/* Do not change any code below this line unless you are sure what you are doing */ /* Only change battery specific settings in "USER_SETTINGS.h" */ #include "src/include.h" #include "HardwareSerial.h" #include "USER_SETTINGS.h" #include "esp_system.h" #include "esp_task_wdt.h" #include "esp_timer.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "src/charger/CHARGERS.h" #include "src/devboard/utils/events.h" #include "src/devboard/utils/led_handler.h" #include "src/devboard/utils/value_mapping.h" #include "src/lib/YiannisBourkelis-Uptime-Library/src/uptime.h" #include "src/lib/YiannisBourkelis-Uptime-Library/src/uptime_formatter.h" #include "src/lib/bblanchon-ArduinoJson/ArduinoJson.h" #include "src/lib/eModbus-eModbus/Logging.h" #include "src/lib/eModbus-eModbus/ModbusServerRTU.h" #include "src/lib/eModbus-eModbus/scripts/mbServerFCs.h" #include "src/lib/miwagner-ESP32-Arduino-CAN/CAN_config.h" #include "src/lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h" #include "src/datalayer/datalayer.h" #ifdef WEBSERVER #include #include "src/devboard/webserver/webserver.h" #endif Preferences settings; // Store user settings // The current software version, shown on webserver const char* version_number = "6.3.0"; // Interval settings uint16_t intervalUpdateValues = INTERVAL_5_S; // Interval at which to update inverter values / Modbus registers unsigned long previousMillis10ms = 50; unsigned long previousMillisUpdateVal = 0; // CAN parameters CAN_device_t CAN_cfg; // CAN Config const int rx_queue_size = 10; // Receive Queue size #ifdef DUAL_CAN #include "src/lib/pierremolinaro-acan2515/ACAN2515.h" static const uint32_t QUARTZ_FREQUENCY = 8UL * 1000UL * 1000UL; // 8 MHz ACAN2515 can(MCP2515_CS, SPI, MCP2515_INT); static ACAN2515_Buffer16 gBuffer; #endif #ifdef CAN_FD #include "src/lib/pierremolinaro-ACAN2517FD/ACAN2517FD.h" ACAN2517FD canfd(MCP2517_CS, SPI, MCP2517_INT); #else typedef char CANFDMessage; #endif // ModbusRTU parameters #ifdef MODBUS_INVERTER_SELECTED #define MB_RTU_NUM_VALUES 30000 uint16_t mbPV[MB_RTU_NUM_VALUES]; // Process variable memory // Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout ModbusServerRTU MBserver(Serial2, 2000); #endif // Common charger parameters volatile float charger_setpoint_HV_VDC = 0.0f; volatile float charger_setpoint_HV_IDC = 0.0f; volatile float charger_setpoint_HV_IDC_END = 0.0f; bool charger_HV_enabled = false; bool charger_aux12V_enabled = false; // Common charger statistics, instantaneous values float charger_stat_HVcur = 0; float charger_stat_HVvol = 0; float charger_stat_ACcur = 0; float charger_stat_ACvol = 0; float charger_stat_LVcur = 0; float charger_stat_LVvol = 0; // Task time measurement for debugging and for setting CPU load events int64_t core_task_time_us; MyTimer core_task_timer_10s(INTERVAL_10_S); int64_t connectivity_task_time_us; MyTimer connectivity_task_timer_10s(INTERVAL_10_S); MyTimer loop_task_timer_10s(INTERVAL_10_S); // Contactor parameters #ifdef CONTACTOR_CONTROL enum State { DISCONNECTED, PRECHARGE, NEGATIVE, POSITIVE, PRECHARGE_OFF, COMPLETED, SHUTDOWN_REQUESTED }; State contactorStatus = DISCONNECTED; #define MAX_ALLOWED_FAULT_TICKS 1000 /* NOTE: modify the precharge time constant below to account for the resistance and capacitance of the target system. * t=3RC at minimum, t=5RC ideally */ #define PRECHARGE_TIME_MS 160 #define NEGATIVE_CONTACTOR_TIME_MS 1000 #define POSITIVE_CONTACTOR_TIME_MS 2000 #ifdef PWM_CONTACTOR_CONTROL #define PWM_Freq 20000 // 20 kHz frequency, beyond audible range #define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100% #define PWM_Hold_Duty 250 #define POSITIVE_PWM_Ch 0 #define NEGATIVE_PWM_Ch 1 #endif unsigned long prechargeStartTime = 0; unsigned long negativeStartTime = 0; unsigned long timeSpentInFaultedMode = 0; #endif TaskHandle_t main_loop_task; TaskHandle_t connectivity_loop_task; // Initialization void setup() { init_serial(); init_stored_settings(); #ifdef WEBSERVER xTaskCreatePinnedToCore((TaskFunction_t)&connectivity_loop, "connectivity_loop", 4096, &connectivity_task_time_us, TASK_CONNECTIVITY_PRIO, &connectivity_loop_task, WIFI_CORE); #endif init_events(); init_CAN(); init_contactors(); init_rs485(); init_serialDataLink(); init_inverter(); init_battery(); // BOOT button at runtime is used as an input for various things pinMode(0, INPUT_PULLUP); esp_task_wdt_deinit(); // Disable watchdog check_reset_reason(); xTaskCreatePinnedToCore((TaskFunction_t)&core_loop, "core_loop", 4096, &core_task_time_us, TASK_CORE_PRIO, &main_loop_task, CORE_FUNCTION_CORE); } // Perform main program functions void loop() { START_TIME_MEASUREMENT(loop_func); run_event_handling(); END_TIME_MEASUREMENT_MAX(loop_func, datalayer.system.status.loop_task_10s_max_us); #ifdef FUNCTION_TIME_MEASUREMENT if (loop_task_timer_10s.elapsed()) { datalayer.system.status.loop_task_10s_max_us = 0; } #endif } #ifdef WEBSERVER void connectivity_loop(void* task_time_us) { // Init init_webserver(); init_mDNS(); #ifdef MQTT init_mqtt(); #endif while (true) { START_TIME_MEASUREMENT(wifi); wifi_monitor(); END_TIME_MEASUREMENT_MAX(wifi, datalayer.system.status.wifi_task_10s_max_us); #ifdef MQTT START_TIME_MEASUREMENT(mqtt); mqtt_loop(); END_TIME_MEASUREMENT_MAX(mqtt, datalayer.system.status.mqtt_task_10s_max_us); #endif #ifdef FUNCTION_TIME_MEASUREMENT if (connectivity_task_timer_10s.elapsed()) { datalayer.system.status.mqtt_task_10s_max_us = 0; datalayer.system.status.wifi_task_10s_max_us = 0; } #endif delay(1); } } #endif void core_loop(void* task_time_us) { TickType_t xLastWakeTime = xTaskGetTickCount(); const TickType_t xFrequency = pdMS_TO_TICKS(1); // Convert 1ms to ticks led_init(); while (true) { START_TIME_MEASUREMENT(all); START_TIME_MEASUREMENT(comm); // Input receive_can(); // Receive CAN messages. Runs as fast as possible #ifdef CAN_FD receive_canfd(); // Receive CAN-FD messages. Runs as fast as possible #endif #ifdef DUAL_CAN receive_can2(); // Receive CAN messages on CAN2. Runs as fast as possible #endif #if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER) runSerialDataLink(); #endif END_TIME_MEASUREMENT_MAX(comm, datalayer.system.status.time_comm_us); #ifdef WEBSERVER START_TIME_MEASUREMENT(ota); ElegantOTA.loop(); END_TIME_MEASUREMENT_MAX(ota, datalayer.system.status.time_ota_us); #endif START_TIME_MEASUREMENT(time_10ms); // Process if (millis() - previousMillis10ms >= INTERVAL_10_MS) { previousMillis10ms = millis(); led_exe(); #ifdef CONTACTOR_CONTROL handle_contactors(); // Take care of startup precharge/contactor closing #endif } END_TIME_MEASUREMENT_MAX(time_10ms, datalayer.system.status.time_10ms_us); START_TIME_MEASUREMENT(time_5s); if (millis() - previousMillisUpdateVal >= intervalUpdateValues) // Every 5s normally { previousMillisUpdateVal = millis(); // Order matters on the update_loop! update_values_battery(); // Fetch battery values update_SOC(); // Check if real or calculated SOC% value should be sent #ifndef SERIAL_LINK_RECEIVER update_machineryprotection(); // Check safeties (Not on serial link reciever board) #endif update_values_inverter(); // Update values heading