Battery-Emulator/Software/src/battery/PYLON-BATTERY.cpp
2025-03-12 21:47:07 +02:00

339 lines
13 KiB
C++

#include "../include.h"
#ifdef PYLON_BATTERY
#include "../datalayer/datalayer.h"
#include "../devboard/utils/events.h"
#include "PYLON-BATTERY.h"
/* Do not change code below unless you are sure what you are doing */
static unsigned long previousMillis1000 = 0; // will store last time a 1s CAN Message was sent
//Actual content messages
CAN_frame PYLON_3010 = {.FD = false,
.ext_ID = true,
.DLC = 8,
.ID = 0x3010,
.data = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
CAN_frame PYLON_8200 = {.FD = false,
.ext_ID = true,
.DLC = 8,
.ID = 0x8200,
.data = {0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
CAN_frame PYLON_8210 = {.FD = false,
.ext_ID = true,
.DLC = 8,
.ID = 0x8210,
.data = {0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
CAN_frame PYLON_4200 = {.FD = false,
.ext_ID = true,
.DLC = 8,
.ID = 0x4200,
.data = {0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
static int16_t celltemperature_max_dC = 0;
static int16_t celltemperature_min_dC = 0;
static int16_t current_dA = 0;
static uint16_t voltage_dV = 0;
static uint16_t cellvoltage_max_mV = 3700;
static uint16_t cellvoltage_min_mV = 3700;
static uint16_t charge_cutoff_voltage = 0;
static uint16_t discharge_cutoff_voltage = 0;
static int16_t max_charge_current = 0;
static int16_t max_discharge_current = 0;
static uint8_t ensemble_info_ack = 0;
static uint8_t battery_module_quantity = 0;
static uint8_t battery_modules_in_series = 0;
static uint8_t cell_quantity_in_module = 0;
static uint8_t voltage_level = 0;
static uint8_t ah_number = 0;
static uint8_t SOC = 0;
static uint8_t SOH = 0;
static uint8_t charge_forbidden = 0;
static uint8_t discharge_forbidden = 0;
void update_values_battery() {
datalayer.battery.status.real_soc = (SOC * 100); //increase SOC range from 0-100 -> 100.00
datalayer.battery.status.soh_pptt = (SOH * 100); //Increase decimals from 100% -> 100.00%
datalayer.battery.status.voltage_dV = voltage_dV; //value is *10 (3700 = 370.0)
datalayer.battery.status.current_dA = current_dA; //value is *10 (150 = 15.0) , invert the sign
datalayer.battery.status.max_charge_power_W = (max_charge_current * (voltage_dV / 10));
datalayer.battery.status.max_discharge_power_W = (-max_discharge_current * (voltage_dV / 10));
datalayer.battery.status.remaining_capacity_Wh = static_cast<uint32_t>(
(static_cast<double>(datalayer.battery.status.real_soc) / 10000) * datalayer.battery.info.total_capacity_Wh);
datalayer.battery.status.cell_max_voltage_mV = cellvoltage_max_mV;
datalayer.battery.status.cell_voltages_mV[0] = cellvoltage_max_mV;
datalayer.battery.status.cell_min_voltage_mV = cellvoltage_min_mV;
datalayer.battery.status.cell_voltages_mV[1] = cellvoltage_min_mV;
datalayer.battery.status.temperature_min_dC = celltemperature_min_dC;
datalayer.battery.status.temperature_max_dC = celltemperature_max_dC;
datalayer.battery.info.max_design_voltage_dV = charge_cutoff_voltage;
datalayer.battery.info.min_design_voltage_dV = discharge_cutoff_voltage;
}
void handle_incoming_can_frame_battery(CAN_frame rx_frame) {
datalayer.battery.status.CAN_battery_still_alive = CAN_STILL_ALIVE;
switch (rx_frame.ID) {
case 0x7310:
case 0x7311:
ensemble_info_ack = true;
// This message contains software/hardware version info. No interest to us
break;
case 0x7320:
case 0x7321:
ensemble_info_ack = true;
battery_module_quantity = rx_frame.data.u8[0];
battery_modules_in_series = rx_frame.data.u8[2];
cell_quantity_in_module = rx_frame.data.u8[3];
voltage_level = rx_frame.data.u8[4];
ah_number = rx_frame.data.u8[6];
break;
case 0x4210:
case 0x4211:
voltage_dV = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]);
current_dA = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]) - 30000;
SOC = rx_frame.data.u8[6];
SOH = rx_frame.data.u8[7];
break;
case 0x4220:
case 0x4221:
charge_cutoff_voltage = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]);
discharge_cutoff_voltage = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]);
max_charge_current = (((rx_frame.data.u8[5] << 8) | rx_frame.data.u8[4]) * 0.1) - 3000;
