mirror of
https://github.com/dalathegreat/Battery-Emulator.git
synced 2025-10-03 17:59:27 +02:00
576 lines
No EOL
17 KiB
C++
576 lines
No EOL
17 KiB
C++
/* Do not change any code below this line unless you are sure what you are doing */
|
|
/* Only change battery specific settings in "USER_SETTINGS.h" */
|
|
|
|
#include <Arduino.h>
|
|
#include "HardwareSerial.h"
|
|
#include "USER_SETTINGS.h"
|
|
#include "config.h"
|
|
#include "Logging.h"
|
|
#include "mbServerFCs.h"
|
|
#include "ModbusServerRTU.h"
|
|
#include "ESP32CAN.h"
|
|
#include "CAN_config.h"
|
|
#include "Adafruit_NeoPixel.h"
|
|
#include "src/battery/BATTERIES.h"
|
|
#include "INVERTERS.h"
|
|
|
|
//CAN parameters
|
|
CAN_device_t CAN_cfg; // CAN Config
|
|
const int rx_queue_size = 10; // Receive Queue size
|
|
|
|
#ifdef DUAL_CAN
|
|
#include "ACAN2515.h"
|
|
static const uint32_t QUARTZ_FREQUENCY = 8UL * 1000UL * 1000UL ; // 8 MHz
|
|
ACAN2515 can(MCP2515_CS, SPI, MCP2515_INT);
|
|
static ACAN2515_Buffer16 gBuffer;
|
|
#endif
|
|
|
|
//Interval settings
|
|
int intervalInverterTask = 4800; //Interval at which to refresh modbus registers / inverter values
|
|
const int interval10 = 10; //Interval for 10ms tasks
|
|
unsigned long previousMillis10ms = 50;
|
|
unsigned long previousMillisInverter = 0;
|
|
|
|
//ModbusRTU parameters
|
|
#if defined(MODBUS_BYD)
|
|
#define MB_RTU_NUM_VALUES 30000
|
|
#endif
|
|
#if defined(MODBUS_LUNA2000)
|
|
#define MB_RTU_NUM_VALUES 50000
|
|
#endif
|
|
#if defined(MODBUS_BYD) || defined(MODBUS_LUNA2000)
|
|
uint16_t mbPV[MB_RTU_NUM_VALUES]; // process variable memory
|
|
// Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout
|
|
ModbusServerRTU MBserver(Serial2, 2000);
|
|
#endif
|
|
|
|
//Inverter states
|
|
#define STANDBY 0
|
|
#define INACTIVE 1
|
|
#define DARKSTART 2
|
|
#define ACTIVE 3
|
|
#define FAULT 4
|
|
#define UPDATING 5
|
|
//Common inverter parameters
|
|
uint16_t capacity_Wh_startup = BATTERY_WH_MAX;
|
|
uint16_t max_power = 40960; //41kW
|
|
const uint16_t max_voltage = ABSOLUTE_MAX_VOLTAGE; //if higher charging is not possible (goes into forced discharge)
|
|
const uint16_t min_voltage = ABSOLUTE_MIN_VOLTAGE; //if lower Gen24 disables battery
|
|
uint16_t min_volt_byd_can = min_voltage;
|
|
uint16_t max_volt_byd_can = max_voltage;
|
|
uint16_t min_volt_solax_can = min_voltage;
|
|
uint16_t max_volt_solax_can = max_voltage;
|
|
uint16_t min_volt_pylon_can = min_voltage;
|
|
uint16_t max_volt_pylon_can = max_voltage;
|
|
uint16_t min_volt_modbus_byd = min_voltage;
|
|
uint16_t max_volt_modbus_byd = max_voltage;
|
|
uint16_t min_volt_sma_can = min_voltage;
|
|
uint16_t max_volt_sma_can = max_voltage;
|
|
uint16_t battery_voltage = 3700;
|
|
uint16_t battery_current = 0;
|
|
uint16_t SOC = 5000; //SOC 0-100.00% //Updates later on from CAN
|
|
uint16_t StateOfHealth = 9900; //SOH 0-100.00% //Updates later on from CAN
|
|
uint16_t capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
|
|
uint16_t remaining_capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
|
|
