged stop all further charging incase it hasn't already max_target_charge_power = 0; } if(LB_Relay_Cut_Request) { //LB_FAIL, BMS requesting shutdown and contactors to be opened Serial.println("Battery requesting immediate shutdown and contactors to be opened!"); //Note, this is sometimes triggered during the night while idle, and the BMS recovers after a while. Removed latching from this scenario errorCode = 1; max_target_discharge_power = 0; max_target_charge_power = 0; } if(LB_Failsafe_Status > 0) // 0 is normal, start charging/discharging { switch(LB_Failsafe_Status) { case(1): //Normal Stop Request //This means that battery is fully discharged and it's OK to stop the session. For stationary storage we don't disconnect contactors, so we do nothing here. break; case(2): //Charging Mode Stop Request //This means that battery is fully charged and it's OK to stop the session. For stationary storage we don't disconnect contactors, so we do nothing here. break; case(3): //Charging Mode Stop Request & Normal Stop Request //Normal stop request. For stationary storage we don't disconnect contactors, so we ignore this. break; case(4): //Caution Lamp Request Serial.println("Battery raised caution indicator. Inspect battery status!"); break; case(5): //Caution Lamp Request & Normal Stop Request bms_status = FAULT; errorCode = 2; Serial.println("Battery raised caution indicator AND requested discharge stop. Inspect battery status!"); break; case(6): //Caution Lamp Request & Charging Mode Stop Request bms_status = FAULT; errorCode = 3; Serial.println("Battery raised caution indicator AND requested charge stop. Inspect battery status!"); break; case(7): //Caution Lamp Request & Charging Mode Stop Request & Normal Stop Request bms_status = FAULT; errorCode = 4; Serial.println("Battery raised caution indicator AND requested charge/discharge stop. Inspect battery status!"); break; default: break; } } if(LB_StateOfHealth < 25) { //Battery is extremely degraded, not fit for secondlifestorage. Zero it all out. if(LB_StateOfHealth != 0) { //Extra check to see that we actually have a SOH Value available Serial.println("State of health critically low. Battery internal resistance too high to continue. Recycle battery."); bms_status = FAULT; errorCode = 5; max_target_discharge_power = 0; max_target_charge_power = 0; } } #ifdef INTERLOCK_REQUIRED if(!LB_Interlock) { Serial.println("Battery interlock loop broken. Check that high voltage connectors are seated. Battery will be disabled!"); bms_status = FAULT; errorCode = 6; SOC = 0; max_target_discharge_power = 0; max_target_charge_power = 0; } #endif /* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/ if(!CANstillAlive) { bms_status = FAULT; errorCode = 7; Serial.println("No CAN communication detected for 60s. Shutting down battery control."); } else { CANstillAlive--; } LB_Power = LB_Total_Voltage * LB_Current;//P = U * I stat_batt_power = convert2unsignedint16(LB_Power); //add sign if needed temperature_min = convert2unsignedint16((LB_HistData_Temperature_MIN * 10)); //add sign if needed and increase range temperature_max = convert2unsignedint16((LB_HistData_Temperature_MAX * 10)); if(printValues) { //values heading towards the modbus registers if(errorCode > 0) { Serial.print("ERROR CODE ACTIVE IN SYSTEM. NUMBER: "); Serial.println(errorCode); } Serial.print("BMS Status (3=OK): "); Serial.println(bms_status); switch (bms_char_dis_status) { case 0: Serial.println("Battery Idle"); break; case 1: Serial.println("Battery Discharging"); break; case 2: Serial.println("Battery Charging"); break; default: break; } Serial.print("Power: "); Serial.println(LB_Power); Serial.print("Max discharge power: "); Serial.println(max_target_discharge_power); Serial.print("Max charge power: "); Serial.println(max_target_charge_power); Serial.print("SOH%: "); Serial.println(StateOfHealth); Serial.print("SOC% to Fronius: "); Serial.println(SOC); Serial.print("Temperature Min: "); Serial.println(temperature_min); Serial.print("Temperature Max: "); Serial.println(temperature_max); Serial.print("GIDS: "); Serial.println(LB_GIDS); Serial.print("LEAF battery gen: "); Serial.println(LEAF_Battery_Type); } } void receive_can_leaf_battery(CAN_frame_t rx_frame) { switch (rx_frame.MsgID) { case 0x1DB: if(is_message_corrupt(rx_frame)) { CANerror++; break; //Message content malformed, abort reading data from it } LB_Current = (rx_frame.data.u8[0] << 3) | (rx_frame.data.u8[1] & 0xe0) >> 5; if (LB_Current & 0x0400) { // negative so extend the sign bit LB_Current |= 0xf800; } LB_Total_Voltage = ((rx_frame.data.u8[2] << 2) | (rx_frame.data.u8[3] & 0xc0) >> 6) / 2; //Collect various data from the BMS LB_Relay_Cut_Request = ((rx_frame.data.u8[1] & 0x18) >> 3); LB_Failsafe_Status = (rx_frame.data.u8[1] & 0x07); LB_MainRelayOn_flag = (byte) ((rx_frame.data.u8[3] & 0x20) >> 5); LB_Full_CHARGE_flag = (byte) ((rx_frame.data.u8[3] & 0x10) >> 4); LB_Interlock = (byte) ((rx_frame.data.u8[3] & 0x08) >> 3); break; case 0x1DC: if(is_message_corrupt(rx_frame)) { CANerror++; break; //Message content malformed, abort reading data from it } LB_Discharge_Power_Limit = ((rx_frame.data.u8[0] << 2 | rx_frame.data.u8[1] >> 6) / 4.0); LB_Charge_Power_Limit = (((rx_frame.data.u8[1] & 0x3F) << 2 | rx_frame.data.u8[2] >> 4) / 4.0); LB_MAX_POWER_FOR_CHARGER = ((((rx_frame.data.u8[2] & 0x0F) << 6 | rx_frame.data.u8[3] >> 2) / 10.0) - 10); break; case 0x55B: if(is_message_corrupt(rx_frame)) { CANerror++; break; //Message content malformed, abort reading data from it } LB_TEMP = (rx_frame.data.u8[0] << 2 | rx_frame.data.u8[1] >> 6); if (LB_TEMP != 0x3ff) //3FF is unavailable value { LB_SOC = LB_TEMP; } break; case 0x5BC: CANstillAlive = 12; //Indicate that we are still getting CAN messages from the BMS LB_MAX = ((rx_frame.data.u8[5] & 0x10) >> 4); if (LB_MAX) { LB_Max_GIDS = (rx_frame.data.u8[0] << 2) | ((rx_frame.data.u8[1] & 0xC0) >> 6); //Max gids active, do nothing //Only the 30/40/62kWh packs have this mux } else { //Normal current GIDS value is transmitted LB_GIDS = (rx_frame.data.u8[0] << 2) | ((rx_frame.data.u8[1] & 0xC0) >> 6); LB_Wh_Remaining = (LB_GIDS * WH_PER_GID); } LB_TEMP = (rx_frame.data.u8[4] >> 1); if (LB_TEMP != 0) { LB_StateOfHealth = LB_TEMP; //Collect state of health from battery } break; case 0x5C0: //This method only works for 2013-2017 AZE0 LEAF packs, the mux is different on other generations if(LEAF_Battery_Type == AZE0_BATTERY) { if ((rx_frame.data.u8[0]>>6) == 1) { // Battery MAX temperature. Effectively has only 7-bit precision, as the bottom bit is always 0. LB_HistData_Temperature_MAX = ((rx_frame.data.u8[2] / 2) - 40); } if ((rx_frame.data.u8[0]>>6) == 3) { // Battery MIN temperature. Effectively has only 7-bit precision, as the bottom bit is always 0. LB_HistData_Temperature_MIN = ((rx_frame.data.u8[2] / 2) - 40); } } if(LEAF_Battery_Type == ZE1_BATTERY) { //note different mux location in first frame if ((rx_frame.data.u8[0] & 0x0F) == 1) { LB_HistData_Temperature_MAX = ((rx_frame.data.u8[2] / 2) - 40); } if ((rx_frame.data.u8[0] & 0x0F) == 3) { LB_HistData_Temperature_MIN = ((rx_frame.data.u8[2] / 2) - 40); } } break; case 0x59E: //AZE0 2013-2017 or ZE1 2018-2023 battery detected //Only detect as AZE0 if not already set as ZE1 if(LEAF_Battery_Type != ZE1_BATTERY) { LEAF_Battery_Type = AZE0_BATTERY; } break; case 0x1ED: case 0x1C2: //ZE1 2018-2023 battery detected! LEAF_Battery_Type = ZE1_BATTERY; break; default: break; } } void send_can_leaf_battery() { static unsigned long currentMillis = millis(); // Send 100ms CAN Message if (currentMillis - previousMillis100 >= interval100) { previousMillis100 = currentMillis; ESP32Can.CANWriteFrame(&LEAF_50B); //Always