towards inverter if (DUMMY_EVENT_ENABLED) { set_event(EVENT_DUMMY_ERROR, (uint8_t)millis()); } } END_TIME_MEASUREMENT_MAX(time_5s, datalayer.system.status.time_5s_us); START_TIME_MEASUREMENT(cantx); // Output send_can(); // Send CAN messages #ifdef DUAL_CAN send_can2(); #endif END_TIME_MEASUREMENT_MAX(cantx, datalayer.system.status.time_cantx_us); END_TIME_MEASUREMENT_MAX(all, datalayer.system.status.core_task_10s_max_us); #ifdef FUNCTION_TIME_MEASUREMENT if (datalayer.system.status.core_task_10s_max_us > datalayer.system.status.core_task_max_us) { // Update worst case total time datalayer.system.status.core_task_max_us = datalayer.system.status.core_task_10s_max_us; // Record snapshots of task times datalayer.system.status.time_snap_comm_us = datalayer.system.status.time_comm_us; datalayer.system.status.time_snap_10ms_us = datalayer.system.status.time_10ms_us; datalayer.system.status.time_snap_5s_us = datalayer.system.status.time_5s_us; datalayer.system.status.time_snap_cantx_us = datalayer.system.status.time_cantx_us; datalayer.system.status.time_snap_ota_us = datalayer.system.status.time_ota_us; } datalayer.system.status.core_task_max_us = MAX(datalayer.system.status.core_task_10s_max_us, datalayer.system.status.core_task_max_us); if (core_task_timer_10s.elapsed()) { datalayer.system.status.time_ota_us = 0; datalayer.system.status.time_comm_us = 0; datalayer.system.status.time_10ms_us = 0; datalayer.system.status.time_5s_us = 0; datalayer.system.status.time_cantx_us = 0; datalayer.system.status.core_task_10s_max_us = 0; } #endif vTaskDelayUntil(&xLastWakeTime, xFrequency); } } #ifdef WEBSERVER // Initialise mDNS void init_mDNS() { // Calulate the host name using the last two chars from the MAC address so each one is likely unique on a network. // e.g batteryemulator8C.local where the mac address is 08:F9:E0:D1:06:8C String mac = WiFi.macAddress(); String mdnsHost = "batteryemulator" + mac.substring(mac.length() - 2); // Initialize mDNS .local resolution if (!MDNS.begin(mdnsHost)) { #ifdef DEBUG_VIA_USB Serial.println("Error setting up MDNS responder!"); #endif } else { // Advertise via bonjour the service so we can auto discover these battery emulators on the local network. MDNS.addService("battery_emulator", "tcp", 80); } } #endif // Initialization functions void init_serial() { // Init Serial monitor Serial.begin(115200); while (!Serial) {} #ifdef DEBUG_VIA_USB Serial.println("__ OK __"); #endif } void init_stored_settings() { settings.begin("batterySettings", false); #ifndef LOAD_SAVED_SETTINGS_ON_BOOT settings.clear(); // If this clear function is executed, no settings will be read from storage #endif static uint32_t temp = 0; temp = settings.getUInt("BATTERY_WH_MAX", false); if (temp != 0) { datalayer.battery.info.total_capacity_Wh = temp; } temp = settings.getUInt("MAXPERCENTAGE", false); if (temp != 0) { datalayer.battery.settings.max_percentage = temp * 10; // Multiply by 10 for backwards compatibility } temp = settings.getUInt("MINPERCENTAGE", false); if (temp != 0) { datalayer.battery.settings.min_percentage = temp * 10; // Multiply by 10 for backwards compatibility } temp = settings.getUInt("MAXCHARGEAMP", false); if (temp != 0) { datalayer.battery.info.max_charge_amp_dA = temp; } temp = settings.getUInt("MAXDISCHARGEAMP", false); if (temp != 0) { datalayer.battery.info.max_discharge_amp_dA = temp; temp = settings.getBool("USE_SCALED_SOC", false); datalayer.battery.settings.soc_scaling_active = temp; //This bool needs to be checked inside the temp!