Battery-Emulator/Software/src/devboard/mqtt/mqtt.cpp
2025-08-29 23:16:36 +03:00

716 lines
26 KiB
C++

#include "mqtt.h"
#include <Arduino.h>
#include <WiFi.h>
#include <freertos/FreeRTOS.h>
#include <src/communication/nvm/comm_nvm.h>
#include <list>
#include "../../../USER_SECRETS.h"
#include "../../../USER_SETTINGS.h"
#include "../../battery/BATTERIES.h"
#include "../../communication/contactorcontrol/comm_contactorcontrol.h"
#include "../../datalayer/datalayer.h"
#include "../../lib/bblanchon-ArduinoJson/ArduinoJson.h"
#include "../utils/events.h"
#include "../utils/timer.h"
#include "mqtt.h"
#include "mqtt_client.h"
#ifdef MQTT
const bool mqtt_enabled_default = true;
#else
const bool mqtt_enabled_default = false;
#endif
bool mqtt_enabled = mqtt_enabled_default;
#ifdef HA_AUTODISCOVERY
const bool ha_autodiscovery_enabled_default = true;
#else
const bool ha_autodiscovery_enabled_default = false;
#endif
bool ha_autodiscovery_enabled = ha_autodiscovery_enabled_default;
#ifdef COMMON_IMAGE
const int mqtt_port_default = 0;
const char* mqtt_server_default = "";
#else
const int mqtt_port_default = MQTT_PORT;
const char* mqtt_server_default = MQTT_SERVER;
#endif
int mqtt_port = mqtt_port_default;
std::string mqtt_server = mqtt_server_default;
#ifdef MQTT_MANUAL_TOPIC_OBJECT_NAME
const bool mqtt_manual_topic_object_name_default = true;
#else
const bool mqtt_manual_topic_object_name_default = false;
#endif
bool mqtt_manual_topic_object_name = mqtt_manual_topic_object_name_default;
esp_mqtt_client_config_t mqtt_cfg;
esp_mqtt_client_handle_t client;
char mqtt_msg[MQTT_MSG_BUFFER_SIZE];
MyTimer publish_global_timer(5000); //publish timer
MyTimer check_global_timer(800); // check timmer - low-priority MQTT checks, where responsiveness is not critical.
bool client_started = false;
static String lwt_topic = "";
static String topic_name = "";
static String object_id_prefix = "";
static String device_name = "";
static String device_id = "";
static bool publish_common_info(void);
static bool publish_cell_voltages(void);
static bool publish_cell_balancing(void);
static bool publish_events(void);
/** Publish global values and call callbacks for specific modules */
static void publish_values(void) {
if (mqtt_publish((topic_name + "/status").c_str(), "online", false) == false) {
return;
}
if (publish_events() == false) {
return;
}
if (publish_common_info() == false) {
return;
}
#ifdef MQTT_PUBLISH_CELL_VOLTAGES
if (publish_cell_voltages() == false) {
return;
}
#endif
#ifdef MQTT_PUBLISH_CELL_VOLTAGES
if (publish_cell_balancing() == false) {
return;
}
#endif
}
static bool ha_common_info_published = false;
static bool ha_cell_voltages_published = false;
static bool ha_events_published = false;
static bool ha_buttons_published = false;
struct SensorConfig {
const char* object_id;
const char* name;
const char* value_template;
const char* unit;
const char* device_class;
// A function that returns true for the battery if it supports this config
std::function<bool(Battery*)> condition;
};
static std::function<bool(Battery*)> always = [](Battery* b) {
return true;
};
static std::function<bool(Battery*)> supports_charged = [](Battery* b) {
return b->supports_charged_energy();
};
SensorConfig batterySensorConfigTemplate[] = {
{"SOC", "SOC (Scaled)", "", "%", "battery", always},
{"SOC_real", "SOC (real)", "", "%", "battery", always},
{"state_of_health", "State Of Health", "", "%", "battery", always},
{"temperature_min", "Temperature Min", "", "°C", "temperature", always},
