Battery-Emulator/Software/Software.ino
2023-10-12 10:39:27 +03:00

641 lines
No EOL
24 KiB
C++

/* Do not change any code below this line unless you are sure what you are doing */
/* Only change battery specific settings in "USER_SETTINGS.h" and limits in their respective .h files */
#include <Arduino.h>
#include "HardwareSerial.h"
#include "USER_SETTINGS.h"
#include "config.h"
#include "Logging.h"
#include "mbServerFCs.h"
#include "ModbusServerRTU.h"
#include "ESP32CAN.h"
#include "CAN_config.h"
#include "Adafruit_NeoPixel.h"
#include "BATTERIES.h"
#include "INVERTERS.h"
//CAN parameters
CAN_device_t CAN_cfg; // CAN Config
const int rx_queue_size = 10; // Receive Queue size
#ifdef DUAL_CAN
#include "ACAN2515.h"
static const uint32_t QUARTZ_FREQUENCY = 8UL * 1000UL * 1000UL ; // 8 MHz
ACAN2515 can(MCP2515_CS, SPI, MCP2515_INT);
static ACAN2515_Buffer16 gBuffer;
#endif
//Interval settings
int intervalInverterTask = 4800; //Interval at which to refresh modbus registers / inverter values
const int interval10 = 10; //Interval for 10ms tasks
unsigned long previousMillis10ms = 50;
unsigned long previousMillisInverter = 0;
//ModbusRTU parameters
#ifdef MODBUS_BYD
#define MB_RTU_NUM_VALUES 30000
uint16_t mbPV[MB_RTU_NUM_VALUES]; // process variable memory: produced by sensors, etc., cyclic read by PLC via modbus TCP
// Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout
ModbusServerRTU MBserver(Serial2, 2000);
#endif
//Inverter states
#define STANDBY 0
#define INACTIVE 1
#define DARKSTART 2
#define ACTIVE 3
#define FAULT 4
#define UPDATING 5
//Common inverter parameters
uint16_t capacity_Wh_startup = BATTERY_WH_MAX;
uint16_t max_power = 40960; //41kW
const uint16_t max_voltage = ABSOLUTE_MAX_VOLTAGE; //if higher charging is not possible (goes into forced discharge)
const uint16_t min_voltage = ABSOLUTE_MIN_VOLTAGE; //if lower Gen24 disables battery
uint16_t min_volt_byd_can = min_voltage;
uint16_t max_volt_byd_can = max_voltage;
uint16_t min_volt_solax_can = min_voltage;
uint16_t max_volt_solax_can = max_voltage;
uint16_t min_volt_pylon_can = min_voltage;
uint16_t max_volt_pylon_can = max_voltage;
uint16_t min_volt_sma_can = min_voltage;
uint16_t max_volt_sma_can = max_voltage;
uint16_t battery_voltage = 3700;
uint16_t battery_current = 0;
uint16_t SOC = 5000; //SOC 0-100.00% //Updates later on from CAN
uint16_t StateOfHealth = 9900; //SOH 0-100.00% //Updates later on from CAN
uint16_t capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
uint16_t remaining_capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
uint16_t max_target_discharge_power = 0; //0W (0W > restricts to no discharge) //Updates later on from CAN
uint16_t max_target_charge_power = 4312; //4.3kW (during charge), both 307&308 can be set (>0) at the same time //Updates later on from CAN. Max value is 30000W
uint16_t temperature_max = 50; //reads from battery later
uint16_t temperature_min = 60; //reads from battery later
uint16_t bms_char_dis_status; //0 idle, 1 discharging, 2, charging
uint16_t bms_status = ACTIVE; //ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
uint16_t stat_batt_power = 0; //power going in/out of battery
uint16_t cell_max_voltage = 3700; //Stores the highest cell voltage value in the system
uint16_t cell_min_voltage = 3700; //Stores the minimum cell voltage value in the system
// LED control
#define GREEN 0
#define YELLOW 1
#define RED 2
#define BLUE 3
Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800);
static uint8_t brightness = 0;
static bool rampUp = true;
const uint8_t maxBrightness = 100;
uint8_t LEDcolor = GREEN;
//Contactor parameters
enum State {
DISCONNECTED,
PRECHARGE,
NEGATIVE,
POSITIVE,
PRECHARGE_OFF,
COMPLETED,
SHUTDOWN_REQUESTED
};
State contactorStatus = DISCONNECTED;
#define MAX_ALLOWED_FAULT_TICKS 500
#define PRECHARGE_TIME_MS 160
#define NEGATIVE_CONTACTOR_TIME_MS 1000
#define POSITIVE_CONTACTOR_TIME_MS 2000
#define PWM_Freq 20000 // 20 kHz frequency, beyond audible range
#define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100%
#define PWM_Hold_Duty 250
#define POSITIVE_PWM_Ch 0
#define NEGATIVE_PWM_Ch 1
unsigned long prechargeStartTime = 0;
unsigned long negativeStartTime = 0;
unsigned long timeSpentInFaultedMode = 0;
uint8_t batteryAllowsContactorClosing = 0;
uint8_t inverterAllowsContactorClosing = 1;
// Setup() - initialization happens here
void setup()
{
// Init Serial monitor
Serial.begin(115200);
while (!Serial)
{
}
Serial.println("__ OK __");
//CAN pins
pinMode(CAN_SE_PIN, OUTPUT);
digitalWrite(CAN_SE_PIN, LOW);
CAN_cfg.speed = CAN_SPEED_500KBPS;
CAN_cfg.tx_pin_id = GPIO_NUM_27;
CAN_cfg.rx_pin_id = GPIO_NUM_26;
CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t));
// Init CAN Module
ESP32Can.CANInit();
Serial.println(CAN_cfg.speed);
#ifdef DUAL_CAN
Serial.println("Dual CAN Bus (ESP32+MCP2515) selected");
gBuffer.initWithSize(25);
SPI.begin(MCP2515_SCK, MCP2515_MISO, MCP2515_MOSI);
Serial.println ("Configure ACAN2515") ;
ACAN2515Settings settings (QUARTZ_FREQUENCY, 500UL * 1000UL) ; // CAN bit rate 500 kb/s
settings.mRequestedMode = ACAN2515Settings::NormalMode ; // Select loopback mode
can.begin (settings, [] { can.isr (); });
#endif
//Init contactor pins
#ifdef CONTACTOR_CONTROL
pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcSetup(POSITIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
ledcSetup(NEGATIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
ledcAttachPin(POSITIVE_CONTACTOR_PIN, POSITIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
ledcAttachPin(NEGATIVE_CONTACTOR_PIN, NEGATIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
ledcWrite(POSITIVE_PWM_Ch, 0); // Set Positive PWM to 0%
ledcWrite(NEGATIVE_PWM_Ch, 0); // Set Negative PWM to 0%
#endif
pinMode(PRECHARGE_PIN, OUTPUT);
digitalWrite(PRECHARGE_PIN, LOW);
#endif
//Set up Modbus RTU Server
pinMode(RS485_EN_PIN, OUTPUT);
digitalWrite(RS485_EN_PIN, HIGH);
pinMode(RS485_SE_PIN, OUTPUT);
digitalWrite(RS485_SE_PIN, HIGH);
pinMode(PIN_5V_EN, OUTPUT);
digitalWrite(PIN_5V_EN, HIGH);
#ifdef MODBUS_BYD
// Init Static data to the RTU Modbus
handle_static_data_modbus_byd();
// Init Serial2 connected to the RTU Modbus
RTUutils::prepareHardwareSerial(Serial2);
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
// Register served function code worker for server
MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03);
MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06);
MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16);
MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23);
// Start ModbusRTU background task
MBserver.begin(Serial2);
#endif
// Init LED control
pixels.begin();
//Inform user what Inverter is used
#ifdef SOLAX_CAN
inverterAllowsContactorClosing = 0; //The inverter needs to allow first on this protocol