uint16_t max_target_discharge_power = 0; //0W (0W > restricts to no discharge) //Updates later on from CAN
|
|
uint16_t max_target_charge_power = 4312; //4.3kW (during charge), both 307&308 can be set (>0) at the same time //Updates later on from CAN. Max value is 30000W
|
|
uint16_t temperature_max = 50; //reads from battery later
|
|
uint16_t temperature_min = 60; //reads from battery later
|
|
uint16_t bms_char_dis_status; //0 idle, 1 discharging, 2, charging
|
|
uint16_t bms_status = ACTIVE; //ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
|
|
uint16_t stat_batt_power = 0; //power going in/out of battery
|
|
uint16_t cell_max_voltage = 3700; //Stores the highest cell voltage value in the system
|
|
uint16_t cell_min_voltage = 3700; //Stores the minimum cell voltage value in the system
|
|
|
|
// LED control
|
|
#define GREEN 0
|
|
#define YELLOW 1
|
|
#define RED 2
|
|
#define BLUE 3
|
|
|
|
Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800);
|
|
static uint8_t brightness = 0;
|
|
static bool rampUp = true;
|
|
const uint8_t maxBrightness = 100;
|
|
uint8_t LEDcolor = GREEN;
|
|
|
|
//Contactor parameters
|
|
enum State {
|
|
DISCONNECTED,
|
|
PRECHARGE,
|
|
NEGATIVE,
|
|
POSITIVE,
|
|
PRECHARGE_OFF,
|
|
COMPLETED,
|
|
SHUTDOWN_REQUESTED
|
|
};
|
|
State contactorStatus = DISCONNECTED;
|
|
|
|
#define MAX_ALLOWED_FAULT_TICKS 500
|
|
#define PRECHARGE_TIME_MS 160
|
|
#define NEGATIVE_CONTACTOR_TIME_MS 1000
|
|
#define POSITIVE_CONTACTOR_TIME_MS 2000
|
|
#define PWM_Freq 20000 // 20 kHz frequency, beyond audible range
|
|
#define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100%
|
|
#define PWM_Hold_Duty 250
|
|
#define POSITIVE_PWM_Ch 0
|
|
#define NEGATIVE_PWM_Ch 1
|
|
unsigned long prechargeStartTime = 0;
|
|
unsigned long negativeStartTime = 0;
|
|
unsigned long timeSpentInFaultedMode = 0;
|
|
uint8_t batteryAllowsContactorClosing = 0;
|
|
uint8_t inverterAllowsContactorClosing = 1;
|
|
|
|
// Setup() - initialization happens here
|
|
void setup()
|
|
{
|
|
// Init Serial monitor
|
|
Serial.begin(115200);
|
|
while (!Serial)
|
|
{
|
|
}
|
|
Serial.println("__ OK __");
|
|
|
|
//CAN pins
|
|
pinMode(CAN_SE_PIN, OUTPUT);
|
|
digitalWrite(CAN_SE_PIN, LOW);
|
|
CAN_cfg.speed = CAN_SPEED_500KBPS;
|
|
CAN_cfg.tx_pin_id = GPIO_NUM_27;
|
|
CAN_cfg.rx_pin_id = GPIO_NUM_26;
|
|
CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t));
|
|
// Init CAN Module
|
|
ESP32Can.CANInit();
|
|
Serial.println(CAN_cfg.speed);
|
|
|
|
#ifdef DUAL_CAN
|
|
Serial.println("Dual CAN Bus (ESP32+MCP2515) selected");
|
|
gBuffer.initWithSize(25);
|
|
SPI.begin(MCP2515_SCK, MCP2515_MISO, MCP2515_MOSI);
|
|
Serial.println ("Configure ACAN2515") ;
|
|
ACAN2515Settings settings (QUARTZ_FREQUENCY, 500UL * 1000UL) ; // CAN bit rate 500 kb/s
|
|
settings.mRequestedMode = ACAN2515Settings::NormalMode ; // Select loopback mode
|
|
can.begin (settings, [] { can.isr (); });
|
|
#endif
|
|
|
|
//Init contactor pins
|
|
#ifdef CONTACTOR_CONTROL
|
|
pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT);
|
|
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
