Battery-Emulator/Software/Software.ino
2023-11-19 22:23:35 +02:00

600 lines
18 KiB
C++

/* Do not change any code below this line unless you are sure what you are doing */
/* Only change battery specific settings in "USER_SETTINGS.h" */
#include <Arduino.h>
#include "HardwareSerial.h"
#include "USER_SETTINGS.h"
#include "src/battery/BATTERIES.h"
#include "src/devboard/config.h"
#include "src/inverter/INVERTERS.h"
#include "src/lib/adafruit-Adafruit_NeoPixel/Adafruit_NeoPixel.h"
#include "src/lib/eModbus-eModbus/Logging.h"
#include "src/lib/eModbus-eModbus/ModbusServerRTU.h"
#include "src/lib/eModbus-eModbus/scripts/mbServerFCs.h"
#include "src/lib/mackelec-SerialDataLink/SerialDataLink.h"
#include "src/lib/miwagner-ESP32-Arduino-CAN/CAN_config.h"
#include "src/lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"
// Interval settings
int intervalUpdateValues = 4800; // Interval at which to update inverter values / Modbus registers
const int interval10 = 10; // Interval for 10ms tasks
unsigned long previousMillis10ms = 50;
unsigned long previousMillisUpdateVal = 0;
// CAN parameters
CAN_device_t CAN_cfg; // CAN Config
const int rx_queue_size = 10; // Receive Queue size
#ifdef DUAL_CAN
#include "src/lib/pierremolinaro-acan2515/ACAN2515.h"
static const uint32_t QUARTZ_FREQUENCY = 8UL * 1000UL * 1000UL; // 8 MHz
ACAN2515 can(MCP2515_CS, SPI, MCP2515_INT);
static ACAN2515_Buffer16 gBuffer;
#endif
// ModbusRTU parameters
#if defined(BYD_MODBUS)
#define MB_RTU_NUM_VALUES 30000
#endif
#if defined(LUNA2000_MODBUS)
#define MB_RTU_NUM_VALUES 50000
#endif
#if defined(BYD_MODBUS) || defined(LUNA2000_MODBUS)
uint16_t mbPV[MB_RTU_NUM_VALUES]; // Process variable memory
// Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout
ModbusServerRTU MBserver(Serial2, 2000);
#endif
// Inverter parameters
// Inverter states
#define STANDBY 0
#define INACTIVE 1
#define DARKSTART 2
#define ACTIVE 3
#define FAULT 4
#define UPDATING 5
// Common inverter parameters
uint16_t capacity_Wh_startup = BATTERY_WH_MAX;
uint16_t max_power = 40960; // 41kW
uint16_t max_voltage = ABSOLUTE_MAX_VOLTAGE; // If higher charging is not possible (goes into forced discharge)
uint16_t min_voltage = ABSOLUTE_MIN_VOLTAGE; // If lower Gen24 disables battery
uint16_t battery_voltage = 3700;
uint16_t battery_current = 0;
uint16_t SOC = 5000; // SOC 0-100.00% // Updates later on from CAN
uint16_t StateOfHealth = 9900; // SOH 0-100.00% // Updates later on from CAN
uint16_t capacity_Wh = BATTERY_WH_MAX; // Updates later on from CAN
uint16_t remaining_capacity_Wh = BATTERY_WH_MAX; // Updates later on from CAN
uint16_t max_target_discharge_power = 0; // 0W (0W > restricts to no discharge) // Updates later on from CAN
uint16_t max_target_charge_power =
4312; // 4.3kW (during charge), both 307&308 can be set (>0) at the same time // Updates later on from CAN. Max value is 30000W
uint16_t temperature_max = 50; // Reads from battery later
uint16_t temperature_min = 60; // Reads from battery later
uint16_t bms_char_dis_status; // 0 idle, 1 discharging, 2, charging
uint16_t bms_status = ACTIVE; // ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
uint16_t stat_batt_power = 0; // Power going in/out of battery
uint16_t cell_max_voltage = 3700; // Stores the highest cell voltage value in the system
uint16_t cell_min_voltage = 3700; // Stores the minimum cell voltage value in the system
