Battery-Emulator/Software/Software.ino
2023-05-02 22:49:24 +03:00

813 lines
31 KiB
C++

#include <Arduino.h>
#include "HardwareSerial.h"
#include "config.h"
#include "logging.h"
#include "mbServerFCs.h"
#include "ModbusServerRTU.h"
#include "ESP32CAN.h"
#include "CAN_config.h"
#include "Adafruit_NeoPixel.h"
/* User definable settings */
#define BATTERY_WH_MAX 30000 //Battery size in Wh (Maximum value Fronius accepts is 60000 [60kWh])
#define MAXPERCENTAGE 800 //80.0% , Max percentage the battery will charge to (App will show 100% once this value is reached)
#define MINPERCENTAGE 200 //20.0% , Min percentage the battery will discharge to (App will show 0% once this value is reached)
//#define INTERLOCK_REQUIRED //Uncomment this line to skip requiring both high voltage connectors to be seated on the LEAF battery
byte printValues = 1; //Should modbus values be printed to serial output?
/* Do not change code below unless you are sure what you are doing */
//CAN parameters
CAN_device_t CAN_cfg; // CAN Config
unsigned long previousMillis10 = 0; // will store last time a 10ms CAN Message was send
unsigned long previousMillis100 = 0; // will store last time a 100ms CAN Message was send
const int interval10 = 10; // interval (ms) at which send CAN Messages
const int interval100 = 100; // interval (ms) at which send CAN Messages
const int rx_queue_size = 10; // Receive Queue size
uint8_t CANstillAlive = 12; //counter for checking if CAN is still alive
uint8_t errorCode = 0; //stores if we have an error code active from battery control logic
uint8_t mprun10r = 0; //counter 0-20 for 0x1F2 message
byte mprun10 = 0; //counter 0-3
byte mprun100 = 0; //counter 0-3
CAN_frame_t LEAF_1F2 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x1F2,.data = {0x10, 0x64, 0x00, 0xB0, 0x00, 0x1E, 0x00, 0x8F}};
CAN_frame_t LEAF_50B = {.FIR = {.B = {.DLC = 7,.FF = CAN_frame_std,}},.MsgID = 0x50B,.data = {0x00, 0x00, 0x06, 0xC0, 0x00, 0x00, 0x00}};
CAN_frame_t LEAF_50C = {.FIR = {.B = {.DLC = 6,.FF = CAN_frame_std,}},.MsgID = 0x50C,.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
CAN_frame_t LEAF_1D4 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x1D4,.data = {0x6E, 0x6E, 0x00, 0x04, 0x07, 0x46, 0xE0, 0x44}};
//Nissan LEAF battery parameters from CAN
#define ZE0_BATTERY 0
#define AZE0_BATTERY 1
#define ZE1_BATTERY 2
uint8_t LEAF_Battery_Type = ZE0_BATTERY;
#define WH_PER_GID 77 //One GID is this amount of Watt hours
#define LB_MAX_SOC 1000 //LEAF BMS never goes over this value. We use this info to rescale SOC% sent to Fronius
#define LB_MIN_SOC 0 //LEAF BMS never goes below this value. We use this info to rescale SOC% sent to Fronius
uint16_t LB_Discharge_Power_Limit = 0; //Limit in kW
uint16_t LB_Charge_Power_Limit = 0; //Limit in kW
int16_t LB_MAX_POWER_FOR_CHARGER = 0; //Limit in kW
int16_t LB_SOC = 500; //0 - 100.0 % (0-1000)
uint16_t LB_TEMP = 0; //Temporary value used in status checks
uint16_t LB_Wh_Remaining = 0; //Amount of energy in battery, in Wh
uint16_t LB_GIDS = 0;
uint16_t LB_MAX = 0;
uint16_t LB_Max_GIDS = 273; //Startup in 24kWh mode
uint16_t LB_StateOfHealth = 99; //State of health %
uint16_t LB_Total_Voltage = 370; //Battery voltage (0-450V)
int16_t LB_Current = 0; //Current in A going in/out of battery
int16_t LB_Power = 0; //Watts going in/out of battery
int16_t LB_HistData_Temperature_MAX = 6; //-40 to 86*C