{"temperature_max", "Temperature Max", "", "°C", "temperature", always},
{"cpu_temp", "CPU Temperature", "", "°C", "temperature", always},
{"stat_batt_power", "Stat Batt Power", "", "W", "power", always},
{"battery_current", "Battery Current", "", "A", "current", always},
{"cell_max_voltage", "Cell Max Voltage", "", "V", "voltage", always},
{"cell_min_voltage", "Cell Min Voltage", "", "V", "voltage", always},
{"cell_voltage_delta", "Cell Voltage Delta", "", "mV", "voltage", always},
{"battery_voltage", "Battery Voltage", "", "V", "voltage", always},
{"total_capacity", "Battery Total Capacity", "", "Wh", "energy", always},
{"remaining_capacity", "Battery Remaining Capacity (scaled)", "", "Wh", "energy", always},
{"remaining_capacity_real", "Battery Remaining Capacity (real)", "", "Wh", "energy", always},
{"max_discharge_power", "Battery Max Discharge Power", "", "W", "power", always},
{"max_charge_power", "Battery Max Charge Power", "", "W", "power", always},
{"charged_energy", "Battery Charged Energy", "", "Wh", "energy", supports_charged},
{"discharged_energy", "Battery Discharged Energy", "", "Wh", "energy", supports_charged},
{"balancing_active_cells", "Balancing Active Cells", "", "", "", always}};
SensorConfig globalSensorConfigTemplate[] = {{"bms_status", "BMS Status", "", "", "", always},
{"pause_status", "Pause Status", "", "", "", always},
{"event_level", "Event Level", "", "", "", always},
{"emulator_status", "Emulator Status", "", "", "", always}};
static std::list<SensorConfig> sensorConfigs;
void create_battery_sensor_configs() {
for (auto& config : batterySensorConfigTemplate) {
config.value_template = strdup(("{{ value_json." + std::string(config.object_id) + " }}").c_str());
sensorConfigs.push_back(config);
if (battery2) {
config.value_template = strdup(("{{ value_json." + std::string(config.object_id) + "_2 }}").c_str());
config.name = strdup(String(config.name + String(" 2")).c_str());
config.object_id = strdup(String(config.object_id + String("_2")).c_str());
sensorConfigs.push_back(config);
}
}
}
void create_global_sensor_configs() {
for (auto& config : globalSensorConfigTemplate) {
config.value_template = strdup(("{{ value_json." + std::string(config.object_id) + " }}").c_str());
sensorConfigs.push_back(config);
}
}
SensorConfig buttonConfigs[] = {{"BMSRESET", "Reset BMS"},
{"PAUSE", "Pause charge/discharge"},
{"RESUME", "Resume charge/discharge"},
{"RESTART", "Restart Battery Emulator"},
{"STOP", "Open Contactors"}};
static String generateCommonInfoAutoConfigTopic(const char* object_id) {
return "homeassistant/sensor/" + topic_name + "/" + String(object_id) + "/config";
}
static String generateCellVoltageAutoConfigTopic(int cell_number, String battery_suffix) {
return "homeassistant/sensor/" + topic_name + "/cell_voltage" + battery_suffix + String(cell_number) + "/config";
}
static String generateEventsAutoConfigTopic(const char* object_id) {
return "homeassistant/sensor/" + topic_name + "/" + String(object_id) + "/config";
}
static String generateButtonAutoConfigTopic(const char* subtype) {
return "homeassistant/button/" + topic_name + "/" + String(subtype) + "/config";
}
void set_common_discovery_attributes(JsonDocument& doc) {
doc["device"]["identifiers"][0] = device_id;
doc["device"]["manufacturer"] = "DalaTech";
doc["device"]["model"] = "BatteryEmulator";
doc["device"]["name"] = device_name;
doc["availability"][0]["topic"] = lwt_topic;
doc["payload_available"] = "online";