// LED parameters
Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800);
static uint8_t brightness = 0;
static bool rampUp = true;
const uint8_t maxBrightness = 100;
uint8_t LEDcolor = GREEN;
// Contactor parameters
#ifdef CONTACTOR_CONTROL
enum State { DISCONNECTED, PRECHARGE, NEGATIVE, POSITIVE, PRECHARGE_OFF, COMPLETED, SHUTDOWN_REQUESTED };
State contactorStatus = DISCONNECTED;
#define MAX_ALLOWED_FAULT_TICKS 500
#define PRECHARGE_TIME_MS 160
#define NEGATIVE_CONTACTOR_TIME_MS 1000
#define POSITIVE_CONTACTOR_TIME_MS 2000
#ifdef PWM_CONTACTOR_CONTROL
#define PWM_Freq 20000 // 20 kHz frequency, beyond audible range
#define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100%
#define PWM_Hold_Duty 250
#define POSITIVE_PWM_Ch 0
#define NEGATIVE_PWM_Ch 1
#endif
unsigned long prechargeStartTime = 0;
unsigned long negativeStartTime = 0;
unsigned long timeSpentInFaultedMode = 0;
#endif
bool batteryAllowsContactorClosing = false;
bool inverterAllowsContactorClosing = true;
// Initialization
void setup() {
init_serial();
init_CAN();
init_LED();
init_contactors();
init_modbus();
inform_user_on_inverter();
inform_user_on_battery();
}
// Perform main program functions
void loop() {
// Input
receive_can(); // Receive CAN messages. Runs as fast as possible
#ifdef DUAL_CAN
receive_can2();
#endif
// Process
if (millis() - previousMillis10ms >= interval10) // Every 10ms
{
previousMillis10ms = millis();
handle_LED_state(); // Set the LED color according to state
#ifdef CONTACTOR_CONTROL
handle_contactors(); // Take care of startup precharge/contactor closing
#endif
}
if (millis() - previousMillisUpdateVal >= intervalUpdateValues) // Every 4.8s
{
previousMillisUpdateVal = millis();
update_values(); // Update values heading towards inverter. Prepare for sending on CAN, or write directly to Modbus.
}
// Output
send_can(); // Send CAN messages
#ifdef DUAL_CAN
send_can2();
#endif
}
// Initialization functions
void init_serial() {
// Init Serial monitor
Serial.begin(115200);
while (!Serial) {}
Serial.println("__ OK __");
}
void init_CAN() {
// CAN pins
pinMode(CAN_SE_PIN, OUTPUT);
digitalWrite(CAN_SE_PIN, LOW);
CAN_cfg.speed = CAN_SPEED_500KBPS;
CAN_cfg.tx_pin_id = GPIO_NUM_27;
CAN_cfg.rx_pin_id = GPIO_NUM_26;
CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t));
// Init CAN Module
ESP32Can.CANInit();
Serial.println(CAN_cfg.speed);
#ifdef DUAL_CAN
Serial.println("Dual CAN Bus (ESP32+MCP2515) selected");
gBuffer.initWithSize(25);
SPI.begin(MCP2515_SCK, MCP2515_MISO, MCP2515_MOSI);
Serial.println("Configure ACAN2515");
ACAN2515Settings settings(QUARTZ_FREQUENCY, 500UL * 1000UL); // CAN bit rate 500 kb/s
settings.mRequestedMode = ACAN2515Settings::NormalMode; // Select loopback mode
can.begin(settings, [] { can.isr(); });
#endif
}
void init_LED() {
// Init LED control
pixels.begin();
}
void init_contactors() {
// Init contactor pins
#ifdef CONTACTOR_CONTROL
pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcSetup(POSITIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
ledcSetup(NEGATIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
ledcAttachPin(POSITIVE_CONTACTOR_PIN, POSITIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
ledcAttachPin(NEGATIVE_CONTACTOR_PIN, NEGATIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
ledcWrite(POSITIVE_PWM_Ch, 0); // Set Positive PWM to 0%
ledcWrite(NEGATIVE_PWM_Ch, 0); // Set Negative PWM to 0%
#endif