int16_t LB_HistData_Temperature_MIN = 5; //-40 to 86*C
uint8_t LB_Relay_Cut_Request = 0; //LB_FAIL
uint8_t LB_Failsafe_Status = 0; //LB_STATUS = 000b = normal start Request
//001b = Main Relay OFF Request
//010b = Charging Mode Stop Request
//011b = Main Relay OFF Request
//100b = Caution Lamp Request
//101b = Caution Lamp Request & Main Relay OFF Request
//110b = Caution Lamp Request & Charging Mode Stop Request
//111b = Caution Lamp Request & Main Relay OFF Request
byte LB_Interlock = 1; //Contains info on if HV leads are seated (Note, to use this both HV connectors need to be inserted)
byte LB_Full_CHARGE_flag = 0; //LB_FCHGEND , Goes to 1 if battery is fully charged
byte LB_MainRelayOn_flag = 0; //No-Permission=0, Main Relay On Permission=1
byte LB_Capacity_Empty = 0; //LB_EMPTY, , Goes to 1 if battery is empty
// global Modbus memory registers
const int intervalModbusTask = 4800; //Interval at which to refresh modbus registers
unsigned long previousMillisModbus = 0; //will store last time a modbus register refresh
// ModbusRTU Server
#define MB_RTU_NUM_VALUES 30000
//#define MB_RTU_DIVICE_ID 21
uint16_t mbPV[MB_RTU_NUM_VALUES]; // process variable memory: produced by sensors, etc., cyclic read by PLC via modbus TCP
#define STANDBY 0
#define INACTIVE 1
#define DARKSTART 2
#define ACTIVE 3
#define FAULT 4
#define UPDATING 5
uint16_t capacity_Wh_startup = BATTERY_WH_MAX;
uint16_t max_power = 40960; //41kW
uint16_t max_voltage = 4040; //(404.4V), if higher charging is not possible (goes into forced discharge)
uint16_t min_voltage = 3100; //Min Voltage (310.0V), if lower Gen24 disables battery
uint16_t battery_voltage = 3700;
uint16_t SOC = 5000; //SOC 0-100.00% //Updates later on from CAN
uint16_t StateOfHealth = 9900; //SOH 0-100.00% //Updates later on from CAN
uint16_t capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
uint16_t remaining_capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
uint16_t max_target_discharge_power = 0; //0W (0W > restricts to no discharge) //Updates later on from CAN
uint16_t max_target_charge_power = 4312; //4.3kW (during charge), both 307&308 can be set (>0) at the same time //Updates later on from CAN
uint16_t temperature_max = 50; //Todo, read from LEAF pack, uint not ok
uint16_t temperature_min = 60; //Todo, read from LEAF pack, uint not ok
uint16_t bms_char_dis_status; //0 idle, 1 discharging, 2, charging
uint16_t bms_status = ACTIVE; //ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
uint16_t stat_batt_power = 0; //power going in/out of battery
// Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout
ModbusServerRTU MBserver(Serial2, 2000);
// LED control
Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800);
unsigned long previousMillis10ms = 0;
static int green = 0;
static bool rampUp = true;
const int maxBrightness = 255;
// Setup() - initialization happens here
void setup()
{
//CAN pins
pinMode(CAN_SE_PIN, OUTPUT);
digitalWrite(CAN_SE_PIN, LOW);
CAN_cfg.speed = CAN_SPEED_500KBPS;
CAN_cfg.tx_pin_id = GPIO_NUM_27;
CAN_cfg.rx_pin_id = GPIO_NUM_26;
CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t));
// Init CAN Module
ESP32Can.CANInit();
Serial.println(CAN_cfg.speed);
// Init Serial monitor
Serial.begin(9600);
while (!Serial)
{
}
Serial.println("__ OK __");
//Set up Modbus RTU Server
Serial.println("Set ModbusRtu PIN");
pinMode(RS485_EN_PIN, OUTPUT);