intervalInverterTask = 800; //This protocol also requires the values to be updated faster
Serial.println("SOLAX CAN protocol selected");
#endif
#ifdef MODBUS_BYD
Serial.println("BYD Modbus RTU protocol selected");
#endif
#ifdef CAN_BYD
Serial.println("BYD CAN protocol selected");
#endif
#ifdef SMA_CAN
Serial.println("SMA CAN protocol selected");
#endif
//Inform user what battery is used
#ifdef BATTERY_TYPE_LEAF
Serial.println("Nissan LEAF battery selected");
#endif
#ifdef TESLA_MODEL_3_BATTERY
Serial.println("Tesla Model 3 battery selected");
#endif
#ifdef RENAULT_ZOE_BATTERY
Serial.println("Renault Zoe / Kangoo battery selected");
#endif
#ifdef BMW_I3_BATTERY
Serial.println("BMW i3 battery selected");
#endif
#ifdef IMIEV_ION_CZERO_BATTERY
Serial.println("Mitsubishi i-MiEV / Citroen C-Zero / Peugeot Ion battery selected");
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
Serial.println("Kia Niro / Hyundai Kona 64kWh battery selected");
#endif
}
// perform main program functions
void loop()
{
handle_can(); //runs as fast as possible, handle CAN routines
#ifdef DUAL_CAN
handle_can2();
#endif
if (millis() - previousMillis10ms >= interval10) //every 10ms
{
previousMillis10ms = millis();
handle_LED_state(); //Set the LED color according to state
#ifdef CONTACTOR_CONTROL
handle_contactors(); //Take care of startup precharge/contactor closing
#endif
}
if (millis() - previousMillisInverter >= intervalInverterTask) //every 5s
{
previousMillisInverter = millis();
handle_inverter(); //Update values heading towards inverter
}
}
void handle_can()
{ //This section checks if we have a complete CAN message incoming
//Depending on which battery/inverter is selected, we forward this to their respective CAN routines
CAN_frame_t rx_frame;
if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 3 * portTICK_PERIOD_MS) == pdTRUE)
{
if (rx_frame.FIR.B.FF == CAN_frame_std)
{
//printf("New standard frame");
#ifdef BATTERY_TYPE_LEAF
receive_can_leaf_battery(rx_frame);
#endif
#ifdef TESLA_MODEL_3_BATTERY
receive_can_tesla_model_3_battery(rx_frame);
#endif
#ifdef RENAULT_ZOE_BATTERY
receive_can_zoe_battery(rx_frame);
#endif
#ifdef BMW_I3_BATTERY
receive_can_i3_battery(rx_frame);
#endif
#ifdef IMIEV_ION_CZERO_BATTERY
receive_can_imiev_battery(rx_frame);
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
receive_can_kiaHyundai_64_battery(rx_frame);
#endif
#ifdef CAN_BYD
receive_can_byd(rx_frame);
#endif
#ifdef SMA_CAN
receive_can_sma(rx_frame);
#endif
#ifdef CHADEMO
receive_can_chademo(rx_frame);
#endif
}
else
{
//printf("New extended frame");
#ifdef SOLAX_CAN
receive_can_solax(rx_frame);
#endif
#ifdef PYLON_CAN
receive_can_pylon(rx_frame);
#endif
}
}
//When we are done checking if a CAN message has arrived, we can focus on sending CAN messages
//Inverter sending
#ifdef CAN_BYD
send_can_byd();
#endif
#ifdef SMA_CAN
send_can_sma();
#endif
//Battery sending
#ifdef BATTERY_TYPE_LEAF
send_can_leaf_battery();
#endif
#ifdef TESLA_MODEL_3_BATTERY
send_can_tesla_model_3_battery();
#endif
#ifdef RENAULT_ZOE_BATTERY
send_can_zoe_battery();
#endif
#ifdef BMW_I3_BATTERY
send_can_i3_battery();
#endif
#ifdef IMIEV_ION_CZERO_BATTERY
send_can_imiev_battery();
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
send_can_kiaHyundai_64_battery();
#endif
#ifdef CHADEMO
send_can_chademo_battery();
#endif
}
#ifdef DUAL_CAN
void handle_can2()
{ //This function is similar to handle_can, but just takes care of inverters in the 2nd bus.