pinMode(PRECHARGE_PIN, OUTPUT);
digitalWrite(PRECHARGE_PIN, LOW);
#endif
}
void init_modbus() {
// Set up Modbus RTU Server
pinMode(RS485_EN_PIN, OUTPUT);
digitalWrite(RS485_EN_PIN, HIGH);
pinMode(RS485_SE_PIN, OUTPUT);
digitalWrite(RS485_SE_PIN, HIGH);
pinMode(PIN_5V_EN, OUTPUT);
digitalWrite(PIN_5V_EN, HIGH);
#ifdef BYD_MODBUS
// Init Static data to the RTU Modbus
handle_static_data_modbus_byd();
#endif
#if defined(BYD_MODBUS) || defined(LUNA2000_MODBUS)
// Init Serial2 connected to the RTU Modbus
RTUutils::prepareHardwareSerial(Serial2);
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
// Register served function code worker for server
MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03);
MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06);
MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16);
MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23);
// Start ModbusRTU background task
MBserver.begin(Serial2);
#endif
}
void inform_user_on_inverter() {
// Inform user what Inverter is used
#ifdef BYD_CAN
Serial.println("BYD CAN protocol selected");
#endif
#ifdef BYD_MODBUS
Serial.println("BYD Modbus RTU protocol selected");
#endif
#ifdef LUNA2000_MODBUS
Serial.println("Luna2000 Modbus RTU protocol selected");
#endif
#ifdef PYLON_CAN
Serial.println("PYLON CAN protocol selected");
#endif
#ifdef SMA_CAN
Serial.println("SMA CAN protocol selected");
#endif
#ifdef SOFAR_CAN
Serial.println("SOFAR CAN protocol selected");
#endif
#ifdef SOLAX_CAN
inverterAllowsContactorClosing = false; // The inverter needs to allow first on this protocol
intervalUpdateValues = 800; // This protocol also requires the values to be updated faster
Serial.println("SOLAX CAN protocol selected");
#endif
}
void inform_user_on_battery() {
// Inform user what battery is used
#ifdef BMW_I3_BATTERY
Serial.println("BMW i3 battery selected");
#endif
#ifdef CHADEMO_BATTERY
Serial.println("Chademo battery selected");
#endif
#ifdef IMIEV_CZERO_ION_BATTERY
Serial.println("Mitsubishi i-MiEV / Citroen C-Zero / Peugeot Ion battery selected");
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
Serial.println("Kia Niro / Hyundai Kona 64kWh battery selected");
#endif
#ifdef NISSAN_LEAF_BATTERY
Serial.println("Nissan LEAF battery selected");
#endif
#ifdef RENAULT_ZOE_BATTERY
Serial.println("Renault Zoe / Kangoo battery selected");
#endif
#ifdef TESLA_MODEL_3_BATTERY
Serial.println("Tesla Model 3 battery selected");
#endif
#ifdef TEST_FAKE_BATTERY
Serial.println("Test mode with fake battery selected");
#endif
}
// Functions
void receive_can() { // This section checks if we have a complete CAN message incoming
// Depending on which battery/inverter is selected, we forward this to their respective CAN routines
CAN_frame_t rx_frame;
if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 3 * portTICK_PERIOD_MS) == pdTRUE) {
if (rx_frame.FIR.B.FF == CAN_frame_std) {
//printf("New standard frame");
// Battery
#ifdef BMW_I3_BATTERY
receive_can_i3_battery(rx_frame);
#endif
#ifdef CHADEMO_BATTERY
receive_can_chademo_battery(rx_frame);
#endif
#ifdef IMIEV_CZERO_ION_BATTERY
receive_can_imiev_battery(rx_frame);
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
receive_can_kiaHyundai_64_battery(rx_frame);
#endif
#ifdef NISSAN_LEAF_BATTERY
receive_can_leaf_battery(rx_frame);
#endif
#ifdef RENAULT_ZOE_BATTERY
receive_can_zoe_battery(rx_frame);
#endif
#ifdef TESLA_MODEL_3_BATTERY
