Battery-Emulator/Software/Software.ino
2023-11-06 20:25:44 +01:00

576 lines
No EOL
17 KiB
C++

/* Do not change any code below this line unless you are sure what you are doing */
/* Only change battery specific settings in "USER_SETTINGS.h" */
#include <Arduino.h>
#include "HardwareSerial.h"
#include "USER_SETTINGS.h"
#include "config.h"
#include "Logging.h"
#include "mbServerFCs.h"
#include "ModbusServerRTU.h"
#include "ESP32CAN.h"
#include "CAN_config.h"
#include "Adafruit_NeoPixel.h"
#include "src/battery/BATTERIES.h"
#include "INVERTERS.h"
//CAN parameters
CAN_device_t CAN_cfg; // CAN Config
const int rx_queue_size = 10; // Receive Queue size
#ifdef DUAL_CAN
#include "ACAN2515.h"
static const uint32_t QUARTZ_FREQUENCY = 8UL * 1000UL * 1000UL ; // 8 MHz
ACAN2515 can(MCP2515_CS, SPI, MCP2515_INT);
static ACAN2515_Buffer16 gBuffer;
#endif
//Interval settings
int intervalInverterTask = 4800; //Interval at which to refresh modbus registers / inverter values
const int interval10 = 10; //Interval for 10ms tasks
unsigned long previousMillis10ms = 50;
unsigned long previousMillisInverter = 0;
//ModbusRTU parameters
#if defined(MODBUS_BYD)
#define MB_RTU_NUM_VALUES 30000
#endif
#if defined(MODBUS_LUNA2000)
#define MB_RTU_NUM_VALUES 50000
#endif
#if defined(MODBUS_BYD) || defined(MODBUS_LUNA2000)
uint16_t mbPV[MB_RTU_NUM_VALUES]; // process variable memory
// Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout
ModbusServerRTU MBserver(Serial2, 2000);
#endif
//Inverter states
#define STANDBY 0
#define INACTIVE 1
#define DARKSTART 2
#define ACTIVE 3
#define FAULT 4
#define UPDATING 5
//Common inverter parameters
uint16_t capacity_Wh_startup = BATTERY_WH_MAX;
uint16_t max_power = 40960; //41kW
const uint16_t max_voltage = ABSOLUTE_MAX_VOLTAGE; //if higher charging is not possible (goes into forced discharge)
const uint16_t min_voltage = ABSOLUTE_MIN_VOLTAGE; //if lower Gen24 disables battery
uint16_t min_volt_byd_can = min_voltage;
uint16_t max_volt_byd_can = max_voltage;
uint16_t min_volt_solax_can = min_voltage;
uint16_t max_volt_solax_can = max_voltage;
uint16_t min_volt_pylon_can = min_voltage;
uint16_t max_volt_pylon_can = max_voltage;
uint16_t min_volt_modbus_byd = min_voltage;
uint16_t max_volt_modbus_byd = max_voltage;
uint16_t min_volt_sma_can = min_voltage;
uint16_t max_volt_sma_can = max_voltage;
uint16_t battery_voltage = 3700;
uint16_t battery_current = 0;
uint16_t SOC = 5000; //SOC 0-100.00% //Updates later on from CAN
uint16_t StateOfHealth = 9900; //SOH 0-100.00% //Updates later on from CAN
uint16_t capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
uint16_t remaining_capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
uint16_t max_target_discharge_power = 0; //0W (0W > restricts to no discharge) //Updates later on from CAN
uint16_t max_target_charge_power = 4312; //4.3kW (during charge), both 307&308 can be set (>0) at the same time //Updates later on from CAN. Max value is 30000W
uint16_t temperature_max = 50; //reads from battery later
uint16_t temperature_min = 60; //reads from battery later
uint16_t bms_char_dis_status; //0 idle, 1 discharging, 2, charging
uint16_t bms_status = ACTIVE; //ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
uint16_t stat_batt_power = 0; //power going in/out of battery
uint16_t cell_max_voltage = 3700; //Stores the highest cell voltage value in the system
uint16_t cell_min_voltage = 3700; //Stores the minimum cell voltage value in the system
// LED control
#define GREEN 0
#define YELLOW 1
#define RED 2
#define BLUE 3
Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800);
static uint8_t brightness = 0;
static bool rampUp = true;
const uint8_t maxBrightness = 100;
uint8_t LEDcolor = GREEN;
//Contactor parameters
enum State {
DISCONNECTED,
PRECHARGE,
NEGATIVE,
POSITIVE,
PRECHARGE_OFF,
COMPLETED,
SHUTDOWN_REQUESTED
};
State contactorStatus = DISCONNECTED;
#define MAX_ALLOWED_FAULT_TICKS 500
#define PRECHARGE_TIME_MS 160
#define NEGATIVE_CONTACTOR_TIME_MS 1000
#define POSITIVE_CONTACTOR_TIME_MS 2000
#define PWM_Freq 20000 // 20 kHz frequency, beyond audible range
#define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100%
#define PWM_Hold_Duty 250
#define POSITIVE_PWM_Ch 0
#define NEGATIVE_PWM_Ch 1
unsigned long prechargeStartTime = 0;
unsigned long negativeStartTime = 0;
unsigned long timeSpentInFaultedMode = 0;
uint8_t batteryAllowsContactorClosing = 0;
uint8_t inverterAllowsContactorClosing = 1;
// Setup() - initialization happens here
void setup()
{
// Init Serial monitor
Serial.begin(115200);
while (!Serial)
{
}
Serial.println("__ OK __");
//CAN pins
pinMode(CAN_SE_PIN, OUTPUT);
digitalWrite(CAN_SE_PIN, LOW);
CAN_cfg.speed = CAN_SPEED_500KBPS;
CAN_cfg.tx_pin_id = GPIO_NUM_27;
CAN_cfg.rx_pin_id = GPIO_NUM_26;
CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t));
// Init CAN Module
ESP32Can.CANInit();
Serial.println(CAN_cfg.speed);
#ifdef DUAL_CAN
Serial.println("Dual CAN Bus (ESP32+MCP2515) selected");
gBuffer.initWithSize(25);
SPI.begin(MCP2515_SCK, MCP2515_MISO, MCP2515_MOSI);
Serial.println ("Configure ACAN2515") ;
ACAN2515Settings settings (QUARTZ_FREQUENCY, 500UL * 1000UL) ; // CAN bit rate 500 kb/s
settings.mRequestedMode = ACAN2515Settings::NormalMode ; // Select loopback mode
can.begin (settings, [] { can.isr (); });
#endif
//Init contactor pins
#ifdef CONTACTOR_CONTROL
pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcSetup(POSITIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
ledcSetup(NEGATIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
ledcAttachPin(POSITIVE_CONTACTOR_PIN, POSITIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
ledcAttachPin(NEGATIVE_CONTACTOR_PIN, NEGATIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
ledcWrite(POSITIVE_PWM_Ch, 0); // Set Positive PWM to 0%
ledcWrite(NEGATIVE_PWM_Ch, 0); // Set Negative PWM to 0%
#endif
pinMode(PRECHARGE_PIN, OUTPUT);
digitalWrite(PRECHARGE_PIN, LOW);
#endif
//Set up Modbus RTU Server
pinMode(RS485_EN_PIN, OUTPUT);
digitalWrite(RS485_EN_PIN, HIGH);
pinMode(RS485_SE_PIN, OUTPUT);
digitalWrite(RS485_SE_PIN, HIGH);
pinMode(PIN_5V_EN, OUTPUT);
digitalWrite(PIN_5V_EN, HIGH);
#ifdef MODBUS_BYD
// Init Static data to the RTU Modbus
handle_static_data_modbus_byd();
#endif
#if defined(MODBUS_BYD) || defined(MODBUS_LUNA2000)
// Init Serial2 connected to the RTU Modbus
RTUutils::prepareHardwareSerial(Serial2);
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
// Register served function code worker for server
MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03);
MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06);
MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16);
MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23);
// Start ModbusRTU background task
MBserver.begin(Serial2);
#endif
// Init LED control
pixels.begin();
//Inform user what Inverter is used
#ifdef SOLAX_CAN
inverterAllowsContactorClosing = 0; //The inverter needs to allow first on this protocol
intervalInverterTask = 800; //This protocol also requires the values to be updated faster
Serial.println("SOLAX CAN protocol selected");
#endif
