/* Select battery used */ #define BATTERY_TYPE_LEAF // See NISSAN-LEAF-BATTERY.h for more LEAF battery settings //#define TESLA_MODEL_3_BATTERY // See TESLA-MODEL-3-BATTERY.h for more Tesla battery settings //#define RENAULT_ZOE_BATTERY // See RENAULT-ZOE-BATTERY.h for more Zoe battery settings //#define IMIEV_ION_CZERO_BATTERY // See IMIEV-CZERO-ION-BATTERY.h for more triplet battery settings //#define CHADEMO // See CHADEMO.h for more Chademo related settings /* Select inverter communication protocol. See Wiki for which to use with your inverter: https://github.com/dalathegreat/BYD-Battery-Emulator-For-Gen24/wiki */ #define MODBUS_BYD //Enable this line to emulate a "BYD 11kWh HVM battery" over Modbus RTU //#define CAN_BYD //Enable this line to emulate a "BYD Battery-Box Premium HVS" over CAN Bus //#define SOLAX_CAN //Enable this line to emulate a "SolaX Triple Power LFP" over CAN bus //#define PYLON_CAN //Enable this line to emulate a "Pylontech battery" over CAN bus /* Do not change any code below this line unless you are sure what you are doing */ /* Only change battery specific settings and limits in their respective .h files */ #include #include "HardwareSerial.h" #include "config.h" #include "Logging.h" #include "mbServerFCs.h" #include "ModbusServerRTU.h" #include "ESP32CAN.h" #include "CAN_config.h" #include "Adafruit_NeoPixel.h" #include "BATTERIES.h" #include "INVERTERS.h" //CAN parameters #define MAX_CAN_FAILURES 5000 //Amount of malformed CAN messages to allow before raising a warning CAN_device_t CAN_cfg; // CAN Config const int rx_queue_size = 10; // Receive Queue size //Interval settings const int intervalInverterTask = 4800; //Interval at which to refresh modbus registers / inverter values const int interval10 = 10; //Interval for 10ms tasks unsigned long previousMillis10ms = 50; //ModbusRTU parameters unsigned long previousMillisModbus = 0; //will store last time a modbus register refresh #define MB_RTU_NUM_VALUES 30000 uint16_t mbPV[MB_RTU_NUM_VALUES]; // process variable memory: produced by sensors, etc., cyclic read by PLC via modbus TCP //Gen24 parameters #define STANDBY 0 #define INACTIVE 1 #define DARKSTART 2 #define ACTIVE 3 #define FAULT 4 #define UPDATING 5 uint16_t capacity_Wh_startup = BATTERY_WH_MAX; uint16_t max_power = 40960; //41kW const uint16_t max_voltage = ABSOLUTE_MAX_VOLTAGE; //if higher charging is not possible (goes into forced discharge) const uint16_t min_voltage = ABSOLUTE_MIN_VOLTAGE; //if lower Gen24 disables battery uint16_t min_volt_byd_can = min_voltage; uint16_t max_volt_byd_can = max_voltage; uint16_t min_volt_solax_can = min_voltage; uint16_t max_volt_solax_can = max_voltage; uint16_t min_volt_pylon_can = min_voltage; uint16_t max_volt_pylon_can = max_voltage; uint16_t battery_voltage = 3700; uint16_t battery_current = 0; uint16_t SOC = 5000; //SOC 0-100.00% //Updates later on from CAN uint16_t StateOfHealth = 9900; //SOH 0-100.00% //Updates later on from CAN uint16_t capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN uint16_t remaining_capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN uint16_t max_target_discharge_power = 0; //0W (0W > restricts to no discharge) //Updates later on from CAN uint16_t max_target_charge_power = 4312; //4.3kW (during charge), both 307&308 can be set (>0) at the same time //Updates later on from CAN. Max value is 30000W uint16_t temperature_max = 50; //reads from battery later uint16_t temperature_min = 60; //reads from battery later uint16_t bms_char_dis_status; //0 idle, 1 discharging, 2, charging