digitalWrite(RS485_EN_PIN, HIGH);
pinMode(RS485_SE_PIN, OUTPUT);
digitalWrite(RS485_SE_PIN, HIGH);
pinMode(PIN_5V_EN, OUTPUT);
digitalWrite(PIN_5V_EN, HIGH);
// Init Static data to the RTU Modbus
handle_static_data_modbus();
// Init Serial2 connected to the RTU Modbus
RTUutils::prepareHardwareSerial(Serial2);
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
// Register served function code worker for server
MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03);
MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06);
MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16);
MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23);
// Start ModbusRTU background task
MBserver.begin(Serial2);
// Init LED control
pixels.begin();
}
// perform main program functions
void loop()
{
handle_can_leaf_battery(); //runs as fast as possible
if (millis() - previousMillis10ms >= interval10) //every 10ms
{
previousMillis10ms = millis();
handle_LED_state(); //Set the LED color according to state
}
if (millis() - previousMillisModbus >= intervalModbusTask) //every 5s
{
previousMillisModbus = millis();
update_values_leaf_battery(); //Map the values to the correct registers
handle_update_data_modbusp201(); //Updata for ModbusRTU Server for GEN24
handle_update_data_modbusp301(); //Updata for ModbusRTU Server for GEN24
}
}
void update_values_leaf_battery()
{ //This function maps all the values fetched via CAN to the correct parameters used for modbus
bms_status = ACTIVE; //Startout in active mode
StateOfHealth = (LB_StateOfHealth * 100); //Increase range from 99% -> 99.00%
//Calculate the SOC% value to send to Fronius
LB_SOC = LB_MIN_SOC + (LB_MAX_SOC - LB_MIN_SOC) * (LB_SOC - MINPERCENTAGE) / (MAXPERCENTAGE - MINPERCENTAGE);
if (LB_SOC < 0)
{ //We are in the real SOC% range of 0-20%, always set SOC sent to Fronius as 0%
LB_SOC = 0;
}
if (LB_SOC > 1000)
{ //We are in the real SOC% range of 80-100%, always set SOC sent to Fronius as 100%
LB_SOC = 1000;
}
SOC = (LB_SOC * 10); //increase LB_SOC range from 0-100.0 -> 100.00
battery_voltage = (LB_Total_Voltage*10); //One more decimal needed
capacity_Wh = (LB_Max_GIDS * WH_PER_GID);
remaining_capacity_Wh = LB_Wh_Remaining;
/* Define power able to be discharged from battery */
if(LB_Discharge_Power_Limit > 30) //if >30kW can be pulled from battery
{
max_target_discharge_power = 30000; //cap value so we don't go over the Fronius limits
}
else
{
max_target_discharge_power = (LB_Discharge_Power_Limit * 1000); //kW to W
}
if(SOC == 0) //Scaled SOC% value is 0.00%, we should not discharge battery further
{
max_target_discharge_power = 0;
}
/* Define power able to be put into the battery */
if(LB_Charge_Power_Limit > 30) //if >30kW can be put into the battery
{
max_target_charge_power = 30000; //cap value so we don't go over the Fronius limits
}
if(LB_Charge_Power_Limit < 0) //LB_MAX_POWER_FOR_CHARGER can actually go to -10kW
{
max_target_charge_power = 0; //cap calue so we dont do under the Fronius limits
}
else
{
max_target_charge_power = (LB_Charge_Power_Limit * 1000); //kW to W
}
if(SOC == 10000) //Scaled SOC% value is 100.00%
{
max_target_charge_power = 0; //No need to charge further, set max power to 0
}
/*Extra safeguards*/
if(LB_GIDS < 10) //800Wh left in battery
{ //Battery is running abnormally low, some discharge logic might have failed. Zero it all out.