#ifdef MODBUS_BYD
Serial.println("BYD Modbus RTU protocol selected");
#endif
#ifdef MODBUS_LUNA2000
Serial.println("Luna2000 Modbus RTU protocol selected");
#endif
#ifdef CAN_BYD
Serial.println("BYD CAN protocol selected");
#endif
#ifdef SMA_CAN
Serial.println("SMA CAN protocol selected");
#endif
#ifdef SOFAR_CAN
Serial.println("SOFAR CAN protocol selected");
#endif
//Inform user what battery is used
#ifdef BATTERY_TYPE_LEAF
Serial.println("Nissan LEAF battery selected");
#endif
#ifdef TESLA_MODEL_3_BATTERY
Serial.println("Tesla Model 3 battery selected");
#endif
#ifdef RENAULT_ZOE_BATTERY
Serial.println("Renault Zoe / Kangoo battery selected");
#endif
#ifdef BMW_I3_BATTERY
Serial.println("BMW i3 battery selected");
#endif
#ifdef IMIEV_ION_CZERO_BATTERY
Serial.println("Mitsubishi i-MiEV / Citroen C-Zero / Peugeot Ion battery selected");
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
Serial.println("Kia Niro / Hyundai Kona 64kWh battery selected");
#endif
}
// perform main program functions
void loop()
{
handle_can(); //runs as fast as possible, handle CAN routines
#ifdef DUAL_CAN
handle_can2();
#endif
if (millis() - previousMillis10ms >= interval10) //every 10ms
{
previousMillis10ms = millis();
handle_LED_state(); //Set the LED color according to state
#ifdef CONTACTOR_CONTROL
handle_contactors(); //Take care of startup precharge/contactor closing
#endif
}
if (millis() - previousMillisInverter >= intervalInverterTask) //every 5s
{
previousMillisInverter = millis();
handle_inverter(); //Update values heading towards inverter
}
}
void handle_can()
{ //This section checks if we have a complete CAN message incoming
//Depending on which battery/inverter is selected, we forward this to their respective CAN routines
CAN_frame_t rx_frame;
if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 3 * portTICK_PERIOD_MS) == pdTRUE)
{
if (rx_frame.FIR.B.FF == CAN_frame_std)
{
//printf("New standard frame");
#ifdef BATTERY_TYPE_LEAF
receive_can_leaf_battery(rx_frame);
#endif
#ifdef TESLA_MODEL_3_BATTERY
receive_can_tesla_model_3_battery(rx_frame);
#endif
#ifdef RENAULT_ZOE_BATTERY
receive_can_zoe_battery(rx_frame);
#endif
#ifdef BMW_I3_BATTERY
receive_can_i3_battery(rx_frame);
#endif
#ifdef IMIEV_ION_CZERO_BATTERY
receive_can_imiev_battery(rx_frame);
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
receive_can_kiaHyundai_64_battery(rx_frame);
#endif
#ifdef CAN_BYD
receive_can_byd(rx_frame);
#endif
#ifdef SMA_CAN
receive_can_sma(rx_frame);
#endif
#ifdef CHADEMO
receive_can_chademo(rx_frame);
#endif
}
else
{
//printf("New extended frame");
#ifdef SOLAX_CAN
receive_can_solax(rx_frame);
#endif
#ifdef PYLON_CAN
receive_can_pylon(rx_frame);
#endif
#ifdef SOFAR_CAN
receive_can_sofar(rx_frame);
#endif
}
}
//When we are done checking if a CAN message has arrived, we can focus on sending CAN messages
//Inverter sending
#ifdef CAN_BYD
send_can_byd();
#endif
#ifdef SMA_CAN
send_can_sma();
#endif
#ifdef SOFAR_CAN
send_can_sofar();
#endif
//Battery sending
#ifdef BATTERY_TYPE_LEAF
send_can_leaf_battery();
#endif
#ifdef TESLA_MODEL_3_BATTERY
send_can_tesla_model_3_battery();
#endif
#ifdef RENAULT_ZOE_BATTERY
send_can_zoe_battery();
#endif
#ifdef BMW_I3_BATTERY
send_can_i3_battery();
#endif
#ifdef IMIEV_ION_CZERO_BATTERY
send_can_imiev_battery();
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
send_can_kiaHyundai_64_battery();
#endif
#ifdef CHADEMO
send_can_chademo_battery();
#endif
}
#ifdef DUAL_CAN
void handle_can2()
{ //This function is similar to handle_can, but just takes care of inverters in the 2nd bus.