uint16_t bms_status = ACTIVE; //ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING] uint16_t stat_batt_power = 0; //power going in/out of battery // Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout ModbusServerRTU MBserver(Serial2, 2000); // LED control Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800); static int green = 0; static bool rampUp = true; const int maxBrightness = 255; //Contactor parameters enum State { WAITING_FOR_BATTERY, PRECHARGE, NEGATIVE, POSITIVE, PRECHARGE_OFF, COMPLETED, SHUTDOWN_REQUESTED }; State contactorStatus = WAITING_FOR_BATTERY; #define PRECHARGE_TIME_MS 160 #define NEGATIVE_CONTACTOR_TIME_MS 1000 #define POSITIVE_CONTACTOR_TIME_MS 2000 unsigned long prechargeStartTime = 0; unsigned long negativeStartTime = 0; unsigned long timeSpentInFaultedMode = 0; uint8_t batteryAllowsContactorClosing = 0; // Setup() - initialization happens here void setup() { //CAN pins pinMode(CAN_SE_PIN, OUTPUT); digitalWrite(CAN_SE_PIN, LOW); CAN_cfg.speed = CAN_SPEED_500KBPS; CAN_cfg.tx_pin_id = GPIO_NUM_27; CAN_cfg.rx_pin_id = GPIO_NUM_26; CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t)); // Init CAN Module ESP32Can.CANInit(); Serial.println(CAN_cfg.speed); //Init contactor pins pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT); digitalWrite(POSITIVE_CONTACTOR_PIN, LOW); pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT); digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW); pinMode(PRECHARGE_PIN, OUTPUT); digitalWrite(PRECHARGE_PIN, LOW); // Init Serial monitor Serial.begin(9600); while (!Serial) { } Serial.println("__ OK __"); //Set up Modbus RTU Server pinMode(RS485_EN_PIN, OUTPUT); digitalWrite(RS485_EN_PIN, HIGH); pinMode(RS485_SE_PIN, OUTPUT); digitalWrite(RS485_SE_PIN, HIGH); pinMode(PIN_5V_EN, OUTPUT); digitalWrite(PIN_5V_EN, HIGH); // Init Static data to the RTU Modbus handle_static_data_modbus(); // Init Serial2 connected to the RTU Modbus RTUutils::prepareHardwareSerial(Serial2); Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN); // Register served function code worker for server MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03); MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06); MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16); MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23); // Start ModbusRTU background task MBserver.begin(Serial2); // Init LED control pixels.begin(); pixels.setPixelColor(0, pixels.Color(0, 0, 255)); // Blue LED full brightness while battery and CAN is starting. pixels.show(); // Incase of crash due to CAN polarity / termination, LED will remain BLUE //Inform user what setup is used #ifdef BATTERY_TYPE_LEAF Serial.println("Nissan LEAF battery selected"); #endif #ifdef TESLA_MODEL_3_BATTERY Serial.println("Tesla Model 3 battery selected"); #endif #ifdef RENAULT_ZOE_BATTERY Serial.println("Renault Zoe / Kangoo battery selected"); #endif #ifdef IMIEV_ION_CZERO_BATTERY Serial.println("Mitsubishi i-MiEV / Citroen C-Zero / Peugeot Ion battery selected"); #endif } // perform main program functions void loop() { handle_can(); //runs as fast as possible, handle CAN routines if (millis() - previousMillis10ms >= interval10) //every 10ms { previousMillis10ms = millis(); handle_LED_state(); //Set the LED color according to state handle_contactors(); //Take care of startup precharge/contactor closing } if (millis() - previousMillisModbus >= intervalInverterTask) //every 5s { previousMillisModbus = millis(); handle_inverter(); //Update values heading towards inverter } } void handle_can() { //This