SOC = 0;
max_target_discharge_power = 0;
}
if(LB_Full_CHARGE_flag)
{ //Battery reports that it is fully charged stop all further charging incase it hasn't already
max_target_charge_power = 0;
}
if(LB_Relay_Cut_Request)
{ //LB_FAIL, BMS requesting shutdown and contactors to be opened
Serial.println("Battery requesting immediate shutdown and contactors to be opened!");
//Note, this is sometimes triggered during the night while idle, and the BMS recovers after a while. Removed latching from this scenario
errorCode = 1;
max_target_discharge_power = 0;
max_target_charge_power = 0;
}
if(LB_Failsafe_Status > 0) // 0 is normal, start charging/discharging
{
switch(LB_Failsafe_Status)
{
case(1):
//Normal Stop Request
//This means that battery is fully discharged and it's OK to stop the session. For stationary storage we don't disconnect contactors, so we do nothing here.
break;
case(2):
//Charging Mode Stop Request
//This means that battery is fully charged and it's OK to stop the session. For stationary storage we don't disconnect contactors, so we do nothing here.
break;
case(3):
//Charging Mode Stop Request & Normal Stop Request
//Normal stop request. For stationary storage we don't disconnect contactors, so we ignore this.
break;
case(4):
//Caution Lamp Request
Serial.println("Battery raised caution indicator. Inspect battery status!");
break;
case(5):
//Caution Lamp Request & Normal Stop Request
bms_status = FAULT;
errorCode = 2;
Serial.println("Battery raised caution indicator AND requested discharge stop. Inspect battery status!");
break;
case(6):
//Caution Lamp Request & Charging Mode Stop Request
bms_status = FAULT;
errorCode = 3;
Serial.println("Battery raised caution indicator AND requested charge stop. Inspect battery status!");
break;
case(7):
//Caution Lamp Request & Charging Mode Stop Request & Normal Stop Request
bms_status = FAULT;
errorCode = 4;
Serial.println("Battery raised caution indicator AND requested charge/discharge stop. Inspect battery status!");
break;
default:
break;
}
}
if(LB_StateOfHealth < 25)
{ //Battery is extremely degraded, not fit for secondlifestorage. Zero it all out.
if(LB_StateOfHealth != 0)
{ //Extra check to see that we actually have a SOH Value available
Serial.println("State of health critically low. Battery internal resistance too high to continue. Recycle battery.");
bms_status = FAULT;
errorCode = 5;
max_target_discharge_power = 0;
max_target_charge_power = 0;
}
}
#ifdef INTERLOCK_REQUIRED
if(!LB_Interlock)
{
Serial.println("Battery interlock loop broken. Check that high voltage connectors are seated. Battery will be disabled!");
bms_status = FAULT;
errorCode = 6;
SOC = 0;
max_target_discharge_power = 0;
max_target_charge_power = 0;
}
#endif
/* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/
if(!CANstillAlive)
{
bms_status = FAULT;
errorCode = 7;
Serial.println("No CAN communication detected for 60s. Shutting down battery control.");
}
else
{
CANstillAlive--;
}
LB_Power = LB_Total_Voltage * LB_Current;//P = U * I
stat_batt_power = convert2unsignedint16(LB_Power); //add sign if needed
temperature_min = convert2unsignedint16((LB_HistData_Temperature_MIN * 10)); //add sign if needed and increase range
temperature_max = convert2unsignedint16((LB_HistData_Temperature_MAX * 10));
if(printValues)
{ //values heading towards the modbus registers
if(errorCode > 0)
{