doc["payload_not_available"] = "offline";
doc["enabled_by_default"] = true;
}
void set_battery_voltage_attributes(JsonDocument& doc, int i, int cellNumber, const String& state_topic,
const String& object_id_prefix, const String& battery_name_suffix) {
doc["name"] = "Battery" + battery_name_suffix + " Cell Voltage " + String(cellNumber);
doc["object_id"] = object_id_prefix + "battery_voltage_cell" + String(cellNumber);
doc["unique_id"] = topic_name + object_id_prefix + "_battery_voltage_cell" + String(cellNumber);
doc["device_class"] = "voltage";
doc["state_class"] = "measurement";
doc["state_topic"] = state_topic;
doc["unit_of_measurement"] = "V";
doc["value_template"] = "{{ value_json.cell_voltages[" + String(i) + "] }}";
}
static String generateButtonTopic(const char* subtype) {
return topic_name + "/command/" + String(subtype);
}
void set_battery_attributes(JsonDocument& doc, const DATALAYER_BATTERY_TYPE& battery, const String& suffix,
bool supports_charged) {
doc["SOC" + suffix] = ((float)battery.status.reported_soc) / 100.0;
doc["SOC_real" + suffix] = ((float)battery.status.real_soc) / 100.0;
doc["state_of_health" + suffix] = ((float)battery.status.soh_pptt) / 100.0;
doc["temperature_min" + suffix] = ((float)((int16_t)battery.status.temperature_min_dC)) / 10.0;
doc["temperature_max" + suffix] = ((float)((int16_t)battery.status.temperature_max_dC)) / 10.0;
doc["cpu_temp" + suffix] = datalayer.system.info.CPU_temperature;
doc["stat_batt_power" + suffix] = ((float)((int32_t)battery.status.active_power_W));
doc["battery_current" + suffix] = ((float)((int16_t)battery.status.current_dA)) / 10.0;
doc["battery_voltage" + suffix] = ((float)battery.status.voltage_dV) / 10.0;
if (battery.info.number_of_cells != 0u && battery.status.cell_voltages_mV[battery.info.number_of_cells - 1] != 0u) {
doc["cell_max_voltage" + suffix] = ((float)battery.status.cell_max_voltage_mV) / 1000.0;
doc["cell_min_voltage" + suffix] = ((float)battery.status.cell_min_voltage_mV) / 1000.0;
doc["cell_voltage_delta" + suffix] =
((float)battery.status.cell_max_voltage_mV) - ((float)battery.status.cell_min_voltage_mV);
}
doc["total_capacity" + suffix] = ((float)battery.info.total_capacity_Wh);
doc["remaining_capacity_real" + suffix] = ((float)battery.status.remaining_capacity_Wh);
doc["remaining_capacity" + suffix] = ((float)battery.status.reported_remaining_capacity_Wh);
doc["max_discharge_power" + suffix] = ((float)battery.status.max_discharge_power_W);
doc["max_charge_power" + suffix] = ((float)battery.status.max_charge_power_W);
if (supports_charged) {
if (datalayer.battery.status.total_charged_battery_Wh != 0 &&
datalayer.battery.status.total_discharged_battery_Wh != 0) {
doc["charged_energy" + suffix] = ((float)datalayer.battery.status.total_charged_battery_Wh);
doc["discharged_energy" + suffix] = ((float)datalayer.battery.status.total_discharged_battery_Wh);
}
}
// Add balancing data
uint16_t active_cells = 0;
if (battery.info.number_of_cells != 0u) {
for (size_t i = 0; i < battery.info.number_of_cells; ++i) {
if (battery.status.cell_balancing_status[i]) {
active_cells++;
}
}
}
doc["balancing_active_cells" + suffix] = active_cells;
}
static std::vector<EventData> order_events;
static bool publish_common_info(void) {
static JsonDocument doc;
static String state_topic = topic_name + "/info";
// if(ha_autodiscovery_enabled) {
if (ha_autodiscovery_enabled && !ha_common_info_published) {
for (auto& config : sensorConfigs) {
if (!config.condition(battery)) {
continue;
}