|
|
pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT);
|
|
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcSetup(POSITIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
|
|
ledcSetup(NEGATIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
|
|
ledcAttachPin(POSITIVE_CONTACTOR_PIN, POSITIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
|
|
ledcAttachPin(NEGATIVE_CONTACTOR_PIN, NEGATIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
|
|
ledcWrite(POSITIVE_PWM_Ch, 0); // Set Positive PWM to 0%
|
|
ledcWrite(NEGATIVE_PWM_Ch, 0); // Set Negative PWM to 0%
|
|
#endif
|
|
pinMode(PRECHARGE_PIN, OUTPUT);
|
|
digitalWrite(PRECHARGE_PIN, LOW);
|
|
#endif
|
|
|
|
|
|
//Set up Modbus RTU Server
|
|
pinMode(RS485_EN_PIN, OUTPUT);
|
|
digitalWrite(RS485_EN_PIN, HIGH);
|
|
pinMode(RS485_SE_PIN, OUTPUT);
|
|
digitalWrite(RS485_SE_PIN, HIGH);
|
|
pinMode(PIN_5V_EN, OUTPUT);
|
|
digitalWrite(PIN_5V_EN, HIGH);
|
|
|
|
#ifdef MODBUS_BYD
|
|
// Init Static data to the RTU Modbus
|
|
handle_static_data_modbus_byd();
|
|
#endif
|
|
#if defined(MODBUS_BYD) || defined(MODBUS_LUNA2000)
|
|
// Init Serial2 connected to the RTU Modbus
|
|
RTUutils::prepareHardwareSerial(Serial2);
|
|
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
|
|
// Register served function code worker for server
|
|
MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03);
|
|
MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06);
|
|
MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16);
|
|
MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23);
|
|
// Start ModbusRTU background task
|
|
MBserver.begin(Serial2);
|
|
#endif
|
|
|
|
// Init LED control
|
|
pixels.begin();
|
|
|
|
//Inform user what Inverter is used
|
|
#ifdef SOLAX_CAN
|
|
inverterAllowsContactorClosing = 0; //The inverter needs to allow first on this protocol
|
|
intervalInverterTask = 800; //This protocol also requires the values to be updated faster
|
|
Serial.println("SOLAX CAN protocol selected");
|
|
#endif
|
|
#ifdef MODBUS_BYD
|
|
Serial.println("BYD Modbus RTU protocol selected");
|
|
#endif
|
|
#ifdef MODBUS_LUNA2000
|
|
Serial.println("Luna2000 Modbus RTU protocol selected");
|
|
#endif
|
|
#ifdef CAN_BYD
|
|
Serial.println("BYD CAN protocol selected");
|
|
#endif
|
|
#ifdef SMA_CAN
|
|
Serial.println("SMA CAN protocol selected");
|
|
#endif
|
|
#ifdef SOFAR_CAN
|
|
Serial.println("SOFAR CAN protocol selected");
|
|
#endif
|
|
//Inform user what battery is used
|
|
#ifdef BATTERY_TYPE_LEAF
|
|
Serial.println("Nissan LEAF battery selected");
|
|
#endif
|
|
#ifdef TESLA_MODEL_3_BATTERY
|
|
Serial.println("Tesla Model 3 battery selected");
|
|
#endif
|
|
#ifdef RENAULT_ZOE_BATTERY
|
|
Serial.println("Renault Zoe / Kangoo battery selected");
|
|
#endif
|
|
#ifdef BMW_I3_BATTERY
|
|
Serial.println("BMW i3 battery selected");
|
|
#endif
|
|
#ifdef IMIEV_ION_CZERO_BATTERY
|
|
Serial.println("Mitsubishi i-MiEV / Citroen C-Zero / Peugeot Ion battery selected");
|
|
#endif
|
|
#ifdef KIA_HYUNDAI_64_BATTERY
|
|
Serial.println("Kia Niro / Hyundai Kona 64kWh battery selected");