Serial.print("ERROR CODE ACTIVE IN SYSTEM. NUMBER: ");
Serial.println(errorCode);
}
Serial.print("BMS Status (3=OK): ");
Serial.println(bms_status);
switch (bms_char_dis_status)
{
case 0:
Serial.println("Battery Idle");
break;
case 1:
Serial.println("Battery Discharging");
break;
case 2:
Serial.println("Battery Charging");
break;
default:
break;
}
Serial.print("Power: ");
Serial.println(LB_Power);
Serial.print("Max discharge power: ");
Serial.println(max_target_discharge_power);
Serial.print("Max charge power: ");
Serial.println(max_target_charge_power);
Serial.print("SOH%: ");
Serial.println(StateOfHealth);
Serial.print("SOC% to Fronius: ");
Serial.println(SOC);
Serial.print("Temperature Min: ");
Serial.println(temperature_min);
Serial.print("Temperature Max: ");
Serial.println(temperature_max);
Serial.print("GIDS: ");
Serial.println(LB_GIDS);
Serial.print("LEAF battery gen: ");
Serial.println(LEAF_Battery_Type);
}
}
void handle_static_data_modbus() {
// Store the data into the array
static uint16_t si_data[] = { 21321, 1 };
static uint16_t byd_data[] = { 16985, 17408, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
static uint16_t battery_data[] = { 16985, 17440, 16993, 29812, 25970, 31021, 17007, 30752, 20594, 25965, 26997, 27936, 18518, 0, 0, 0 };
static uint16_t volt_data[] = { 13614, 12288, 0, 0, 0, 0, 0, 0, 13102, 12598, 0, 0, 0, 0, 0, 0 };
static uint16_t serial_data[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
static uint16_t static_data[] = { 1, 0 };
static uint16_t* data_array_pointers[] = { si_data, byd_data, battery_data, volt_data, serial_data, static_data };
static uint16_t data_sizes[] = { sizeof(si_data), sizeof(byd_data), sizeof(battery_data), sizeof(volt_data), sizeof(serial_data), sizeof(static_data) };
static uint16_t i = 100;
for (uint8_t arr_idx = 0; arr_idx < sizeof(data_array_pointers) / sizeof(uint16_t*); arr_idx++) {
uint16_t data_size = data_sizes[arr_idx];
memcpy(&mbPV[i], data_array_pointers[arr_idx], data_size);
i += data_size / sizeof(uint16_t);
}
}
void handle_update_data_modbusp201() {
// Store the data into the array
static uint16_t system_data[13];
system_data[0] = 0; // Id.: p201 Value.: 0 Scaled value.: 0 Comment.: Always 0
system_data[1] = 0; // Id.: p202 Value.: 0 Scaled value.: 0 Comment.: Always 0
system_data[2] = (capacity_Wh_startup); // Id.: p203 Value.: 32000 Scaled value.: 32kWh Comment.: Capacity rated, maximum value is 60000 (60kWh)
system_data[3] = (max_power); // Id.: p204 Value.: 32000 Scaled value.: 32kWh Comment.: Nominal capacity
system_data[4] = (max_power); // Id.: p205 Value.: 14500 Scaled value.: 30,42kW Comment.: Max Charge/Discharge Power=10.24kW (lowest value of 204 and 205 will be enforced by Gen24)
system_data[5] = (max_voltage); // Id.: p206 Value.: 3667 Scaled value.: 362,7VDC Comment.: Max Voltage, if higher charging is not possible (goes into forced discharge)
system_data[6] = (min_voltage); // Id.: p207 Value.: 2776 Scaled value.: 277,6VDC Comment.: Min Voltage, if lower Gen24 disables battery
system_data[7] = 53248; // Id.: p208 Value.: 53248 Scaled value.: 53248 Comment.: Always 53248 for this BYD, Peak Charge power?
system_data[8] = 10; // Id.: p209 Value.: 10 Scaled value.: 10 Comment.: Always 10
system_data[9] = 53248; // Id.: p210 Value.: 53248 Scaled value.: 53248 Comment.: Always 53248 for this BYD, Peak Discharge power?
