Battery-Emulator/Software/SMA-CAN.cpp
2023-10-12 22:53:09 +03:00

120 lines
No EOL
5.8 KiB
C++

#include "SMA-CAN.h"
#include "ESP32CAN.h"
#include "CAN_config.h"
/* Do not change code below unless you are sure what you are doing */
static unsigned long previousMillisXs = 0; // will store last time a Xs CAN Message was send
static const int intervalXs = 600; // interval (ms) at which send CAN Messages
//Actual content messages
static const CAN_frame_t SMA_558 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x558,.data = {0x03, 0x12, 0x00, 0x04, 0x00, 0x59, 0x07, 0x07}}; //7x BYD modules, Vendor ID 7 BYD
static const CAN_frame_t SMA_598 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x598,.data = {0x00, 0x00, 0x12, 0x34, 0x5A, 0xDE, 0x07, 0x4F}}; //B0-4 Serial, rest unknown
static const CAN_frame_t SMA_5D8 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x5D8,.data = {0x00, 0x42, 0x59, 0x44, 0x00, 0x00, 0x00, 0x00}}; //B Y D
static const CAN_frame_t SMA_618_1 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x618,.data = {0x00, 0x42, 0x61, 0x74, 0x74, 0x65, 0x72, 0x79}}; //0 B A T T E R Y
static const CAN_frame_t SMA_618_2 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x618,.data = {0x01, 0x2D, 0x42, 0x6F, 0x78, 0x20, 0x48, 0x39}}; //1 - B O X H
static const CAN_frame_t SMA_618_3 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x618,.data = {0x02, 0x2E, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00}}; //2 - 0
CAN_frame_t SMA_358 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x358,.data = {0x0F, 0x6C, 0x06, 0x20, 0x00, 0x00, 0x00, 0x00}};
CAN_frame_t SMA_3D8 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x3D8,.data = {0x04, 0x10, 0x27, 0x10, 0x00, 0x18, 0xF9, 0x00}};
CAN_frame_t SMA_458 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x458,.data = {0x00, 0x00, 0x06, 0x75, 0x00, 0x00, 0x05, 0xD6}};
CAN_frame_t SMA_518 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x518,.data = {0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF}};
CAN_frame_t SMA_4D8 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x4D8,.data = {0x09, 0xFD, 0x00, 0x00, 0x00, 0xA8, 0x02, 0x08}};
CAN_frame_t SMA_158 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x158,.data = {0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0x6A, 0xAA, 0xAA}};
static int discharge_current = 0;
static int charge_current = 0;
static int temperature_average = 0;
static int ampere_hours_remaining = 0;
void update_values_can_sma()
{ //This function maps all the values fetched from battery CAN to the correct CAN messages
//Calculate values
charge_current = ((max_target_charge_power*10)/max_volt_sma_can); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
//The above calculation results in (30 000*10)/3700=81A
charge_current = (charge_current*10); //Value needs a decimal before getting sent to inverter (81.0A)
discharge_current = ((max_target_discharge_power*10)/max_volt_sma_can); //Charge power in W , max volt in V+1decimal (P=UI, solve for I)
//The above calculation results in (30 000*10)/3700=81A
discharge_current = (discharge_current*10); //Value needs a decimal before getting sent to inverter (81.0A)
temperature_average = ((temperature_max + temperature_min)/2);
ampere_hours_remaining = ((remaining_capacity_Wh/battery_voltage)*100); //(WH[10000] * V+1[3600])*100 = 270 (27.0Ah)
//Map values to CAN messages
//Maxvoltage (eg 400.0V = 4000 , 16bits long)
SMA_358.data.u8[0] = (max_volt_sma_can >> 8);
SMA_358.data.u8[1] = (max_volt_sma_can & 0x00FF);
//Minvoltage (eg 300.0V = 3000 , 16bits long)
SMA_358.data.u8[2] = (min_volt_sma_can >> 8); //Minvoltage behaves strange on SMA, cuts out at 56% of the set value?
SMA_358.data.u8[3] = (min_volt_sma_can & 0x00FF);
//Discharge limited current, 500 = 50A, (0.1, A)
SMA_358.data.u8[4] = (discharge_current >> 8);
SMA_358.data.u8[5] = (discharge_current & 0x00FF);
//Charge limited current, 125 =12.5A (0.1, A)
SMA_358.data.u8[6] = (charge_current >> 8);
SMA_358.data.u8[7] = (charge_current & 0x00FF);
//SOC (100.00%)
SMA_3D8.data.u8[0] = (SOC >> 8);
SMA_3D8.data.u8[1] = (SOC & 0x00FF);
//StateOfHealth (100.00%)
SMA_3D8.data.u8[2] = (StateOfHealth >> 8);
SMA_3D8.data.u8[3] = (StateOfHealth & 0x00FF);
//State of charge (AH, 0.1)
SMA_3D8.data.u8[4] = (ampere_hours_remaining >> 8);
SMA_3D8.data.u8[5] = (ampere_hours_remaining & 0x00FF);
//Voltage (370.0)
SMA_4D8.data.u8[0] = (battery_voltage >> 8);
SMA_4D8.data.u8[1] = (battery_voltage & 0x00FF);
//Current (TODO, signed OK?)
SMA_4D8.data.u8[2] = (battery_current >> 8);
SMA_4D8.data.u8[3] = (battery_current & 0x00FF);
//Temperature average
SMA_4D8.data.u8[4] = (temperature_average >> 8);
SMA_4D8.data.u8[5] = (temperature_average & 0x00FF);
//Error bits
//SMA_158.data.u8[0] = //bit12 Fault high temperature, bit34Battery cellundervoltage, bit56 Battery cell overvoltage, bit78 batterysystemdefect
//TODO, add all error bits
}
void receive_can_sma(CAN_frame_t rx_frame)
{
switch (rx_frame.MsgID)
{
case 0x660: //Message originating from SMA inverter
break;
case 0x5E0: //Message originating from SMA inverter
break;
case 0x560: //Message originating from SMA inverter
break;
default:
break;
}
}
void send_can_sma()
{
unsigned long currentMillis = millis();
// Send CAN Message every X ms, 1000 for testing
if (currentMillis - previousMillisXs >= intervalXs)
{
previousMillisXs = currentMillis;
ESP32Can.CANWriteFrame(&SMA_558);
ESP32Can.CANWriteFrame(&SMA_598);
ESP32Can.CANWriteFrame(&SMA_5D8);
ESP32Can.CANWriteFrame(&SMA_618_1);
ESP32Can.CANWriteFrame(&SMA_618_2);
ESP32Can.CANWriteFrame(&SMA_618_3);
ESP32Can.CANWriteFrame(&SMA_358);
ESP32Can.CANWriteFrame(&SMA_3D8);
ESP32Can.CANWriteFrame(&SMA_458);
ESP32Can.CANWriteFrame(&SMA_518);
ESP32Can.CANWriteFrame(&SMA_4D8);
ESP32Can.CANWriteFrame(&SMA_158);
}
}