|
|
#endif
|
|
}
|
|
|
|
// perform main program functions
|
|
void loop()
|
|
{
|
|
handle_can(); //runs as fast as possible, handle CAN routines
|
|
|
|
#ifdef DUAL_CAN
|
|
handle_can2();
|
|
#endif
|
|
|
|
if (millis() - previousMillis10ms >= interval10) //every 10ms
|
|
{
|
|
previousMillis10ms = millis();
|
|
handle_LED_state(); //Set the LED color according to state
|
|
#ifdef CONTACTOR_CONTROL
|
|
handle_contactors(); //Take care of startup precharge/contactor closing
|
|
#endif
|
|
}
|
|
|
|
if (millis() - previousMillisInverter >= intervalInverterTask) //every 5s
|
|
{
|
|
previousMillisInverter = millis();
|
|
handle_inverter(); //Update values heading towards inverter
|
|
}
|
|
}
|
|
|
|
void handle_can()
|
|
{ //This section checks if we have a complete CAN message incoming
|
|
//Depending on which battery/inverter is selected, we forward this to their respective CAN routines
|
|
CAN_frame_t rx_frame;
|
|
if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 3 * portTICK_PERIOD_MS) == pdTRUE)
|
|
{
|
|
if (rx_frame.FIR.B.FF == CAN_frame_std)
|
|
{
|
|
//printf("New standard frame");
|
|
#ifdef BATTERY_TYPE_LEAF
|
|
receive_can_leaf_battery(rx_frame);
|
|
#endif
|
|
#ifdef TESLA_MODEL_3_BATTERY
|
|
receive_can_tesla_model_3_battery(rx_frame);
|
|
#endif
|
|
#ifdef RENAULT_ZOE_BATTERY
|
|
receive_can_zoe_battery(rx_frame);
|
|
#endif
|
|
#ifdef BMW_I3_BATTERY
|
|
receive_can_i3_battery(rx_frame);
|
|
#endif
|
|
#ifdef IMIEV_ION_CZERO_BATTERY
|
|
receive_can_imiev_battery(rx_frame);
|
|
#endif
|
|
#ifdef KIA_HYUNDAI_64_BATTERY
|
|
receive_can_kiaHyundai_64_battery(rx_frame);
|
|
#endif
|
|
#ifdef CAN_BYD
|
|
receive_can_byd(rx_frame);
|
|
#endif
|
|
#ifdef SMA_CAN
|
|
receive_can_sma(rx_frame);
|
|
#endif
|
|
#ifdef CHADEMO
|
|
receive_can_chademo(rx_frame);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
//printf("New extended frame");
|
|
#ifdef SOLAX_CAN
|
|
receive_can_solax(rx_frame);
|
|
#endif
|
|
#ifdef PYLON_CAN
|
|
receive_can_pylon(rx_frame);
|
|
#endif
|
|
#ifdef SOFAR_CAN
|
|
receive_can_sofar(rx_frame);
|
|
#endif
|
|
}
|
|
}
|
|
//When we are done checking if a CAN message has arrived, we can focus on sending CAN messages
|
|
//Inverter sending
|
|
#ifdef CAN_BYD
|
|
send_can_byd();
|
|
#endif
|
|
#ifdef SMA_CAN
|
|
send_can_sma();
|
|
#endif
|
|
#ifdef SOFAR_CAN
|
|
send_can_sofar();
|
|
#endif
|
|
//Battery sending
|
|
#ifdef BATTERY_TYPE_LEAF
|
|
send_can_leaf_battery();
|
|
#endif
|
|
#ifdef TESLA_MODEL_3_BATTERY
|
|
send_can_tesla_model_3_battery();
|
|
#endif
|
|
#ifdef RENAULT_ZOE_BATTERY
|
|
send_can_zoe_battery();
|
|
#endif
|
|
#ifdef BMW_I3_BATTERY
|
|
send_can_i3_battery();
|
|
#endif
|
|
#ifdef IMIEV_ION_CZERO_BATTERY
|
|
send_can_imiev_battery();
|
|
#endif
|
|
#ifdef KIA_HYUNDAI_64_BATTERY
|
|
send_can_kiaHyundai_64_battery();
|
|
#endif
|
|
#ifdef CHADEMO
|
|
send_can_chademo_battery();
|
|
#endif
|
|
}
|
|
|
|
#ifdef DUAL_CAN
|
|
void handle_can2()
|
|
{ //This function is similar to handle_can, but just takes care of inverters in the 2nd bus.