//Depending on which inverter is selected, we forward this to their respective CAN routines
CAN_frame_t rx_frame2; //Struct with ESP32Can library format, compatible with the rest of the program
CANMessage MCP2515Frame; //Struct with ACAN2515 library format, needed to use thw MCP2515 library
if ( can.available() )
{
can.receive(MCP2515Frame);
rx_frame2.MsgID = MCP2515Frame.id;
rx_frame2.FIR.B.FF = MCP2515Frame.ext ? CAN_frame_ext : CAN_frame_std;
rx_frame2.FIR.B.RTR = MCP2515Frame.rtr ? CAN_RTR : CAN_no_RTR;
rx_frame2.FIR.B.DLC = MCP2515Frame.len;
for (uint8_t i=0 ; i<MCP2515Frame.len ; i++) {
rx_frame2.data.u8[i] = MCP2515Frame.data[i] ;
}
if (rx_frame2.FIR.B.FF == CAN_frame_std)
{
//Serial.println("New standard frame");
#ifdef CAN_BYD
receive_can_byd(rx_frame2);
#endif
}
else
{
//Serial.println("New extended frame");
#ifdef SOLAX_CAN
receive_can_solax(rx_frame2);
#endif
#ifdef PYLON_CAN
receive_can_pylon(rx_frame2);
#endif
}
}
//When we are done checking if a CAN message has arrived, we can focus on sending CAN messages
//Inverter sending
#ifdef CAN_BYD
send_can_byd();
#endif
}
#endif
void handle_inverter()
{
#ifdef BATTERY_TYPE_LEAF
update_values_leaf_battery(); //Map the values to the correct registers
#endif
#ifdef TESLA_MODEL_3_BATTERY
update_values_tesla_model_3_battery(); //Map the values to the correct registers
#endif
#ifdef RENAULT_ZOE_BATTERY
update_values_zoe_battery(); //Map the values to the correct registers
#endif
#ifdef BMW_I3_BATTERY
update_values_i3_battery(); //Map the values to the correct registers
#endif
#ifdef IMIEV_ION_CZERO_BATTERY
update_values_imiev_battery(); //Map the values to the correct registers
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
update_values_kiaHyundai_64_battery(); //Map the values to the correct registers
#endif
#ifdef SOLAX_CAN
update_values_can_solax();
#endif
#ifdef CAN_BYD
update_values_can_byd();
#endif
#ifdef SMA_CAN
update_values_can_sma();
#endif
#ifdef PYLON_CAN
update_values_can_pylon();
#endif
#ifdef CHADEMO
update_values_can_chademo();
#endif
#ifdef MODBUS_BYD
//Updata for ModbusRTU Server for BYD
handle_update_data_modbusp201_byd();
handle_update_data_modbusp301_byd();
#endif
}
#ifdef CONTACTOR_CONTROL
void handle_contactors()
{
//First check if we have any active errors, incase we do, turn off the battery
if(bms_status == FAULT){
timeSpentInFaultedMode++;
}
else{
timeSpentInFaultedMode = 0;
}
if(timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS)
{
contactorStatus = SHUTDOWN_REQUESTED;
}
if(contactorStatus == SHUTDOWN_REQUESTED)
{
digitalWrite(PRECHARGE_PIN, LOW);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
return; //A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured)
}
//After that, check if we are OK to start turning on the battery
if(contactorStatus == DISCONNECTED)
{
digitalWrite(PRECHARGE_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(POSITIVE_PWM_Ch, 0);
ledcWrite(NEGATIVE_PWM_Ch, 0);
#endif
if(batteryAllowsContactorClosing && inverterAllowsContactorClosing)
{
contactorStatus = PRECHARGE;
}
}
//Incase the inverter requests contactors to open, set the state accordingly
if(contactorStatus == COMPLETED)
{
if (!inverterAllowsContactorClosing) contactorStatus = DISCONNECTED;
//Skip running the state machine below if it has already completed
return;
}
unsigned long currentTime = millis();
//Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge
switch (contactorStatus) {
case PRECHARGE:
digitalWrite(PRECHARGE_PIN, HIGH);
prechargeStartTime = currentTime;
contactorStatus = NEGATIVE;
break;
case NEGATIVE:
if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) {
digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(NEGATIVE_PWM_Ch, 1023);
#endif
negativeStartTime = currentTime;
contactorStatus = POSITIVE;
}
break;
case POSITIVE:
if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) {
digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(POSITIVE_PWM_Ch, 1023);
#endif
contactorStatus = PRECHARGE_OFF;
}
break;
case PRECHARGE_OFF:
if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) {
digitalWrite(PRECHARGE_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(NEGATIVE_PWM_Ch, PWM_Hold_Duty);
ledcWrite(POSITIVE_PWM_Ch, PWM_Hold_Duty);
#endif
contactorStatus = COMPLETED;
}
break;
default:
break;
}
}
#endif
#ifdef MODBUS_BYD
void handle_static_data_modbus_byd() {
// Store the data into the array
static uint16_t si_data[] = { 21321, 1 };
static uint16_t byd_data[] = { 16985, 17408, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
static uint16_t battery_data[] = { 16985, 17440, 16993, 29812, 25970, 31021, 17007, 30752, 20594, 25965, 26997, 27936, 18518, 0, 0, 0 };
static uint16_t volt_data[] = { 13614, 12288, 0, 0, 0, 0, 0, 0, 13102, 12598, 0, 0, 0, 0, 0, 0 };
static uint16_t serial_data[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
static uint16_t static_data[] = { 1, 0 };
static uint16_t* data_array_pointers[] = { si_data, byd_data, battery_data, volt_data, serial_data, static_data };
static uint16_t data_sizes[] = { sizeof(si_data), sizeof(byd_data), sizeof(battery_data), sizeof(volt_data), sizeof(serial_data), sizeof(static_data) };
static uint16_t i = 100;
for (uint8_t arr_idx = 0; arr_idx < sizeof(data_array_pointers) / sizeof(uint16_t*); arr_idx++) {
uint16_t data_size = data_sizes[arr_idx];
memcpy(&mbPV[i], data_array_pointers[arr_idx], data_size);
i += data_size / sizeof(uint16_t);
}
}
void handle_update_data_modbusp201_byd() {
// Store the data into the array
static uint16_t system_data[13];
system_data[0] = 0; // Id.: p201 Value.: 0 Scaled value.: 0 Comment.: Always 0
system_data[1] = 0; // Id.: p202 Value.: 0 Scaled value.: 0 Comment.: Always 0
system_data[2] = (capacity_Wh_startup); // Id.: p203 Value.: 32000 Scaled value.: 32kWh Comment.: Capacity rated, maximum value is 60000 (60kWh)
system_data[3] = (max_power); // Id.: p204 Value.: 32000 Scaled value.: 32kWh Comment.: Nominal capacity
system_data[4] = (max_power); // Id.: p205 Value.: 14500 Scaled value.: 30,42kW Comment.: Max Charge/Discharge Power=10.24kW (lowest value of 204 and 205 will be enforced by Gen24)
system_data[5] = (max_voltage); // Id.: p206 Value.: 3667 Scaled value.: 362,7VDC Comment.: Max Voltage, if higher charging is not possible (goes into forced discharge)
system_data[6] = (min_voltage); // Id.: p207 Value.: 2776 Scaled value.: 277,6VDC Comment.: Min Voltage, if lower Gen24 disables battery
system_data[7] = 53248; // Id.: p208 Value.: 53248 Scaled value.: 53248 Comment.: Always 53248 for this BYD, Peak Charge power?
system_data[8] = 10; // Id.: p209 Value.: 10 Scaled value.: 10 Comment.: Always 10
system_data[9] = 53248; // Id.: p210 Value.: 53248 Scaled value.: 53248 Comment.: Always 53248 for this BYD, Peak Discharge power?
