#include "RENAULT-ZOE-BATTERY.h" #include "ESP32CAN.h" #include "CAN_config.h" /* Do not change code below unless you are sure what you are doing */ #define LB_MAX_SOC 1000 //BMS never goes over this value. We use this info to rescale SOC% sent to Fronius #define LB_MIN_SOC 0 //BMS never goes below this value. We use this info to rescale SOC% sent to Fronius const int rx_queue_size = 10; // Receive Queue size static uint8_t CANstillAlive = 12; //counter for checking if CAN is still alive static uint8_t errorCode = 0; //stores if we have an error code active from battery control logic static int16_t LB_SOC = 0; static int16_t LB_SOH = 0; static int16_t LB_MIN_TEMPERATURE = 0; static int16_t LB_MAX_TEMPERATURE = 0; static uint16_t LB_Discharge_Power_Limit = 0; static uint32_t LB_Discharge_Power_Limit_Watts = 0; static uint16_t LB_Charge_Power_Limit = 0; static uint32_t LB_Charge_Power_Limit_Watts = 0; CAN_frame_t ZOE_423 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x423,.data = {0x33, 0x00, 0xFF, 0xFF, 0x00, 0xE0, 0x00, 0x00}}; static unsigned long previousMillis10 = 0; // will store last time a 10ms CAN Message was sent static unsigned long previousMillis100 = 0; // will store last time a 100ms CAN Message was sent static const int interval10 = 10; // interval (ms) at which send CAN Messages static const int interval100 = 100; // interval (ms) at which send CAN Messages void update_values_zoe_battery() { //This function maps all the values fetched via CAN to the correct parameters used for modbus bms_status = ACTIVE; //Startout in active mode StateOfHealth = (LB_SOH * 100); //Increase range from 99% -> 99.00% //Calculate the SOC% value to send to Fronius LB_SOC = LB_MIN_SOC + (LB_MAX_SOC - LB_MIN_SOC) * (LB_SOC - MINPERCENTAGE_ZOE) / (MAXPERCENTAGE_ZOE - MINPERCENTAGE_ZOE); if (LB_SOC < 0) { //We are in the real SOC% range of 0-20%, always set SOC sent to Fronius as 0% LB_SOC = 0; } if (LB_SOC > 1000) { //We are in the real SOC% range of 80-100%, always set SOC sent to Fronius as 100% LB_SOC = 1000; } SOC = (LB_SOC * 10); //increase LB_SOC range from 0-100.0 -> 100.00 battery_voltage; battery_current; capacity_Wh = BATTERY_WH_MAX; remaining_capacity_Wh; LB_Discharge_Power_Limit_Watts = (LB_Discharge_Power_Limit * 500); //Convert value fetched from battery to watts /* Define power able to be discharged from battery */ if(LB_Discharge_Power_Limit_Watts > 30000) //if >30kW can be pulled from battery { max_target_discharge_power = 30000; //cap value so we don't go over the Fronius limits } else { max_target_discharge_power = LB_Discharge_Power_Limit_Watts; } if(SOC == 0) //Scaled SOC% value is 0.00%, we should not discharge battery further { max_target_discharge_power = 0; } LB_Charge_Power_Limit_Watts = (LB_Charge_Power_Limit * 500); //Convert value fetched from battery to watts /* Define power able to be put into the battery */ if(LB_Charge_Power_Limit_Watts > 30000) //if >30kW can be put into the battery { max_target_charge_power = 30000; //cap value so we don't go over the Fronius limits } if(LB_Charge_Power_Limit_Watts < 0) { max_target_charge_power = 0; //cap calue so we dont do under the Fronius limits } else { max_target_charge_power = LB_Charge_Power_Limit_Watts; } if(SOC == 10000) //Scaled SOC% value is 100.00% { max_target_charge_power = 0; //No need to charge further, set max power to 0 } /* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/ if(!CANstillAlive) { bms_status = FAULT; Serial.println("No CAN communication detected for 60s. Shutting down battery control."); } else { CANstillAlive--; } stat_batt_power; temperature_min; temperature_max; if(printValues) { //values heading towards the modbus registers Serial.print("BMS Status (3=OK): "); Serial.println(bms_status); Serial.print("Max discharge power: "); Serial.println(max_target_discharge_power); Serial.print("Max charge power: "); Serial.println(max_target_charge_power); Serial.print("SOH%: "); Serial.println(LB_SOH); Serial.print("SOH% to Fronius: "); Serial.println(StateOfHealth); Serial.print("LB_SOC: "); Serial.println(LB_SOC); Serial.print("SOC% to Fronius: "); Serial.println(SOC); Serial.print("Temperature Min: "); Serial.println(temperature_min); Serial.print("Temperature Max: "); Serial.println(temperature_max); } } void receive_can_zoe_battery(CAN_frame_t rx_frame) { switch (rx_frame.MsgID) { case 0x155: //BMS1 CANstillAlive = 12; //Indicate that we are still getting CAN messages from the BMS //LB_Max_Charge_Amps = //LB_Current = (((rx_frame.data.u8[1] & 0xF8) << 5) | (rx_frame.data.u8[2])); LB_SOC = ((rx_frame.data.u8[4] << 8) | (rx_frame.data.u8[5])); break; case 0x424: //BMS2 LB_Charge_Power_Limit = (rx_frame.data.u8[2]); LB_Discharge_Power_Limit = (rx_frame.data.u8[3]); LB_SOH = (rx_frame.data.u8[5]); LB_MIN_TEMPERATURE = ((rx_frame.data.u8[4] & 0x7F) - 40); LB_MAX_TEMPERATURE = ((rx_frame.data.u8[7] & 0x7F) - 40); break; case 0x425: //BMS3 (could also be 445?) //LB_kWh_Remaining = //LB_Cell_Max_Voltage = //LB_Cell_Min_Voltage = break; default: break; } } void send_can_zoe_battery() { static unsigned long currentMillis = millis(); // Send 100ms CAN Message if (currentMillis - previousMillis100 >= interval100) { previousMillis100 = currentMillis; ESP32Can.CANWriteFrame(&ZOE_423); //Send 0x423 every 100ms to keep BMS happy! } }