max_discharge_current = (((rx_frame.data.u8[7] << 8) | rx_frame.data.u8[6]) * 0.1) - 3000;
break;
case 0x4230:
case 0x4231:
cellvoltage_max_mV = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]);
cellvoltage_min_mV = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]);
break;
case 0x4240:
case 0x4241:
celltemperature_max_dC = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]) - 1000;
celltemperature_min_dC = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]) - 1000;
break;
case 0x4250:
case 0x4251:
//Byte0 Basic Status
//Byte1-2 Cycle Period
//Byte3 Error
//Byte4-5 Alarm
//Byte6-7 Protection
break;
case 0x4260:
case 0x4261:
//Byte0-1 Module Max Voltage
//Byte2-3 Module Min Voltage
//Byte4-5 Module Max. Voltage Number
//Byte6-7 Module Min. Voltage Number
break;
case 0x4270:
case 0x4271:
//Byte0-1 Module Max. Temperature
//Byte2-3 Module Min. Temperature
//Byte4-5 Module Max. Temperature Number
//Byte6-7 Module Min. Temperature Number
break;
case 0x4280:
case 0x4281:
charge_forbidden = rx_frame.data.u8[0];
discharge_forbidden = rx_frame.data.u8[1];
break;
case 0x4290:
case 0x4291:
break;
default:
break;
}
}
void transmit_can_battery() {
unsigned long currentMillis = millis();
// Send 1s CAN Message
if (currentMillis - previousMillis1000 >= INTERVAL_1_S) {
previousMillis1000 = currentMillis;
transmit_can_frame(&PYLON_3010, can_config.battery); // Heartbeat
transmit_can_frame(&PYLON_4200, can_config.battery); // Ensemble OR System equipment info, depends on frame0
transmit_can_frame(&PYLON_8200, can_config.battery); // Control device quit sleep status
transmit_can_frame(&PYLON_8210, can_config.battery); // Charge command
#ifdef DOUBLE_BATTERY
transmit_can_frame(&PYLON_3010, can_config.battery_double); // Heartbeat
transmit_can_frame(&PYLON_4200, can_config.battery_double); // Ensemble OR System equipment info, depends on frame0
transmit_can_frame(&PYLON_8200, can_config.battery_double); // Control device quit sleep status
transmit_can_frame(&PYLON_8210, can_config.battery_double); // Charge command
#endif //DOUBLE_BATTERY
if (ensemble_info_ack) {
PYLON_4200.data.u8[0] = 0x00; //Request system equipment info
}
}
}
#ifdef DOUBLE_BATTERY
static int16_t battery2_celltemperature_max_dC = 0;
static int16_t battery2_celltemperature_min_dC = 0;
static int16_t battery2_current_dA = 0;
static uint16_t battery2_voltage_dV = 0;
static uint16_t battery2_cellvoltage_max_mV = 3700;
static uint16_t battery2_cellvoltage_min_mV = 3700;
static uint16_t battery2_charge_cutoff_voltage = 0;
static uint16_t battery2_discharge_cutoff_voltage = 0;
static int16_t battery2_max_charge_current = 0;
static int16_t battery2_max_discharge_current = 0;
static uint8_t battery2_ensemble_info_ack = 0;
static uint8_t battery2_module_quantity = 0;
static uint8_t battery2_modules_in_series = 0;
static uint8_t battery2_cell_quantity_in_module = 0;
static uint8_t battery2_voltage_level = 0;
static uint8_t battery2_ah_number = 0;
static uint8_t battery2_SOC = 0;
static uint8_t battery2_SOH = 0;
static uint8_t battery2_charge_forbidden = 0;
static uint8_t battery2_discharge_forbidden = 0;
void update_values_battery2() {
datalayer.battery2.status.real_soc = (battery2_SOC * 100); //increase SOC range from 0-100 -> 100.00
datalayer.battery2.status.soh_pptt = (battery2_SOH * 100); //Increase decimals from 100% -> 100.00%
datalayer.battery2.status.voltage_dV = battery2_voltage_dV; //value is *10 (3700 = 370.0)
datalayer.battery2.status.current_dA = battery2_current_dA; //value is *10 (150 = 15.0) , invert the sign
datalayer.battery2.status.max_charge_power_W = (battery2_max_charge_current * (battery2_voltage_dV / 10));
datalayer.battery2.status.max_discharge_power_W = (-battery2_max_discharge_current * (battery2_voltage_dV / 10));
datalayer.battery2.status.remaining_capacity_Wh = static_cast<uint32_t>(
(static_cast<double>(datalayer.battery2.status.real_soc) / 10000) * datalayer.battery2.info.total_capacity_Wh);
datalayer.battery2.status.cell_max_voltage_mV = battery2_cellvoltage_max_mV;
datalayer.battery2.status.cell_voltages_mV[0] = battery2_cellvoltage_max_mV;