system_data[10] = 10; // Id.: p211 Value.: 10 Scaled value.: 10 Comment.: Always 10
system_data[11] = 0; // Id.: p212 Value.: 0 Scaled value.: 0 Comment.: Always 0
system_data[12] = 0; // Id.: p213 Value.: 0 Scaled value.: 0 Comment.: Always 0
static uint16_t i = 200;
memcpy(&mbPV[i], system_data, sizeof(system_data));
}
void handle_update_data_modbusp301_byd() {
// Store the data into the array
static uint16_t battery_data[24];
if (battery_current == 0){ //idle
bms_char_dis_status = 0;
}
else if(battery_current < 32768){ //Positive value = Charging
bms_char_dis_status = 2; //Charging
}
else if(battery_current > 32768){ //Negative value = Discharging
bms_char_dis_status = 1; //Discharging
}
if (bms_status == ACTIVE) {
battery_data[8] = battery_voltage; // Id.: p309 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage outer (0 if status !=3, maybe a contactor closes when active): 173.4V
} else {
battery_data[8] = 0;
}
battery_data[0] = bms_status; // Id.: p301 Value.: 3 Scaled value.: 3 Comment.: status(*): ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
battery_data[1] = 0; // Id.: p302 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[2] = 128 + bms_char_dis_status; // Id.: p303 Value.: 130 Scaled value.: 130 Comment.: mode(*): normal
battery_data[3] = SOC; // Id.: p304 Value.: 1700 Scaled value.: 50% Comment.: SOC: (50% would equal 5000)
battery_data[4] = capacity_Wh; // Id.: p305 Value.: 32000 Scaled value.: 32kWh Comment.: tot cap:
battery_data[5] = remaining_capacity_Wh; // Id.: p306 Value.: 13260 Scaled value.: 13,26kWh Comment.: remaining cap: 7.68kWh
battery_data[6] = max_target_discharge_power; // Id.: p307 Value.: 25604 Scaled value.: 25,604kW Comment.: max/target discharge power: 0W (0W > restricts to no discharge)
battery_data[7] = max_target_charge_power; // Id.: p308 Value.: 25604 Scaled value.: 25,604kW Comment.: max/target charge power: 4.3kW (during charge), both 307&308 can be set (>0) at the same time
//Battery_data[8] set previously in function // Id.: p309 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage outer (0 if status !=3, maybe a contactor closes when active): 173.4V
battery_data[9] = 2000; // Id.: p310 Value.: 64121 Scaled value.: 6412,1W Comment.: Current Power to API: if>32768... -(65535-61760)=3775W
battery_data[10] = battery_voltage; // Id.: p311 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage inner: 173.2V (LEAF voltage is in whole volts, need to add a decimal)
battery_data[11] = 2000; // Id.: p312 Value.: 64121 Scaled value.: 6412,1W Comment.: p310
battery_data[12] = temperature_min; // Id.: p313 Value.: 75 Scaled value.: 7,5 Comment.: temp min: 7 degrees (if below 0....65535-t)
battery_data[13] = temperature_max; // Id.: p314 Value.: 95 Scaled value.: 9,5 Comment.: temp max: 9 degrees (if below 0....65535-t)
battery_data[14] = 0; // Id.: p315 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[15] = 0; // Id.: p316 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[16] = 16; // Id.: p317 Value.: 0 Scaled value.: 0 Comment.: counter charge hi
battery_data[17] = 22741; // Id.: p318 Value.: 0 Scaled value.: 0 Comment.: counter charge lo....65536*101+9912 = 6629048 Wh?
battery_data[18] = 0; // Id.: p319 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[19] = 0; // Id.: p320 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[20] = 13; // Id.: p321 Value.: 0 Scaled value.: 0 Comment.: counter discharge hi
battery_data[21] = 52064; // Id.: p322 Value.: 0 Scaled value.: 0 Comment.: counter discharge lo....65536*92+7448 = 6036760 Wh?
battery_data[22] = 230; // Id.: p323 Value.: 0 Scaled value.: 0 Comment.: device temperature (23 degrees)
battery_data[23] = StateOfHealth; // Id.: p324 Value.: 9900 Scaled value.: 99% Comment.: SOH
static uint16_t i = 300;
memcpy(&mbPV[i], battery_data, sizeof(battery_data));
}
#endif
void handle_LED_state()
{
// Determine how bright the LED should be
if (rampUp && brightness < maxBrightness){
brightness++;
}
else if (rampUp && brightness == maxBrightness){
rampUp = false;
}
else if (!rampUp && brightness > 0){
brightness--;
}
else if (!rampUp && brightness == 0){
rampUp = true;
}
switch (LEDcolor)
{
case GREEN:
pixels.setPixelColor(0, pixels.Color(0, brightness, 0)); // Green pulsing LED
break;
case YELLOW:
pixels.setPixelColor(0, pixels.Color(brightness, brightness, 0)); // Yellow pulsing LED
break;
case BLUE:
pixels.setPixelColor(0, pixels.Color(0, 0, brightness)); //Blue pulsing LED
break;
case RED:
pixels.setPixelColor(0, pixels.Color(150, 0, 0)); // Red LED full brightness
break;
default:
break;
}
//BMS in fault state overrides everything
if(bms_status == FAULT)
{
pixels.setPixelColor(0, pixels.Color(255, 0, 0)); // Red LED full brightness
}
pixels.show(); // This sends the updated pixel color to the hardware.
}