= block } // No way to know if it wasnt reset otherwise settings.end(); } void init_CAN() { // CAN pins #ifdef CAN_SE_PIN pinMode(CAN_SE_PIN, OUTPUT); digitalWrite(CAN_SE_PIN, LOW); #endif CAN_cfg.speed = CAN_SPEED_500KBPS; CAN_cfg.tx_pin_id = GPIO_NUM_27; CAN_cfg.rx_pin_id = GPIO_NUM_26; CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t)); // Init CAN Module ESP32Can.CANInit(); #ifdef DUAL_CAN #ifdef DEBUG_VIA_USB Serial.println("Dual CAN Bus (ESP32+MCP2515) selected"); #endif gBuffer.initWithSize(25); SPI.begin(MCP2515_SCK, MCP2515_MISO, MCP2515_MOSI); ACAN2515Settings settings(QUARTZ_FREQUENCY, 500UL * 1000UL); // CAN bit rate 500 kb/s settings.mRequestedMode = ACAN2515Settings::NormalMode; can.begin(settings, [] { can.isr(); }); #endif #ifdef CAN_FD #ifdef DEBUG_VIA_USB Serial.println("CAN FD add-on (ESP32+MCP2517) selected"); #endif SPI.begin(MCP2517_SCK, MCP2517_SDO, MCP2517_SDI); ACAN2517FDSettings settings(ACAN2517FDSettings::OSC_40MHz, 500 * 1000, DataBitRateFactor::x4); // Arbitration bit rate: 500 kbit/s, data bit rate: 2 Mbit/s settings.mRequestedMode = ACAN2517FDSettings::NormalFD; // ListenOnly / Normal20B / NormalFD const uint32_t errorCode = canfd.begin(settings, [] { canfd.isr(); }); canfd.poll(); if (errorCode == 0) { #ifdef DEBUG_VIA_USB Serial.print("Bit Rate prescaler: "); Serial.println(settings.mBitRatePrescaler); Serial.print("Arbitration Phase segment 1: "); Serial.println(settings.mArbitrationPhaseSegment1); Serial.print("Arbitration Phase segment 2: "); Serial.println(settings.mArbitrationPhaseSegment2); Serial.print("Arbitration SJW:"); Serial.println(settings.mArbitrationSJW); Serial.print("Actual Arbitration Bit Rate: "); Serial.print(settings.actualArbitrationBitRate()); Serial.println(" bit/s"); Serial.print("Exact Arbitration Bit Rate ? "); Serial.println(settings.exactArbitrationBitRate() ? "yes" : "no"); Serial.print("Arbitration Sample point: "); Serial.print(settings.arbitrationSamplePointFromBitStart()); Serial.println("%"); #endif } else { #ifdef DEBUG_VIA_USB Serial.print("CAN-FD Configuration error 0x"); Serial.println(errorCode, HEX); #endif set_event(EVENT_CANFD_INIT_FAILURE, (uint8_t)errorCode); } #endif } void init_contactors() { // Init contactor pins #ifdef CONTACTOR_CONTROL pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT); digitalWrite(POSITIVE_CONTACTOR_PIN, LOW); pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT); digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW); #ifdef PWM_CONTACTOR_CONTROL ledcAttachChannel(POSITIVE_CONTACTOR_PIN, PWM_Freq, PWM_Res, POSITIVE_PWM_Ch); // Setup PWM Channel Frequency and Resolution ledcAttachChannel(NEGATIVE_CONTACTOR_PIN, PWM_Freq, PWM_Res, NEGATIVE_PWM_Ch); // Setup PWM Channel Frequency and Resolution ledcWrite(POSITIVE_PWM_Ch, 0); // Set Positive PWM to 0% ledcWrite(NEGATIVE_PWM_Ch, 0); // Set Negative PWM to 0% #endif pinMode(PRECHARGE_PIN, OUTPUT); digitalWrite(PRECHARGE_PIN, LOW); #endif // Init BMS contactor #ifdef HW_STARK // TODO: Rewrite this so LilyGo can aslo handle this BMS contactor pinMode(BMS_POWER, OUTPUT); digitalWrite(BMS_POWER, HIGH); #endif } void init_rs485() { // Set up Modbus RTU Server #ifdef RS485_EN_PIN pinMode(RS485_EN_PIN, OUTPUT); digitalWrite(RS485_EN_PIN, HIGH); #endif #ifdef RS485_SE_PIN pinMode(RS485_SE_PIN, OUTPUT); digitalWrite(RS485_SE_PIN, HIGH); #endif #ifdef PIN_5V_EN pinMode(PIN_5V_EN, OUTPUT); digitalWrite(PIN_5V_EN, HIGH); #endif #ifdef MODBUS_INVERTER_SELECTED #ifdef BYD_MODBUS // Init Static data to the RTU Modbus handle_static_data_modbus_byd(); #endif // Init Serial2 connected