doc["name"] = config.name;
doc["state_topic"] = state_topic;
doc["unique_id"] = topic_name + "_" + String(config.object_id);
doc["object_id"] = object_id_prefix + String(config.object_id);
doc["value_template"] = config.value_template;
if (config.unit != nullptr && strlen(config.unit) > 0) {
doc["unit_of_measurement"] = config.unit;
}
if (config.device_class != nullptr && strlen(config.device_class) > 0) {
doc["device_class"] = config.device_class;
doc["state_class"] = "measurement";
}
set_common_discovery_attributes(doc);
serializeJson(doc, mqtt_msg);
if (mqtt_publish(generateCommonInfoAutoConfigTopic(config.object_id).c_str(), mqtt_msg, true)) {
ha_common_info_published = true;
} else {
return false;
}
doc.clear();
}
} else {
doc["bms_status"] = getBMSStatus(datalayer.battery.status.bms_status);
doc["pause_status"] = get_emulator_pause_status();
//only publish these values if BMS is active and we are comunication with the battery (can send CAN messages to the battery)
if (datalayer.battery.status.CAN_battery_still_alive && allowed_to_send_CAN && esp32hal->system_booted_up()) {
set_battery_attributes(doc, datalayer.battery, "", battery->supports_charged_energy());
}
if (battery2) {
//only publish these values if BMS is active and we are comunication with the battery (can send CAN messages to the battery)
if (datalayer.battery2.status.CAN_battery_still_alive && allowed_to_send_CAN && esp32hal->system_booted_up()) {
set_battery_attributes(doc, datalayer.battery2, "_2", battery2->supports_charged_energy());
}
}
doc["event_level"] = get_event_level_string(get_event_level());
doc["emulator_status"] = get_emulator_status_string(get_emulator_status());
serializeJson(doc, mqtt_msg);
if (mqtt_publish(state_topic.c_str(), mqtt_msg, false) == false) {
logging.println("Common info MQTT msg could not be sent");
return false;
}
doc.clear();
}
return true;
}
static bool publish_cell_voltages(void) {
static JsonDocument doc;
static String state_topic = topic_name + "/spec_data";
static String state_topic_2 = topic_name + "/spec_data_2";
if (ha_autodiscovery_enabled) {
bool failed_to_publish = false;
if (ha_cell_voltages_published == false) {
// If the cell voltage number isn't initialized...
if (datalayer.battery.info.number_of_cells != 0u) {
for (int i = 0; i < datalayer.battery.info.number_of_cells; i++) {
int cellNumber = i + 1;
set_battery_voltage_attributes(doc, i, cellNumber, state_topic, object_id_prefix, "");
set_common_discovery_attributes(doc);
serializeJson(doc, mqtt_msg, sizeof(mqtt_msg));
if (mqtt_publish(generateCellVoltageAutoConfigTopic(cellNumber, "").c_str(), mqtt_msg, true) == false) {
failed_to_publish = true;
return false;
}
}
doc.clear(); // clear after sending autoconfig
}
if (battery2) {
// TODO: Combine this identical block with the previous one.
// If the cell voltage number isn't initialized...
if (datalayer.battery2.info.number_of_cells != 0u) {
for (int i = 0; i < datalayer.battery.info.number_of_cells; i++) {
int cellNumber = i + 1;
set_battery_voltage_attributes(doc, i, cellNumber, state_topic_2, object_id_prefix + "2_", " 2");
set_common_discovery_attributes(doc);
serializeJson(doc, mqtt_msg, sizeof(mqtt_msg));
if (mqtt_publish(generateCellVoltageAutoConfigTopic(cellNumber, "_2_").c_str(), mqtt_msg, true) == false) {
failed_to_publish = true;
return false;
}
}
doc.clear(); // clear after sending autoconfig
}
}
}
if (failed_to_publish == false) {
ha_cell_voltages_published = true;
}
}
// If cell voltages have been populated...