send 50B as a static message (Contains HCM_WakeUpSleepCommand == 11b == WakeUp, and CANMASK = 1) mprun100++; if (mprun100 > 3) { mprun100 = 0; } if (mprun100 == 0) { LEAF_50C.data.u8[3] = 0x00; LEAF_50C.data.u8[4] = 0x5D; LEAF_50C.data.u8[5] = 0xC8; } else if(mprun100 == 1) { LEAF_50C.data.u8[3] = 0x01; LEAF_50C.data.u8[4] = 0xB2; LEAF_50C.data.u8[5] = 0x31; } else if(mprun100 == 2) { LEAF_50C.data.u8[3] = 0x02; LEAF_50C.data.u8[4] = 0x5D; LEAF_50C.data.u8[5] = 0x63; } else if(mprun100 == 3) { LEAF_50C.data.u8[3] = 0x03; LEAF_50C.data.u8[4] = 0xB2; LEAF_50C.data.u8[5] = 0x9A; } ESP32Can.CANWriteFrame(&LEAF_50C); } //Send 10ms message if (currentMillis - previousMillis10 >= interval10) { previousMillis10 = currentMillis; if(mprun10 == 0) { LEAF_1D4.data.u8[4] = 0x07; LEAF_1D4.data.u8[7] = 0x12; } else if(mprun10 == 1) { LEAF_1D4.data.u8[4] = 0x47; LEAF_1D4.data.u8[7] = 0xD5; } else if(mprun10 == 2) { LEAF_1D4.data.u8[4] = 0x87; LEAF_1D4.data.u8[7] = 0x19; } else if(mprun10 == 3) { LEAF_1D4.data.u8[4] = 0xC7; LEAF_1D4.data.u8[7] = 0xDE; } ESP32Can.CANWriteFrame(&LEAF_1D4); mprun10++; if (mprun10 > 3) { mprun10 = 0; } switch(mprun10r) { case(0): LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x00; LEAF_1F2.data.u8[7] = 0x8F; break; case(1): LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x01; LEAF_1F2.data.u8[7] = 0x80; break; case(2): LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x02; LEAF_1F2.data.u8[7] = 0x81; break; case(3): LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x03; LEAF_1F2.data.u8[7] = 0x82; break; case(4): LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x00; LEAF_1F2.data.u8[7] = 0x8F; break; case(5): // Set 2 LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x01; LEAF_1F2.data.u8[7] = 0x84; break; case(6): LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x02; LEAF_1F2.data.u8[7] = 0x85; break; case(7): LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x03; LEAF_1F2.data.u8[7] = 0x86; break; case(8): LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x00; LEAF_1F2.data.u8[7] = 0x83; break; case(9): LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x01; LEAF_1F2.data.u8[7] = 0x84; break; case(10): // Set 3 LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x02; LEAF_1F2.data.u8[7] = 0x81; break; case(11): LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x03; LEAF_1F2.data.u8[7] = 0x82; break; case(12): LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x00; LEAF_1F2.data.u8[7] = 0x8F; break; case(13): LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x01; LEAF_1F2.data.u8[7] = 0x80; break; case(14): LEAF_1F2.data.u8[3] = 0xB0; LEAF_1F2.data.u8[6] = 0x02; LEAF_1F2.data.u8[7] = 0x81; break; case(15): // Set 4 LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x03; LEAF_1F2.data.u8[7] = 0x86; break; case(16): LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x00; LEAF_1F2.data.u8[7] = 0x83; break; case(17): LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x01; LEAF_1F2.data.u8[7] = 0x84; break; case(18): LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x02; LEAF_1F2.data.u8[7] = 0x85; break; case(19): LEAF_1F2.data.u8[3] = 0xB4; LEAF_1F2.data.u8[6] = 0x03; LEAF_1F2.data.u8[7] = 0x86; break; default: break; } ESP32Can.CANWriteFrame(&LEAF_1F2); //Contains (CHG_STA_RQ == 1 == Normal Charge) mprun10r++; if(mprun10r > 19) // 0x1F2 patter repeats after 20 messages, { mprun10r = 0; } //Serial.println("CAN 10ms done"); } } uint16_t convert2unsignedint16(uint16_t signed_value) { if(signed_value < 0) { return(65535 + signed_value); } else { return signed_value; } } bool is_message_corrupt(CAN_frame_t rx_frame) { uint8_t crc = 0; for (uint8_t j = 0; j < 7; j++) { crc = crctable[(crc ^ static_cast(rx_frame.data.u8[j])) % 256]; } return crc != rx_frame.data.u8[7]; }