datalayer.battery2.status.cell_min_voltage_mV = battery2_cellvoltage_min_mV;
datalayer.battery2.status.cell_voltages_mV[1] = battery2_cellvoltage_min_mV;
datalayer.battery2.status.temperature_min_dC = battery2_celltemperature_min_dC;
datalayer.battery2.status.temperature_max_dC = battery2_celltemperature_max_dC;
datalayer.battery2.info.max_design_voltage_dV = battery2_charge_cutoff_voltage;
datalayer.battery2.info.min_design_voltage_dV = battery2_discharge_cutoff_voltage;
datalayer.battery2.info.number_of_cells = datalayer.battery.info.number_of_cells;
}
void handle_incoming_can_frame_battery2(CAN_frame rx_frame) {
datalayer.battery2.status.CAN_battery_still_alive = CAN_STILL_ALIVE;
switch (rx_frame.ID) {
case 0x7310:
case 0x7311:
battery2_ensemble_info_ack = true;
// This message contains software/hardware version info. No interest to us
break;
case 0x7320:
case 0x7321:
battery2_ensemble_info_ack = true;
battery2_module_quantity = rx_frame.data.u8[0];
battery2_modules_in_series = rx_frame.data.u8[2];
battery2_cell_quantity_in_module = rx_frame.data.u8[3];
battery2_voltage_level = rx_frame.data.u8[4];
battery2_ah_number = rx_frame.data.u8[6];
break;
case 0x4210:
case 0x4211:
battery2_voltage_dV = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]);
battery2_current_dA = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]) - 30000;
battery2_SOC = rx_frame.data.u8[6];
battery2_SOH = rx_frame.data.u8[7];
break;
case 0x4220:
case 0x4221:
battery2_charge_cutoff_voltage = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]);
battery2_discharge_cutoff_voltage = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]);
battery2_max_charge_current = (((rx_frame.data.u8[5] << 8) | rx_frame.data.u8[4]) * 0.1) - 3000;
battery2_max_discharge_current = (((rx_frame.data.u8[7] << 8) | rx_frame.data.u8[6]) * 0.1) - 3000;
break;
case 0x4230:
case 0x4231:
battery2_cellvoltage_max_mV = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]);
battery2_cellvoltage_min_mV = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]);
break;
case 0x4240:
case 0x4241:
battery2_celltemperature_max_dC = ((rx_frame.data.u8[1] << 8) | rx_frame.data.u8[0]) - 1000;
battery2_celltemperature_min_dC = ((rx_frame.data.u8[3] << 8) | rx_frame.data.u8[2]) - 1000;
break;
case 0x4250:
case 0x4251:
//Byte0 Basic Status
//Byte1-2 Cycle Period
//Byte3 Error
//Byte4-5 Alarm
//Byte6-7 Protection
break;
case 0x4260:
case 0x4261:
//Byte0-1 Module Max Voltage
//Byte2-3 Module Min Voltage
//Byte4-5 Module Max. Voltage Number
//Byte6-7 Module Min. Voltage Number
break;
case 0x4270:
case 0x4271:
//Byte0-1 Module Max. Temperature
//Byte2-3 Module Min. Temperature
//Byte4-5 Module Max. Temperature Number
//Byte6-7 Module Min. Temperature Number
break;
case 0x4280:
case 0x4281:
battery2_charge_forbidden = rx_frame.data.u8[0];
battery2_discharge_forbidden = rx_frame.data.u8[1];
break;
case 0x4290:
case 0x4291:
break;
default:
break;
}
}
#endif //DOUBLE_BATTERY
void setup_battery(void) { // Performs one time setup at startup
strncpy(datalayer.system.info.battery_protocol, "Pylon compatible battery", 63);
datalayer.system.info.battery_protocol[63] = '\0';
datalayer.battery.info.number_of_cells = 2;
datalayer.battery.info.max_design_voltage_dV = MAX_PACK_VOLTAGE_DV;
datalayer.battery.info.min_design_voltage_dV = MIN_PACK_VOLTAGE_DV;
datalayer.battery.info.max_cell_voltage_mV = MAX_CELL_VOLTAGE_MV;
datalayer.battery.info.min_cell_voltage_mV = MIN_CELL_VOLTAGE_MV;
#ifdef DOUBLE_BATTERY
datalayer.battery2.info.number_of_cells = datalayer.battery.info.number_of_cells;
datalayer.battery2.info.max_design_voltage_dV = datalayer.battery.info.max_design_voltage_dV;
datalayer.battery2.info.min_design_voltage_dV = datalayer.battery.info.min_design_voltage_dV;
datalayer.battery2.info.max_cell_voltage_mV = datalayer.battery.info.max_cell_voltage_mV;
datalayer.battery2.info.min_cell_voltage_mV = datalayer.battery.info.min_cell_voltage_mV;
datalayer.battery2.info.max_cell_voltage_deviation_mV = datalayer.battery.info.max_cell_voltage_deviation_mV;
#endif //DOUBLE_BATTERY
}
#endif