if (datalayer.battery.info.number_of_cells != 0u &&
datalayer.battery.status.cell_voltages_mV[datalayer.battery.info.number_of_cells - 1] != 0u) {
JsonArray cell_voltages = doc["cell_voltages"].to<JsonArray>();
for (size_t i = 0; i < datalayer.battery.info.number_of_cells; ++i) {
cell_voltages.add(((float)datalayer.battery.status.cell_voltages_mV[i]) / 1000.0);
}
serializeJson(doc, mqtt_msg, sizeof(mqtt_msg));
if (!mqtt_publish(state_topic.c_str(), mqtt_msg, false)) {
logging.println("Cell voltage MQTT msg could not be sent");
return false;
}
doc.clear();
}
if (battery2) {
// If cell voltages have been populated...
if (datalayer.battery2.info.number_of_cells != 0u &&
datalayer.battery2.status.cell_voltages_mV[datalayer.battery2.info.number_of_cells - 1] != 0u) {
JsonArray cell_voltages = doc["cell_voltages"].to<JsonArray>();
for (size_t i = 0; i < datalayer.battery2.info.number_of_cells; ++i) {
cell_voltages.add(((float)datalayer.battery2.status.cell_voltages_mV[i]) / 1000.0);
}
serializeJson(doc, mqtt_msg, sizeof(mqtt_msg));
if (!mqtt_publish(state_topic_2.c_str(), mqtt_msg, false)) {
logging.println("Cell voltage MQTT msg could not be sent");
return false;
}
doc.clear();
}
}
return true;
}
static bool publish_cell_balancing(void) {
static JsonDocument doc;
static String state_topic = topic_name + "/balancing_data";
static String state_topic_2 = topic_name + "/balancing_data_2";
// If cell balancing data is available...
if (datalayer.battery.info.number_of_cells != 0u) {
JsonArray cell_balancing = doc["cell_balancing"].to<JsonArray>();
for (size_t i = 0; i < datalayer.battery.info.number_of_cells; ++i) {
cell_balancing.add(datalayer.battery.status.cell_balancing_status[i]);
}
serializeJson(doc, mqtt_msg, sizeof(mqtt_msg));
if (!mqtt_publish(state_topic.c_str(), mqtt_msg, false)) {
logging.println("Cell balancing MQTT msg could not be sent");
return false;
}
doc.clear();
}
// Handle second battery if available
if (battery2) {
if (datalayer.battery2.info.number_of_cells != 0u) {
JsonArray cell_balancing = doc["cell_balancing"].to<JsonArray>();
for (size_t i = 0; i < datalayer.battery2.info.number_of_cells; ++i) {
cell_balancing.add(datalayer.battery2.status.cell_balancing_status[i]);
}
serializeJson(doc, mqtt_msg, sizeof(mqtt_msg));
if (!mqtt_publish(state_topic_2.c_str(), mqtt_msg, false)) {
logging.println("Cell balancing MQTT msg could not be sent");
return false;
}
doc.clear();
}
}
return true;
}
bool publish_events() {
static JsonDocument doc;
static String state_topic = topic_name + "/events";
if (ha_autodiscovery_enabled && !ha_events_published) {
doc["name"] = "Event";
doc["state_topic"] = state_topic;
doc["unique_id"] = topic_name + "_event";
doc["object_id"] = object_id_prefix + "event";
doc["value_template"] =
"{{ value_json.event_type ~ ' (c:' ~ value_json.count ~ ',m:' ~ value_json.millis ~ ') ' ~ value_json.message "
"}}";
doc["json_attributes_topic"] = state_topic;
doc["json_attributes_template"] = "{{ value_json | tojson }}";
set_common_discovery_attributes(doc);
serializeJson(doc, mqtt_msg);
if (mqtt_publish(generateEventsAutoConfigTopic("event").c_str(), mqtt_msg, true)) {
ha_events_published = true;
} else {
return false;
}
doc.clear();
} else {
const EVENTS_STRUCT_TYPE* event_pointer;
//clear the vector
order_events.clear();
// Collect all events