system_data[10] = 10; // Id.: p211 Value.: 10 Scaled value.: 10 Comment.: Always 10
system_data[11] = 0; // Id.: p212 Value.: 0 Scaled value.: 0 Comment.: Always 0
system_data[12] = 0; // Id.: p213 Value.: 0 Scaled value.: 0 Comment.: Always 0
static uint16_t i = 200;
memcpy(&mbPV[i], system_data, sizeof(system_data));
}
void handle_update_data_modbusp301() {
// Store the data into the array
static uint16_t battery_data[24];
if (LB_Current > 0) { //Positive value = Charging on LEAF
bms_char_dis_status = 2; //Charging
} else if (LB_Current < 0) { //Negative value = Discharging on LEAF
bms_char_dis_status = 1; //Discharging
} else { //LB_Current == 0
bms_char_dis_status = 0; //idle
}
if (bms_status == ACTIVE) {
battery_data[8] = battery_voltage; // Id.: p309 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage outer (0 if status !=3, maybe a contactor closes when active): 173.4V
} else {
battery_data[8] = 0;
}
battery_data[0] = bms_status; // Id.: p301 Value.: 3 Scaled value.: 3 Comment.: status(*): ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
battery_data[1] = 0; // Id.: p302 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[2] = 128 + bms_char_dis_status; // Id.: p303 Value.: 130 Scaled value.: 130 Comment.: mode(*): normal
battery_data[3] = SOC; // Id.: p304 Value.: 1700 Scaled value.: 50% Comment.: SOC: (50% would equal 5000)
battery_data[4] = capacity_Wh; // Id.: p305 Value.: 32000 Scaled value.: 32kWh Comment.: tot cap:
battery_data[5] = remaining_capacity_Wh; // Id.: p306 Value.: 13260 Scaled value.: 13,26kWh Comment.: remaining cap: 7.68kWh
battery_data[6] = max_target_discharge_power; // Id.: p307 Value.: 25604 Scaled value.: 25,604kW Comment.: max/target discharge power: 0W (0W > restricts to no discharge)
battery_data[7] = max_target_charge_power; // Id.: p308 Value.: 25604 Scaled value.: 25,604kW Comment.: max/target charge power: 4.3kW (during charge), both 307&308 can be set (>0) at the same time
//Battery_data[8] set previously in function // Id.: p309 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage outer (0 if status !=3, maybe a contactor closes when active): 173.4V
battery_data[9] = 2000; // Id.: p310 Value.: 64121 Scaled value.: 6412,1W Comment.: Current Power to API: if>32768... -(65535-61760)=3775W
battery_data[10] = battery_voltage; // Id.: p311 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage inner: 173.2V (LEAF voltage is in whole volts, need to add a decimal)
battery_data[11] = 2000; // Id.: p312 Value.: 64121 Scaled value.: 6412,1W Comment.: p310
battery_data[12] = temperature_min; // Id.: p313 Value.: 75 Scaled value.: 7,5 Comment.: temp min: 7 degrees (if below 0....65535-t)
battery_data[13] = temperature_max; // Id.: p314 Value.: 95 Scaled value.: 9,5 Comment.: temp max: 9 degrees (if below 0....65535-t)
battery_data[14] = 0; // Id.: p315 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[15] = 0; // Id.: p316 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[16] = 16; // Id.: p317 Value.: 0 Scaled value.: 0 Comment.: counter charge hi
battery_data[17] = 22741; // Id.: p318 Value.: 0 Scaled value.: 0 Comment.: counter charge lo....65536*101+9912 = 6629048 Wh?
battery_data[18] = 0; // Id.: p319 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[19] = 0; // Id.: p320 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[20] = 13; // Id.: p321 Value.: 0 Scaled value.: 0 Comment.: counter discharge hi
battery_data[21] = 52064; // Id.: p322 Value.: 0 Scaled value.: 0 Comment.: counter discharge lo....65536*92+7448 = 6036760 Wh?