section checks if we have a complete CAN message incoming //Depending on which battery/inverter is selected, we forward this to their respective CAN routines CAN_frame_t rx_frame; if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 3 * portTICK_PERIOD_MS) == pdTRUE) { if (rx_frame.FIR.B.FF == CAN_frame_std) { //printf("New standard frame"); #ifdef BATTERY_TYPE_LEAF receive_can_leaf_battery(rx_frame); #endif #ifdef TESLA_MODEL_3_BATTERY receive_can_tesla_model_3_battery(rx_frame); #endif #ifdef RENAULT_ZOE_BATTERY receive_can_zoe_battery(rx_frame); #endif #ifdef IMIEV_ION_CZERO_BATTERY receive_can_imiev_battery(rx_frame); #endif #ifdef CAN_BYD receive_can_byd(rx_frame); #endif #ifdef CHADEMO receive_can_chademo(rx_frame); #endif } else { //printf("New extended frame"); #ifdef SOLAX_CAN receive_can_solax(rx_frame); #endif #ifdef PYLON_CAN receive_can_pylon(rx_frame); #endif } } //When we are done checking if a CAN message has arrived, we can focus on sending CAN messages //Inverter sending #ifdef CAN_BYD send_can_byd(); #endif #ifdef SOLAX_CAN send_can_solax(); #endif //Battery sending #ifdef BATTERY_TYPE_LEAF send_can_leaf_battery(); #endif #ifdef TESLA_MODEL_3_BATTERY send_can_tesla_model_3_battery(); #endif #ifdef RENAULT_ZOE_BATTERY send_can_zoe_battery(); #endif #ifdef IMIEV_ION_CZERO_BATTERY send_can_imiev_battery(); #endif #ifdef CHADEMO send_can_chademo_battery(); #endif } void handle_inverter() { #ifdef BATTERY_TYPE_LEAF update_values_leaf_battery(); //Map the values to the correct registers #endif #ifdef TESLA_MODEL_3_BATTERY update_values_tesla_model_3_battery(); //Map the values to the correct registers #endif #ifdef RENAULT_ZOE_BATTERY update_values_zoe_battery(); //Map the values to the correct registers #endif #ifdef IMIEV_ION_CZERO_BATTERY update_values_imiev_battery(); //Map the values to the correct registers #endif #ifdef SOLAX_CAN update_values_can_solax(); #endif #ifdef CAN_BYD update_values_can_byd(); #endif #ifdef PYLON_CAN update_values_can_pylon(); #endif #ifdef CHADEMO update_values_can_chademo(); #endif //Updata for ModbusRTU Server for GEN24 handle_update_data_modbusp201(); handle_update_data_modbusp301(); } void handle_contactors() { //First check if we have any active errors, incase we do, turn off the battery after 15 seconds if(bms_status == FAULT) { timeSpentInFaultedMode++; } if(timeSpentInFaultedMode > 1500) { contactorStatus = SHUTDOWN_REQUESTED; } if(contactorStatus == SHUTDOWN_REQUESTED) { digitalWrite(PRECHARGE_PIN, LOW); digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW); digitalWrite(POSITIVE_CONTACTOR_PIN, LOW); return; } //After that, check if we are OK to start turning on the battery if(contactorStatus == WAITING_FOR_BATTERY) { if(batteryAllowsContactorClosing) { contactorStatus = PRECHARGE; } } if(contactorStatus == COMPLETED) { //Skip running the state machine below if it has already completed return; } unsigned long currentTime = millis(); //Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge switch (contactorStatus) { case PRECHARGE: digitalWrite(PRECHARGE_PIN, HIGH); prechargeStartTime = currentTime; contactorStatus = NEGATIVE; break; case NEGATIVE: if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) { digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH); negativeStartTime = currentTime; contactorStatus = POSITIVE; } break; case POSITIVE: if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) { digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH); contactorStatus = PRECHARGE_OFF; } break; case PRECHARGE_OFF: if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) { digitalWrite(PRECHARGE_PIN, LOW); contactorStatus = COMPLETED; } break; default: break; } } void handle_static_data_modbus() { // Store the data into the array static uint16_t si_data[] = { 21321, 1 }; static uint16_t byd_data[] = { 16985, 17408, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static uint16_t battery_data[] = { 16985, 17440, 16993, 29812, 25970, 31021, 17007, 30752, 20594, 25965, 26997, 27936, 18518, 0, 0, 0 }; static uint16_t volt_data[] = { 13614, 12288, 0, 0, 0, 0, 0, 0, 13102, 12598, 0, 0, 0, 0, 0, 0 }; static uint16_t serial_data[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static uint16_t static_data[] = { 1, 0 }; static uint16_t* data_array_pointers[] = { si_data, byd_data, battery_data, volt_data, serial_data, static_data }; static uint16_t data_sizes[] = { sizeof(si_data), sizeof(byd_data), sizeof(battery_data), sizeof(volt_data), sizeof(serial_data), sizeof(static_data) }; static uint16_t i = 100; for (uint8_t arr_idx = 0; arr_idx < sizeof(data_array_pointers) / sizeof(uint16_t*); arr_idx++) { uint16_t data_size = data_sizes[arr_idx]; memcpy(&mbPV[i], data_array_pointers[arr_idx], data_size); i += data_size / sizeof(uint16_t); } } void handle_update_data_modbusp201() { // Store the data into the array static uint16_t system_data[13]; system_data[0] = 0; // Id.: p201 Value.: 0 Scaled value.: 0 Comment.: Always 0 system_data[1] = 0; // Id.: p202 Value.: 0 Scaled value.: 0 Comment.: Always 0 system_data[2] = (capacity_Wh_startup); // Id.: p203 Value.: 32000 Scaled value.: 32kWh Comment.: Capacity rated, maximum value is 60000 (60kWh) system_data[3] = (max_power); // Id.: p204 Value.: 32000 Scaled value.: 32kWh Comment.: Nominal capacity system_data[4] = (max_power); // Id.: p205 Value.: 14500 Scaled value.: 30,42kW Comment.: Max Charge/Discharge Power=10.24kW (lowest value of 204 and 205 will be enforced by Gen24) system_data[5] = (max_voltage); // Id.: p206 Value.: 3667 Scaled value.: 362,7VDC Comment.: Max Voltage, if higher charging is not possible (goes into forced discharge) system_data[6] = (min_voltage); // Id.: p207 Value.: 2776 Scaled value.: 277,6VDC Comment.: Min Voltage, if lower Gen24 disables battery system_data[7] = 53248; // Id.: p208 Value.: 53248 Scaled value.: 53248 Comment.: Always 53248 for this BYD, Peak Charge power? system_data[8] = 10; // Id.: p209 Value.: 10 Scaled value.: 10 Comment.: Always 10 system_data[9] = 53248; // Id.: p210 Value.: 53248 Scaled value.: 53248 Comment.: Always 53248 for this BYD, Peak Discharge power? system_data[10] = 10; // Id.: p211 Value.: 10 Scaled value.: 10 Comment.: Always 10 system_data[11] = 0; // Id.: p212 Value.: 0 Scaled value.: 0 Comment.: Always 0 system_data[12] = 0; // Id.: p213 Value.: 0 Scaled value.: 0 Comment.: Always 0 static uint16_t i = 200; memcpy(&mbPV[i], system_data, sizeof(system_data)); } void handle_update_data_modbusp301() { // Store the data into the array static uint16_t battery_data[24]; if (battery_current > 0) { //Positive value = Charging bms_char_dis_status = 2; //Charging } else if (battery_current < 0) { //Negative value = Discharging bms_char_dis_status = 1; //Discharging } else { //battery_current == 0 bms_char_dis_status = 0; //idle } if (bms_status == ACTIVE) { battery_data[8] = battery_voltage; // Id.: p309 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage outer (0 if status !