for (int i = 0; i < EVENT_NOF_EVENTS; i++) {
event_pointer = get_event_pointer((EVENTS_ENUM_TYPE)i);
if (event_pointer->occurences > 0 && !event_pointer->MQTTpublished) {
order_events.push_back({static_cast<EVENTS_ENUM_TYPE>(i), event_pointer});
}
}
// Sort events by timestamp
std::sort(order_events.begin(), order_events.end(), compareEventsByTimestampAsc);
for (const auto& event : order_events) {
EVENTS_ENUM_TYPE event_handle = event.event_handle;
event_pointer = event.event_pointer;
doc["event_type"] = String(get_event_enum_string(event_handle));
doc["severity"] = String(get_event_level_string(event_handle));
doc["count"] = String(event_pointer->occurences);
doc["data"] = String(event_pointer->data);
doc["message"] = get_event_message_string(event_handle);
doc["millis"] = String(event_pointer->timestamp);
serializeJson(doc, mqtt_msg);
if (!mqtt_publish(state_topic.c_str(), mqtt_msg, false)) {
logging.println("Common info MQTT msg could not be sent");
return false;
} else {
set_event_MQTTpublished(event_handle);
}
doc.clear();
//clear the vector
order_events.clear();
}
}
return true;
}
static bool publish_buttons_discovery(void) {
if (ha_autodiscovery_enabled) {
if (ha_buttons_published == false) {
logging.println("Publishing buttons discovery");
static JsonDocument doc;
for (int i = 0; i < sizeof(buttonConfigs) / sizeof(buttonConfigs[0]); i++) {
SensorConfig& config = buttonConfigs[i];
doc["name"] = config.name;
doc["unique_id"] = object_id_prefix + config.object_id;
doc["command_topic"] = generateButtonTopic(config.object_id);
set_common_discovery_attributes(doc);
serializeJson(doc, mqtt_msg);
if (mqtt_publish(generateButtonAutoConfigTopic(config.object_id).c_str(), mqtt_msg, true)) {
ha_buttons_published = true;
} else {
return false;
}
doc.clear();
}
}
}
return true;
}
static void subscribe() {
esp_mqtt_client_subscribe(client, (topic_name + "/command/+").c_str(), 1);
}
void mqtt_message_received(char* topic_raw, int topic_len, char* data, int data_len) {
char* topic = strndup(topic_raw, topic_len);
logging.printf("MQTT message arrived: [%.*s]\n", topic_len, topic);
#ifdef REMOTE_BMS_RESET
const char* bmsreset_topic = generateButtonTopic("BMSRESET").c_str();
if (strcmp(topic, bmsreset_topic) == 0) {
logging.println("Triggering BMS reset");
start_bms_reset();
}
#endif // REMOTE_BMS_RESET
if (strcmp(topic, generateButtonTopic("PAUSE").c_str()) == 0) {
setBatteryPause(true, false);
}
if (strcmp(topic, generateButtonTopic("RESUME").c_str()) == 0) {
setBatteryPause(false, false, false);
}
if (strcmp(topic, generateButtonTopic("RESTART").c_str()) == 0) {
setBatteryPause(true, true, true, false);
delay(1000);
ESP.restart();
}
if (strcmp(topic, generateButtonTopic("STOP").c_str()) == 0) {
setBatteryPause(true, false, true);
}
free(topic);
}
static void mqtt_event_handler(void* handler_args, esp_event_base_t base, int32_t event_id, void* event_data) {
esp_mqtt_event_handle_t event = (esp_mqtt_event_handle_t)event_data;
switch ((esp_mqtt_event_id_t)event_id) {
case MQTT_EVENT_CONNECTED:
clear_event(EVENT_MQTT_DISCONNECT);
set_event(EVENT_MQTT_CONNECT, 0);
publish_buttons_discovery();
subscribe();
logging.println("MQTT connected");
break;
case MQTT_EVENT_DISCONNECTED:
set_event(EVENT_MQTT_DISCONNECT, 0);
logging.println("MQTT disconnected!");
break;
case MQTT_EVENT_DATA:
mqtt_message_received(event->topic, event->topic_len, event->data, event->data_len);
break;
case MQTT_EVENT_ERROR:
logging.println("MQTT_ERROR");
logging.print("reported from esp-tls");
logging.println(event->error_handle->esp_tls_last_esp_err);
logging.print("reported from tls stack");
logging.println(event->error_handle->esp_tls_stack_err);
logging.print("captured as transport's socket errno");
logging.println(strerror(event->error_handle->esp_transport_sock_errno));
break;
}
}
bool init_mqtt(void) {
if (ha_autodiscovery_enabled) {
create_battery_sensor_configs();
create_global_sensor_configs();
}
if (mqtt_manual_topic_object_name) {
#ifdef COMMON_IMAGE
BatteryEmulatorSettingsStore settings;
topic_name = settings.getString("MQTTTOPIC", mqtt_topic_name);
object_id_prefix = settings.getString("MQTTOBJIDPREFIX", mqtt_object_id_prefix);
device_name = settings.getString("MQTTDEVICENAME", mqtt_device_name);
device_id = settings.getString("HADEVICEID", ha_device_id);
if (topic_name.length() == 0) {
topic_name = mqtt_topic_name;
}
if (object_id_prefix.length() == 0) {
object_id_prefix = mqtt_object_id_prefix;
}
if (device_name.length() == 0) {
device_name = mqtt_device_name;
}
if (device_id.length() == 0) {
device_id = ha_device_id;
}
#else
// Use custom topic name, object ID prefix, and device name from user settings
topic_name = mqtt_topic_name;
object_id_prefix = mqtt_object_id_prefix;
device_name = mqtt_device_name;
device_id = ha_device_id;
#endif
} else {
// Use default naming based on WiFi hostname for topic, object ID prefix, and device name
topic_name = "battery-emulator_" + String(WiFi.getHostname());
object_id_prefix = String(WiFi.getHostname()) + String("_");
device_name = "BatteryEmulator_" + String(WiFi.getHostname());
device_id = "battery-emulator";
}
String clientId = String("BatteryEmulatorClient-") + WiFi.getHostname();
mqtt_cfg.broker.address.transport = MQTT_TRANSPORT_OVER_TCP;
mqtt_cfg.broker.address.hostname = mqtt_server.c_str();
mqtt_cfg.broker.address.port = mqtt_port;
mqtt_cfg.credentials.client_id = clientId.c_str();
mqtt_cfg.credentials.username = mqtt_user.c_str();
mqtt_cfg.credentials.authentication.password = mqtt_password.c_str();
lwt_topic = topic_name + "/status";
mqtt_cfg.session.last_will.topic = lwt_topic.c_str();
mqtt_cfg.session.last_will.qos = 1;
mqtt_cfg.session.last_will.retain = true;
mqtt_cfg.session.last_will.msg = "offline";
mqtt_cfg.session.last_will.msg_len = strlen(mqtt_cfg.session.last_will.msg);
mqtt_cfg.network.timeout_ms = MQTT_TIMEOUT;
client = esp_mqtt_client_init(&mqtt_cfg);
if (client == nullptr) {
return false;
}
if (esp_mqtt_client_register_event(client, MQTT_EVENT_ANY, mqtt_event_handler, client) != ESP_OK) {
return false;
}
return true;
}
void mqtt_loop(void) {
// Only attempt to publish/reconnect MQTT if Wi-Fi is connectedand checkTimmer is elapsed
if (check_global_timer.elapsed() && WiFi.status() == WL_CONNECTED) {
if (client_started == false) {
esp_mqtt_client_start(client);
client_started = true;
logging.println("MQTT initialized");
return;
}
if (publish_global_timer.elapsed()) // Every 5s
{
publish_values();
}
}
}
bool mqtt_publish(const char* topic, const char* mqtt_msg, bool retain) {
int msg_id = esp_mqtt_client_publish(client, topic, mqtt_msg, strlen(mqtt_msg), MQTT_QOS, retain);
return msg_id > -1;
}