battery_data[22] = 230; // Id.: p323 Value.: 0 Scaled value.: 0 Comment.: device temperature (23 degrees)
battery_data[23] = StateOfHealth; // Id.: p324 Value.: 9900 Scaled value.: 99% Comment.: SOH
static uint16_t i = 300;
memcpy(&mbPV[i], battery_data, sizeof(battery_data));
}
void handle_can_leaf_battery()
{
CAN_frame_t rx_frame;
unsigned long currentMillis = millis();
// Receive next CAN frame from queue
if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 3 * portTICK_PERIOD_MS) == pdTRUE)
{
if (rx_frame.FIR.B.FF == CAN_frame_std)
{
//printf("New standard frame");
switch (rx_frame.MsgID)
{
case 0x1DB:
LB_Current = (rx_frame.data.u8[0] << 3) | (rx_frame.data.u8[1] & 0xe0) >> 5;
if (LB_Current & 0x0400)
{
// negative so extend the sign bit
LB_Current |= 0xf800;
}
LB_Total_Voltage = ((rx_frame.data.u8[2] << 2) | (rx_frame.data.u8[3] & 0xc0) >> 6) / 2;
//Collect various data from the BMS
LB_Relay_Cut_Request = ((rx_frame.data.u8[1] & 0x18) >> 3);
LB_Failsafe_Status = (rx_frame.data.u8[1] & 0x07);
LB_MainRelayOn_flag = (byte) ((rx_frame.data.u8[3] & 0x20) >> 5);
LB_Full_CHARGE_flag = (byte) ((rx_frame.data.u8[3] & 0x10) >> 4);
LB_Interlock = (byte) ((rx_frame.data.u8[3] & 0x08) >> 3);
break;
case 0x1DC:
LB_Discharge_Power_Limit = ((rx_frame.data.u8[0] << 2 | rx_frame.data.u8[1] >> 6) / 4.0);
LB_Charge_Power_Limit = (((rx_frame.data.u8[1] & 0x3F) << 2 | rx_frame.data.u8[2] >> 4) / 4.0);
LB_MAX_POWER_FOR_CHARGER = ((((rx_frame.data.u8[2] & 0x0F) << 6 | rx_frame.data.u8[3] >> 2) / 10.0) - 10);
break;
case 0x55B:
LB_TEMP = (rx_frame.data.u8[0] << 2 | rx_frame.data.u8[1] >> 6);
if (LB_TEMP != 0x3ff) //3FF is unavailable value
{
LB_SOC = LB_TEMP;
}
break;
case 0x5BC:
CANstillAlive = 12; //Indicate that we are still getting CAN messages from the BMS
LB_MAX = ((rx_frame.data.u8[5] & 0x10) >> 4);
if (LB_MAX)
{
LB_Max_GIDS = (rx_frame.data.u8[0] << 2) | ((rx_frame.data.u8[1] & 0xC0) >> 6);
//Max gids active, do nothing
//Only the 30/40/62kWh packs have this mux
}
else
{
//Normal current GIDS value is transmitted
LB_GIDS = (rx_frame.data.u8[0] << 2) | ((rx_frame.data.u8[1] & 0xC0) >> 6);
LB_Wh_Remaining = (LB_GIDS * WH_PER_GID);
}
LB_TEMP = (rx_frame.data.u8[4] >> 1);
if (LB_TEMP != 0)
{
LB_StateOfHealth = LB_TEMP; //Collect state of health from battery
}
break;
case 0x5C0: //This method only works for 2013-2017 AZE0 LEAF packs, the mux is different on other generations
if(LEAF_Battery_Type == AZE0_BATTERY)
{
if ((rx_frame.data.u8[0]>>6) == 1)
{ // Battery MAX temperature. Effectively has only 7-bit precision, as the bottom bit is always 0.
LB_HistData_Temperature_MAX = ((rx_frame.data.u8[2] / 2) - 40);
}
if ((rx_frame.data.u8[0]>>6) == 3)
{ // Battery MIN temperature. Effectively has only 7-bit precision, as the bottom bit is always 0.