|
|
//Depending on which inverter is selected, we forward this to their respective CAN routines
|
|
CAN_frame_t rx_frame2; //Struct with ESP32Can library format, compatible with the rest of the program
|
|
CANMessage MCP2515Frame; //Struct with ACAN2515 library format, needed to use thw MCP2515 library
|
|
|
|
if ( can.available() )
|
|
{
|
|
can.receive(MCP2515Frame);
|
|
|
|
rx_frame2.MsgID = MCP2515Frame.id;
|
|
rx_frame2.FIR.B.FF = MCP2515Frame.ext ? CAN_frame_ext : CAN_frame_std;
|
|
rx_frame2.FIR.B.RTR = MCP2515Frame.rtr ? CAN_RTR : CAN_no_RTR;
|
|
rx_frame2.FIR.B.DLC = MCP2515Frame.len;
|
|
for (uint8_t i=0 ; i<MCP2515Frame.len ; i++) {
|
|
rx_frame2.data.u8[i] = MCP2515Frame.data[i] ;
|
|
}
|
|
|
|
if (rx_frame2.FIR.B.FF == CAN_frame_std)
|
|
{
|
|
//Serial.println("New standard frame");
|
|
#ifdef CAN_BYD
|
|
receive_can_byd(rx_frame2);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
//Serial.println("New extended frame");
|
|
#ifdef SOLAX_CAN
|
|
receive_can_solax(rx_frame2);
|
|
#endif
|
|
#ifdef PYLON_CAN
|
|
receive_can_pylon(rx_frame2);
|
|
#endif
|
|
}
|
|
}
|
|
//When we are done checking if a CAN message has arrived, we can focus on sending CAN messages
|
|
//Inverter sending
|
|
#ifdef CAN_BYD
|
|
send_can_byd();
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void handle_inverter()
|
|
{
|
|
#ifdef BATTERY_TYPE_LEAF
|
|
update_values_leaf_battery(); //Map the values to the correct registers
|
|
#endif
|
|
#ifdef TESLA_MODEL_3_BATTERY
|
|
update_values_tesla_model_3_battery(); //Map the values to the correct registers
|
|
#endif
|
|
#ifdef RENAULT_ZOE_BATTERY
|
|
update_values_zoe_battery(); //Map the values to the correct registers
|
|
#endif
|
|
#ifdef BMW_I3_BATTERY
|
|
update_values_i3_battery(); //Map the values to the correct registers
|
|
#endif
|
|
#ifdef IMIEV_ION_CZERO_BATTERY
|
|
update_values_imiev_battery(); //Map the values to the correct registers
|
|
#endif
|
|
#ifdef KIA_HYUNDAI_64_BATTERY
|
|
update_values_kiaHyundai_64_battery(); //Map the values to the correct registers
|
|
#endif
|
|
#ifdef SOLAX_CAN
|
|
update_values_can_solax();
|
|
#endif
|
|
#ifdef CAN_BYD
|
|
update_values_can_byd();
|
|
#endif
|
|
#ifdef SMA_CAN
|
|
update_values_can_sma();
|
|
#endif
|
|
#ifdef PYLON_CAN
|
|
update_values_can_pylon();
|
|
#endif
|
|
#ifdef CHADEMO
|
|
update_values_can_chademo();
|
|
#endif
|
|
|
|
#ifdef MODBUS_BYD
|
|
update_modbus_registers_byd();
|
|
#endif
|
|
#ifdef MODBUS_LUNA2000
|
|
update_modbus_registers_luna2000();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONTACTOR_CONTROL
|
|
void handle_contactors()
|
|
{
|
|
//First check if we have any active errors, incase we do, turn off the battery
|
|
if(bms_status == FAULT){
|
|
timeSpentInFaultedMode++;
|
|
}
|
|
else{
|
|
timeSpentInFaultedMode = 0;
|
|
}
|
|
|
|
if(timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS)
|
|
{
|
|
contactorStatus = SHUTDOWN_REQUESTED;
|
|
}
|
|
if(contactorStatus == SHUTDOWN_REQUESTED)
|
|
{
|
|
digitalWrite(PRECHARGE_PIN, LOW);
|
|
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
|
|