=3, maybe a contactor closes when active): 173.4V } else { battery_data[8] = 0; } battery_data[0] = bms_status; // Id.: p301 Value.: 3 Scaled value.: 3 Comment.: status(*): ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING] battery_data[1] = 0; // Id.: p302 Value.: 0 Scaled value.: 0 Comment.: always 0 battery_data[2] = 128 + bms_char_dis_status; // Id.: p303 Value.: 130 Scaled value.: 130 Comment.: mode(*): normal battery_data[3] = SOC; // Id.: p304 Value.: 1700 Scaled value.: 50% Comment.: SOC: (50% would equal 5000) battery_data[4] = capacity_Wh; // Id.: p305 Value.: 32000 Scaled value.: 32kWh Comment.: tot cap: battery_data[5] = remaining_capacity_Wh; // Id.: p306 Value.: 13260 Scaled value.: 13,26kWh Comment.: remaining cap: 7.68kWh battery_data[6] = max_target_discharge_power; // Id.: p307 Value.: 25604 Scaled value.: 25,604kW Comment.: max/target discharge power: 0W (0W > restricts to no discharge) battery_data[7] = max_target_charge_power; // Id.: p308 Value.: 25604 Scaled value.: 25,604kW Comment.: max/target charge power: 4.3kW (during charge), both 307&308 can be set (>0) at the same time //Battery_data[8] set previously in function // Id.: p309 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage outer (0 if status !=3, maybe a contactor closes when active): 173.4V battery_data[9] = 2000; // Id.: p310 Value.: 64121 Scaled value.: 6412,1W Comment.: Current Power to API: if>32768... -(65535-61760)=3775W battery_data[10] = battery_voltage; // Id.: p311 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage inner: 173.2V (LEAF voltage is in whole volts, need to add a decimal) battery_data[11] = 2000; // Id.: p312 Value.: 64121 Scaled value.: 6412,1W Comment.: p310 battery_data[12] = temperature_min; // Id.: p313 Value.: 75 Scaled value.: 7,5 Comment.: temp min: 7 degrees (if below 0....65535-t) battery_data[13] = temperature_max; // Id.: p314 Value.: 95 Scaled value.: 9,5 Comment.: temp max: 9 degrees (if below 0....65535-t) battery_data[14] = 0; // Id.: p315 Value.: 0 Scaled value.: 0 Comment.: always 0 battery_data[15] = 0; // Id.: p316 Value.: 0 Scaled value.: 0 Comment.: always 0 battery_data[16] = 16; // Id.: p317 Value.: 0 Scaled value.: 0 Comment.: counter charge hi battery_data[17] = 22741; // Id.: p318 Value.: 0 Scaled value.: 0 Comment.: counter charge lo....65536*101+9912 = 6629048 Wh? battery_data[18] = 0; // Id.: p319 Value.: 0 Scaled value.: 0 Comment.: always 0 battery_data[19] = 0; // Id.: p320 Value.: 0 Scaled value.: 0 Comment.: always 0 battery_data[20] = 13; // Id.: p321 Value.: 0 Scaled value.: 0 Comment.: counter discharge hi battery_data[21] = 52064; // Id.: p322 Value.: 0 Scaled value.: 0 Comment.: counter discharge lo....65536*92+7448 = 6036760 Wh? battery_data[22] = 230; // Id.: p323 Value.: 0 Scaled value.: 0 Comment.: device temperature (23 degrees) battery_data[23] = StateOfHealth; // Id.: p324 Value.: 9900 Scaled value.: 99% Comment.: SOH static uint16_t i = 300; memcpy(&mbPV[i], battery_data, sizeof(battery_data)); } void handle_LED_state() { // Determine how bright the green LED should be if (rampUp && green < maxBrightness) { green++; } else if (rampUp && green == maxBrightness) { rampUp = false; } else if (!rampUp && green > 0) { green--; } else if (!rampUp && green == 0) { rampUp = true; } pixels.setPixelColor(0, pixels.Color(0, green, 0)); // Set LED to green according to calculated value if(CANerror > MAX_CAN_FAILURES) { pixels.setPixelColor(0, pixels.Color(255, 255, 0)); // Yellow LED full brightness } if(bms_status == FAULT) { pixels.setPixelColor(0, pixels.Color(255, 0, 0)); // Red LED full brightness } pixels.show(); // This sends the updated pixel color to the hardware. }