//Depending on which inverter is selected, we forward this to their respective CAN routines
CAN_frame_t rx_frame2; //Struct with ESP32Can library format, compatible with the rest of the program
CANMessage MCP2515Frame; //Struct with ACAN2515 library format, needed to use thw MCP2515 library
if ( can.available() )
{
can.receive(MCP2515Frame);
rx_frame2.MsgID = MCP2515Frame.id;
rx_frame2.FIR.B.FF = MCP2515Frame.ext ? CAN_frame_ext : CAN_frame_std;
rx_frame2.FIR.B.RTR = MCP2515Frame.rtr ? CAN_RTR : CAN_no_RTR;
rx_frame2.FIR.B.DLC = MCP2515Frame.len;
for (uint8_t i=0 ; i<MCP2515Frame.len ; i++) {
rx_frame2.data.u8[i] = MCP2515Frame.data[i] ;
}
if (rx_frame2.FIR.B.FF == CAN_frame_std)
{
//Serial.println("New standard frame");
#ifdef CAN_BYD
receive_can_byd(rx_frame2);
#endif
}
else
{
//Serial.println("New extended frame");
#ifdef SOLAX_CAN
receive_can_solax(rx_frame2);
#endif
#ifdef PYLON_CAN
receive_can_pylon(rx_frame2);
#endif
}
}
//When we are done checking if a CAN message has arrived, we can focus on sending CAN messages
//Inverter sending
#ifdef CAN_BYD
send_can_byd();
#endif
}
#endif
void handle_inverter()
{
#ifdef BATTERY_TYPE_LEAF
update_values_leaf_battery(); //Map the values to the correct registers
#endif
#ifdef TESLA_MODEL_3_BATTERY
update_values_tesla_model_3_battery(); //Map the values to the correct registers
#endif
#ifdef RENAULT_ZOE_BATTERY
update_values_zoe_battery(); //Map the values to the correct registers
#endif
#ifdef BMW_I3_BATTERY
update_values_i3_battery(); //Map the values to the correct registers
#endif
#ifdef IMIEV_ION_CZERO_BATTERY
update_values_imiev_battery(); //Map the values to the correct registers
#endif
#ifdef KIA_HYUNDAI_64_BATTERY
update_values_kiaHyundai_64_battery(); //Map the values to the correct registers
#endif
#ifdef SOLAX_CAN
update_values_can_solax();
#endif
#ifdef CAN_BYD
update_values_can_byd();
#endif
#ifdef SMA_CAN
update_values_can_sma();
#endif
#ifdef PYLON_CAN
update_values_can_pylon();
#endif
#ifdef CHADEMO
update_values_can_chademo();
#endif
#ifdef MODBUS_BYD
update_modbus_registers_byd();
#endif
#ifdef MODBUS_LUNA2000
update_modbus_registers_luna2000();
#endif
}
#ifdef CONTACTOR_CONTROL
void handle_contactors()
{
//First check if we have any active errors, incase we do, turn off the battery
if(bms_status == FAULT){
timeSpentInFaultedMode++;
}
else{
timeSpentInFaultedMode = 0;
}
if(timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS)
{
contactorStatus = SHUTDOWN_REQUESTED;
}
if(contactorStatus == SHUTDOWN_REQUESTED)
{
digitalWrite(PRECHARGE_PIN, LOW);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
return; //A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured)
}
//After that, check if we are OK to start turning on the battery
if(contactorStatus == DISCONNECTED)
{
digitalWrite(PRECHARGE_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(POSITIVE_PWM_Ch, 0);
ledcWrite(NEGATIVE_PWM_Ch, 0);
#endif
if(batteryAllowsContactorClosing && inverterAllowsContactorClosing)
{
contactorStatus = PRECHARGE;
}
}
//Incase the inverter requests contactors to open, set the state accordingly
if(contactorStatus == COMPLETED)
{
if (!inverterAllowsContactorClosing) contactorStatus = DISCONNECTED;
//Skip running the state machine below if it has already completed
return;
}
unsigned long currentTime = millis();
//Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge
switch (contactorStatus) {
case PRECHARGE:
digitalWrite(PRECHARGE_PIN, HIGH);
prechargeStartTime = currentTime;
contactorStatus = NEGATIVE;
break;
case NEGATIVE:
if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) {
digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(NEGATIVE_PWM_Ch, 1023);
#endif
negativeStartTime = currentTime;
contactorStatus = POSITIVE;
}
break;
case POSITIVE:
if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) {
digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(POSITIVE_PWM_Ch, 1023);
#endif
contactorStatus = PRECHARGE_OFF;
}
break;
case PRECHARGE_OFF:
if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) {
digitalWrite(PRECHARGE_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(NEGATIVE_PWM_Ch, PWM_Hold_Duty);
ledcWrite(POSITIVE_PWM_Ch, PWM_Hold_Duty);
#endif
contactorStatus = COMPLETED;
}
break;
default:
break;
}
}
#endif
void handle_LED_state()
{
// Determine how bright the LED should be
if (rampUp && brightness < maxBrightness){
brightness++;
}
else if (rampUp && brightness == maxBrightness){
rampUp = false;
}
else if (!rampUp && brightness > 0){
brightness--;
}
else if (!rampUp && brightness == 0){
rampUp = true;
}
switch (LEDcolor)
{
case GREEN:
pixels.setPixelColor(0, pixels.Color(0, brightness, 0)); // Green pulsing LED
break;
case YELLOW:
pixels.setPixelColor(0, pixels.Color(brightness, brightness, 0)); // Yellow pulsing LED
break;
case BLUE:
pixels.setPixelColor(0, pixels.Color(0, 0, brightness)); //Blue pulsing LED
break;
case RED:
pixels.setPixelColor(0, pixels.Color(150, 0, 0)); // Red LED full brightness
break;
default:
break;
}
//BMS in fault state overrides everything
if(bms_status == FAULT)
{
pixels.setPixelColor(0, pixels.Color(255, 0, 0)); // Red LED full brightness
}
pixels.show(); // This sends the updated pixel color to the hardware.
}