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
|
|
return; //A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured)
|
|
}
|
|
|
|
//After that, check if we are OK to start turning on the battery
|
|
if(contactorStatus == DISCONNECTED)
|
|
{
|
|
digitalWrite(PRECHARGE_PIN, LOW);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcWrite(POSITIVE_PWM_Ch, 0);
|
|
ledcWrite(NEGATIVE_PWM_Ch, 0);
|
|
#endif
|
|
|
|
if(batteryAllowsContactorClosing && inverterAllowsContactorClosing)
|
|
{
|
|
contactorStatus = PRECHARGE;
|
|
}
|
|
}
|
|
|
|
//Incase the inverter requests contactors to open, set the state accordingly
|
|
if(contactorStatus == COMPLETED)
|
|
{
|
|
if (!inverterAllowsContactorClosing) contactorStatus = DISCONNECTED;
|
|
//Skip running the state machine below if it has already completed
|
|
return;
|
|
}
|
|
|
|
unsigned long currentTime = millis();
|
|
//Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge
|
|
switch (contactorStatus) {
|
|
case PRECHARGE:
|
|
digitalWrite(PRECHARGE_PIN, HIGH);
|
|
prechargeStartTime = currentTime;
|
|
contactorStatus = NEGATIVE;
|
|
break;
|
|
|
|
case NEGATIVE:
|
|
if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) {
|
|
digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcWrite(NEGATIVE_PWM_Ch, 1023);
|
|
#endif
|
|
negativeStartTime = currentTime;
|
|
contactorStatus = POSITIVE;
|
|
}
|
|
break;
|
|
|
|
case POSITIVE:
|
|
if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) {
|
|
digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcWrite(POSITIVE_PWM_Ch, 1023);
|
|
#endif
|
|
contactorStatus = PRECHARGE_OFF;
|
|
}
|
|
break;
|
|
|
|
case PRECHARGE_OFF:
|
|
if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) {
|
|
digitalWrite(PRECHARGE_PIN, LOW);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcWrite(NEGATIVE_PWM_Ch, PWM_Hold_Duty);
|
|
ledcWrite(POSITIVE_PWM_Ch, PWM_Hold_Duty);
|
|
#endif
|
|
contactorStatus = COMPLETED;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void handle_LED_state()
|
|
{
|
|
// Determine how bright the LED should be
|
|
if (rampUp && brightness < maxBrightness){
|
|
brightness++;
|
|
}
|
|
else if (rampUp && brightness == maxBrightness){
|
|
rampUp = false;
|
|
}
|
|
else if (!rampUp && brightness > 0){
|
|
brightness--;
|
|
}
|
|
else if (!rampUp && brightness == 0){
|
|
rampUp = true;
|
|
}
|
|
switch (LEDcolor)
|
|
{
|
|
case GREEN:
|
|
pixels.setPixelColor(0, pixels.Color(0, brightness, 0)); // Green pulsing LED
|
|
break;
|
|
case YELLOW:
|
|
pixels.setPixelColor(0, pixels.Color(brightness, brightness, 0)); // Yellow pulsing LED
|
|
break;
|
|
case BLUE:
|
|
pixels.setPixelColor(0, pixels.Color(0, 0, brightness)); //Blue pulsing LED
|
|
break;
|
|
case RED:
|
|
pixels.setPixelColor(0, pixels.Color(150, 0, 0)); // Red LED full brightness
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
//BMS in fault state overrides everything
|
|
if(bms_status == FAULT)
|
|
{
|
|
pixels.setPixelColor(0, pixels.Color(255, 0, 0)); // Red LED full brightness
|
|
}
|
|
|
|
pixels.show(); // This sends the updated pixel color to the hardware.
|
|
} |