receive_can_tesla_model_3_battery(rx_frame);
#endif
#ifdef TEST_FAKE_BATTERY
receive_can_test_battery(rx_frame);
#endif
// Inverter
#ifdef BYD_CAN
receive_can_byd(rx_frame);
#endif
#ifdef SMA_CAN
receive_can_sma(rx_frame);
#endif
} else {
//printf("New extended frame");
#ifdef PYLON_CAN
receive_can_pylon(rx_frame);
#endif
#ifdef SOFAR_CAN
receive_can_sofar(rx_frame);
#endif
#ifdef SOLAX_CAN
receive_can_solax(rx_frame);
#endif
}
}
}
void send_can() {
// Send CAN messages
// Inverter
#ifdef BYD_CAN
send_can_byd();
#endif
#ifdef SMA_CAN
send_can_sma();
#endif
#ifdef SOFAR_CAN
send_can_sofar();
#endif
// Battery
#ifdef BMW_I3_BATTERY
send_can_i3_battery();
#endif
#ifdef CHADEMO_BATTERY
send_can_chademo_battery();
#endif
#ifdef IMIEV_CZERO_ION_BATTERY
send_can_imiev_battery();
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
send_can_kiaHyundai_64_battery();
#endif
#ifdef NISSAN_LEAF_BATTERY
send_can_leaf_battery();
#endif
#ifdef RENAULT_ZOE_BATTERY
send_can_zoe_battery();
#endif
#ifdef TESLA_MODEL_3_BATTERY
send_can_tesla_model_3_battery();
#endif
#ifdef TEST_FAKE_BATTERY
send_can_test_battery();
#endif
}
#ifdef DUAL_CAN
void receive_can2() { // This function is similar to receive_can, but just takes care of inverters in the 2nd bus.
// Depending on which inverter is selected, we forward this to their respective CAN routines
CAN_frame_t rx_frame2; // Struct with ESP32Can library format, compatible with the rest of the program
CANMessage MCP2515Frame; // Struct with ACAN2515 library format, needed to use thw MCP2515 library
if (can.available()) {
can.receive(MCP2515Frame);
rx_frame2.MsgID = MCP2515Frame.id;
rx_frame2.FIR.B.FF = MCP2515Frame.ext ? CAN_frame_ext : CAN_frame_std;
rx_frame2.FIR.B.RTR = MCP2515Frame.rtr ? CAN_RTR : CAN_no_RTR;
rx_frame2.FIR.B.DLC = MCP2515Frame.len;
for (uint8_t i = 0; i < MCP2515Frame.len; i++) {
rx_frame2.data.u8[i] = MCP2515Frame.data[i];
}
if (rx_frame2.FIR.B.FF == CAN_frame_std) {
//Serial.println("New standard frame");
#ifdef BYD_CAN
receive_can_byd(rx_frame2);
#endif
} else {
//Serial.println("New extended frame");
#ifdef PYLON_CAN
receive_can_pylon(rx_frame2);
#endif
#ifdef SOLAX_CAN
receive_can_solax(rx_frame2);
#endif
}
}
}
void send_can2() {
// Send CAN
// Inverter
#ifdef BYD_CAN
send_can_byd();
#endif
}
#endif
void handle_LED_state() {
// Determine how bright the LED should be
if (rampUp && brightness < maxBrightness) {
brightness++;
} else if (rampUp && brightness == maxBrightness) {
rampUp = false;
} else if (!rampUp && brightness > 0) {
brightness--;
} else if (!rampUp && brightness == 0) {
rampUp = true;
}
switch (LEDcolor) {
case GREEN:
pixels.setPixelColor(0, pixels.Color(0, brightness, 0)); // Green pulsing LED
break;
case YELLOW:
pixels.setPixelColor(0, pixels.Color(brightness, brightness, 0)); // Yellow pulsing LED
break;
case BLUE:
pixels.setPixelColor(0, pixels.Color(0, 0, brightness)); // Blue pulsing LED
break;
case RED:
pixels.setPixelColor(0, pixels.Color(150, 0, 0)); // Red LED full brightness
break;
case TEST_ALL_COLORS:
pixels.setPixelColor(0, pixels.Color(brightness, abs((100 - brightness)), abs((50 - brightness)))); // RGB
break;
default:
break;
}
// BMS in fault state overrides everything
if (bms_status == FAULT) {
pixels.setPixelColor(0, pixels.Color(255, 0, 0)); // Red LED full brightness
}
pixels.show(); // This sends the updated pixel color to the hardware.