to the RTU Modbus RTUutils::prepareHardwareSerial(Serial2); Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN); // Register served function code worker for server MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03); MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06); MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16); MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23); // Start ModbusRTU background task MBserver.begin(Serial2, MODBUS_CORE); #endif } void init_inverter() { #ifdef SOLAX_CAN datalayer.system.status.inverter_allows_contactor_closing = false; // The inverter needs to allow first intervalUpdateValues = 800; // This protocol also requires the values to be updated faster #endif } void init_battery() { // Inform user what battery is used and perform setup setup_battery(); #ifdef CHADEMO_BATTERY intervalUpdateValues = 800; // This mode requires the values to be updated faster #endif } #ifdef CAN_FD // Functions #ifdef DEBUG_CANFD_DATA void print_canfd_frame(CANFDMessage rx_frame) { int i = 0; Serial.print(rx_frame.id, HEX); Serial.print(" "); for (i = 0; i < rx_frame.len; i++) { Serial.print(rx_frame.data[i] < 16 ? "0" : ""); Serial.print(rx_frame.data[i], HEX); Serial.print(" "); } Serial.println(" "); } #endif void receive_canfd() { // This section checks if we have a complete CAN-FD message incoming CANFDMessage frame; if (canfd.available()) { canfd.receive(frame); #ifdef DEBUG_CANFD_DATA print_canfd_frame(frame); #endif receive_canfd_battery(frame); } } #endif void receive_can() { // This section checks if we have a complete CAN message incoming // Depending on which battery/inverter is selected, we forward this to their respective CAN routines CAN_frame_t rx_frame; if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 0) == pdTRUE) { // Battery #ifndef SERIAL_LINK_RECEIVER // Only needs to see inverter receive_can_battery(rx_frame); #endif // Inverter #ifdef CAN_INVERTER_SELECTED receive_can_inverter(rx_frame); #endif // Charger #ifdef CHARGER_SELECTED receive_can_charger(rx_frame); #endif } } void send_can() { // Battery send_can_battery(); // Inverter #ifdef CAN_INVERTER_SELECTED send_can_inverter(); #endif // Charger #ifdef CHARGER_SELECTED send_can_charger(); #endif } #ifdef DUAL_CAN void receive_can2() { // This function is similar to receive_can, but just takes care of inverters in the 2nd bus. // Depending on which inverter is selected, we forward this to their respective CAN routines CAN_frame_t rx_frame_can2; // Struct with ESP32Can library format, compatible with the rest of the program CANMessage MCP2515Frame; // Struct with ACAN2515 library format, needed to use thw MCP2515 library if (can.available()) { can.receive(MCP2515Frame); rx_frame_can2.MsgID = MCP2515Frame.id; rx_frame_can2.FIR.B.FF = MCP2515Frame.ext ? CAN_frame_ext : CAN_frame_std; rx_frame_can2.FIR.B.RTR = MCP2515Frame.rtr ? CAN_RTR : CAN_no_RTR; rx_frame_can2.FIR.B.DLC = MCP2515Frame.len; for (uint8_t i = 0; i < MCP2515Frame.len; i++) { rx_frame_can2.data.u8[i] = MCP2515Frame.data[i]; } #ifdef CAN_INVERTER_SELECTED receive_can_inverter(rx_frame_can2); #endif } } void send_can2() { // Inverter #ifdef CAN_INVERTER_SELECTED send_can_inverter(); //Note this will only send to CAN1, unless we use SOLAX #endif } #endif #ifdef CONTACTOR_CONTROL void handle_contactors() { // First check if we have any active errors, incase we do, turn off the battery if (datalayer.battery.status.bms_status == FAULT) { timeSpentInFaultedMode++; } else { timeSpentInFaultedMode = 0; } if (timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS) { contactorStatus = SHUTDOWN_REQUESTED; } if (contactorStatus == SHUTDOWN_REQUESTED) { digitalWrite(PRECHARGE_PIN, LOW); digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW); digitalWrite(POSITIVE_CONTACTOR_PIN, LOW); set_event(EVENT_ERROR_OPEN_CONTACTOR, 0); return; // A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured) } // After that, check if we are OK to start turning on the battery if (contactorStatus == DISCONNECTED) { digitalWrite(PRECHARGE_PIN, LOW); #ifdef PWM_CONTACTOR_CONTROL ledcWrite(POSITIVE_PWM_Ch, 0); ledcWrite(NEGATIVE_PWM_Ch, 0); #endif if (datalayer.system.status.battery_allows_contactor_closing && datalayer.system.status.inverter_allows_contactor_closing) { contactorStatus = PRECHARGE; } } // In case the inverter requests contactors to open, set the state accordingly if (contactorStatus == COMPLETED) { if (!datalayer.system.status.inverter_allows_contactor_closing) contactorStatus = DISCONNECTED; // Skip running the state machine below if it has already completed return; } unsigned long currentTime = millis(); // Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge switch (contactorStatus) { case PRECHARGE: digitalWrite(PRECHARGE_PIN, HIGH); prechargeStartTime = currentTime; contactorStatus = NEGATIVE; break; case NEGATIVE: if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) { digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH); #ifdef PWM_CONTACTOR_CONTROL ledcWrite(NEGATIVE_PWM_Ch, 1023); #endif negativeStartTime = currentTime; contactorStatus = POSITIVE; } break; case POSITIVE: if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) { digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH); #ifdef PWM_CONTACTOR_CONTROL ledcWrite(POSITIVE_PWM_Ch, 1023); #endif contactorStatus = PRECHARGE_OFF; } break; case PRECHARGE_OFF: if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) { digitalWrite(PRECHARGE_PIN, LOW); #ifdef PWM_CONTACTOR_CONTROL ledcWrite(NEGATIVE_PWM_Ch, PWM_Hold_Duty); ledcWrite(POSITIVE_PWM_Ch, PWM_Hold_Duty); #endif contactorStatus = COMPLETED; } break; default: break; } } #endif void update_SOC() { if (datalayer.battery.settings.soc_scaling_active) { /** SOC Scaling * * This is essentially a more static version of a stochastic oscillator (https://en.wikipedia.org/wiki/Stochastic_oscillator) * * The idea is this: * * real_soc - min_percent 3000 - 1000 * ------------------------- = scaled_soc, or ----------- = 0.25 * max_percent - min-percent 8000 - 1000 * * Because we use integers, we want to account for the scaling: * * 10000 * (real_soc - min_percent) 10000 * (3000 - 1000) * -------------------------------- = scaled_soc, or --------------------- = 2500 * max_percent - min_percent 8000 - 1000 * * Or as a one-liner: (10000 * (real_soc - min_percentage)) / (max_percentage - min_percentage) * * Before we use real_soc, we must make sure that it's within the range of min_percentage and max_percentage. */ uint32_t calc_soc; // Make sure that the SOC starts out between min and max percentages calc_soc = CONSTRAIN(datalayer.battery.status.real_soc, datalayer.battery.settings.min_percentage, datalayer.battery.settings.max_percentage); // Perform scaling calc_soc = 10000 * (calc_soc - datalayer.battery.settings.min_percentage); calc_soc = calc_soc / (datalayer.battery.settings.max_percentage - datalayer.battery.settings.min_percentage); datalayer.battery.status.reported_soc = calc_soc; } else { // No SOC window wanted. Set scaled to same as real. datalayer.battery.status.reported_soc = datalayer.battery.status.real_soc; } } void update_values_inverter() { #ifdef CAN_INVERTER_SELECTED update_values_can_inverter(); #endif #ifdef MODBUS_INVERTER_SELECTED update_modbus_registers_inverter(); #endif } #if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER) void runSerialDataLink() { static unsigned long updateTime = 0; unsigned long currentMillis = millis(); if ((currentMillis - updateTime) > 1) { //Every 2ms updateTime = currentMillis; #ifdef SERIAL_LINK_RECEIVER manageSerialLinkReceiver(); #endif #ifdef SERIAL_LINK_TRANSMITTER manageSerialLinkTransmitter(); #endif } } #endif void init_serialDataLink() { #if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER) Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN); #endif } void storeSettings() { settings.begin("batterySettings", false); settings.putUInt("BATTERY_WH_MAX", datalayer.battery.info.total_capacity_Wh); settings.putUInt("MAXPERCENTAGE", datalayer.battery.settings.max_percentage / 10); // Divide by 10 for backwards compatibility settings.putUInt("MINPERCENTAGE", datalayer.battery.settings.min_percentage / 10); // Divide by 10 for backwards compatibility settings.putUInt("MAXCHARGEAMP", datalayer.battery.info.max_charge_amp_dA); settings.putUInt("MAXDISCHARGEAMP", datalayer.battery.info.max_discharge_amp_dA); settings.putBool("USE_SCALED_SOC", datalayer.battery.settings.soc_scaling_active); settings.end(); } /** Reset reason numbering and description * typedef enum { ESP_RST_UNKNOWN, //!< 0 Reset reason can not be determined ESP_RST_POWERON, //!< 1 OK Reset due to power-on event ESP_RST_EXT, //!< 2 Reset by external pin (not applicable for ESP32) ESP_RST_SW, //!< 3 OK Software reset via esp_restart ESP_RST_PANIC, //!< 4 Software reset due to exception/panic ESP_RST_INT_WDT, //!< 5 Reset (software or hardware) due to interrupt watchdog ESP_RST_TASK_WDT, //!< 6 Reset due to task watchdog ESP_RST_WDT, //!< 7 Reset due to other watchdogs ESP_RST_DEEPSLEEP, //!< 8 Reset after exiting deep sleep mode ESP_RST_BROWNOUT, //!< 9 Brownout reset (software or hardware) ESP_RST_SDIO, //!< 10 Reset over SDIO ESP_RST_USB, //!< 11 Reset by USB peripheral ESP_RST_JTAG, //!< 12 Reset by JTAG ESP_RST_EFUSE, //!< 13 Reset due to efuse error ESP_RST_PWR_GLITCH, //!< 14 Reset due to power glitch detected ESP_RST_CPU_LOCKUP, //!< 15 Reset due to CPU lock up } esp_reset_reason_t; */ void check_reset_reason() { esp_reset_reason_t reason = esp_reset_reason(); switch (reason) { case ESP_RST_UNKNOWN: set_event(EVENT_RESET_UNKNOWN, reason); break; case ESP_RST_POWERON: set_event(EVENT_RESET_POWERON, reason); break; case ESP_RST_EXT: set_event(EVENT_RESET_EXT, reason); break; case ESP_RST_SW: set_event(EVENT_RESET_SW, reason); break; case ESP_RST_PANIC: set_event(EVENT_RESET_PANIC, reason); break; case ESP_RST_INT_WDT: set_event(EVENT_RESET_INT_WDT, reason); break; case ESP_RST_TASK_WDT: set_event(EVENT_RESET_TASK_WDT, reason); break; case ESP_RST_WDT: set_event(EVENT_RESET_WDT, reason); break; case ESP_RST_DEEPSLEEP: set_event(EVENT_RESET_DEEPSLEEP, reason); break; case ESP_RST_BROWNOUT: set_event(EVENT_RESET_BROWNOUT, reason); break; case ESP_RST_SDIO: set_event(EVENT_RESET_SDIO, reason); break; case ESP_RST_USB: set_event(EVENT_RESET_USB, reason); break; case ESP_RST_JTAG: set_event(EVENT_RESET_JTAG, reason); break; case ESP_RST_EFUSE: set_event(EVENT_RESET_EFUSE, reason); break; case ESP_RST_PWR_GLITCH: set_event(EVENT_RESET_PWR_GLITCH, reason); break; case ESP_RST_CPU_LOCKUP: set_event(EVENT_RESET_CPU_LOCKUP, reason); break; default: break; } }