}
#ifdef CONTACTOR_CONTROL
void handle_contactors() {
// First check if we have any active errors, incase we do, turn off the battery
if (bms_status == FAULT) {
timeSpentInFaultedMode++;
} else {
timeSpentInFaultedMode = 0;
}
if (timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS) {
contactorStatus = SHUTDOWN_REQUESTED;
}
if (contactorStatus == SHUTDOWN_REQUESTED) {
digitalWrite(PRECHARGE_PIN, LOW);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
return; // A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured)
}
// After that, check if we are OK to start turning on the battery
if (contactorStatus == DISCONNECTED) {
digitalWrite(PRECHARGE_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(POSITIVE_PWM_Ch, 0);
ledcWrite(NEGATIVE_PWM_Ch, 0);
#endif
if (batteryAllowsContactorClosing && inverterAllowsContactorClosing) {
contactorStatus = PRECHARGE;
}
}
// In case the inverter requests contactors to open, set the state accordingly
if (contactorStatus == COMPLETED) {
if (!inverterAllowsContactorClosing)
contactorStatus = DISCONNECTED;
// Skip running the state machine below if it has already completed
return;
}
unsigned long currentTime = millis();
// Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge
switch (contactorStatus) {
case PRECHARGE:
digitalWrite(PRECHARGE_PIN, HIGH);
prechargeStartTime = currentTime;
contactorStatus = NEGATIVE;
break;
case NEGATIVE:
if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) {
digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(NEGATIVE_PWM_Ch, 1023);
#endif
negativeStartTime = currentTime;
contactorStatus = POSITIVE;
}
break;
case POSITIVE:
if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) {
digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(POSITIVE_PWM_Ch, 1023);
#endif
contactorStatus = PRECHARGE_OFF;
}
break;
case PRECHARGE_OFF:
if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) {
digitalWrite(PRECHARGE_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(NEGATIVE_PWM_Ch, PWM_Hold_Duty);
ledcWrite(POSITIVE_PWM_Ch, PWM_Hold_Duty);
#endif
contactorStatus = COMPLETED;
}
break;
default:
break;
}
}
#endif
void update_values() {
// Battery
#ifdef BMW_I3_BATTERY
update_values_i3_battery(); // Map the values to the correct registers
#endif
#ifdef CHADEMO_BATTERY
update_values_chademo_battery(); // Map the values to the correct registers
#endif
#ifdef IMIEV_CZERO_ION_BATTERY
update_values_imiev_battery(); // Map the values to the correct registers
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
update_values_kiaHyundai_64_battery(); // Map the values to the correct registers
#endif
#ifdef NISSAN_LEAF_BATTERY
update_values_leaf_battery(); // Map the values to the correct registers
#endif
#ifdef RENAULT_ZOE_BATTERY
update_values_zoe_battery(); // Map the values to the correct registers
#endif
#ifdef TESLA_MODEL_3_BATTERY
update_values_tesla_model_3_battery(); // Map the values to the correct registers
#endif
#ifdef TEST_FAKE_BATTERY
update_values_test_battery(); // Map the fake values to the correct registers
#endif
// Inverter
#ifdef BYD_CAN
update_values_can_byd();
#endif
#ifdef BYD_MODBUS
update_modbus_registers_byd();
#endif
#ifdef LUNA2000_MODBUS
update_modbus_registers_luna2000();
#endif
#ifdef PYLON_CAN
update_values_can_pylon();
#endif
#ifdef SMA_CAN
update_values_can_sma();
#endif
#ifdef SOLAX_CAN
update_values_can_solax();
#endif
}