LB_HistData_Temperature_MIN = ((rx_frame.data.u8[2] / 2) - 40);
}
}
if(LEAF_Battery_Type == ZE1_BATTERY)
{ //note different mux location in first frame
if ((rx_frame.data.u8[0] & 0x0F) == 1)
{
LB_HistData_Temperature_MAX = ((rx_frame.data.u8[2] / 2) - 40);
}
if ((rx_frame.data.u8[0] & 0x0F) == 3)
{
LB_HistData_Temperature_MIN = ((rx_frame.data.u8[2] / 2) - 40);
}
}
break;
case 0x59E:
//AZE0 2013-2017 or ZE1 2018-2023 battery detected
//Only detect as AZE0 if not already set as ZE1
if(LEAF_Battery_Type != ZE1_BATTERY)
{
LEAF_Battery_Type = AZE0_BATTERY;
}
break;
case 0x1ED:
case 0x1C2:
//ZE1 2018-2023 battery detected!
LEAF_Battery_Type = ZE1_BATTERY;
break;
default:
break;
}
}
else
{
//printf("New extended frame");
}
}
// Send 100ms CAN Message
if (currentMillis - previousMillis100 >= interval100)
{
previousMillis100 = currentMillis;
ESP32Can.CANWriteFrame(&LEAF_50B); //Always send 50B as a static message (Contains HCM_WakeUpSleepCommand == 11b == WakeUp, and CANMASK = 1)
mprun100++;
if (mprun100 > 3)
{
mprun100 = 0;
}
if (mprun100 == 0)
{
LEAF_50C.data.u8[3] = 0x00;
LEAF_50C.data.u8[4] = 0x5D;
LEAF_50C.data.u8[5] = 0xC8;
}
else if(mprun100 == 1)
{
LEAF_50C.data.u8[3] = 0x01;
LEAF_50C.data.u8[4] = 0xB2;
LEAF_50C.data.u8[5] = 0x31;
}
else if(mprun100 == 2)
{
LEAF_50C.data.u8[3] = 0x02;
LEAF_50C.data.u8[4] = 0x5D;
LEAF_50C.data.u8[5] = 0x63;
}
else if(mprun100 == 3)
{
LEAF_50C.data.u8[3] = 0x03;
LEAF_50C.data.u8[4] = 0xB2;
LEAF_50C.data.u8[5] = 0x9A;
}
ESP32Can.CANWriteFrame(&LEAF_50C);
}
//Send 10ms message
if (currentMillis - previousMillis10 >= interval10)
{
previousMillis10 = currentMillis;
if(mprun10 == 0)
{
LEAF_1D4.data.u8[4] = 0x07;
LEAF_1D4.data.u8[7] = 0x12;
}
else if(mprun10 == 1)
{
LEAF_1D4.data.u8[4] = 0x47;
LEAF_1D4.data.u8[7] = 0xD5;
}
else if(mprun10 == 2)
{
LEAF_1D4.data.u8[4] = 0x87;
LEAF_1D4.data.u8[7] = 0x19;
}
else if(mprun10 == 3)
{
LEAF_1D4.data.u8[4] = 0xC7;
LEAF_1D4.data.u8[7] = 0xDE;
}
ESP32Can.CANWriteFrame(&LEAF_1D4);
mprun10++;
if (mprun10 > 3)
{
mprun10 = 0;
}
switch(mprun10r)
{
case(0):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x8F;
break;
case(1):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x80;
break;
case(2):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x81;
break;
case(3):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x82;
break;
case(4):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x8F;
break;
case(5): // Set 2
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x84;
break;
case(6):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x85;
break;
case(7):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x86;
break;
case(8):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x83;
break;
case(9):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x84;
break;
case(10): // Set 3
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x81;
break;
case(11):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x82;
break;
case(12):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x8F;
break;
case(13):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x80;
break;
case(14):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x81;
break;
case(15): // Set 4
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x86;
break;
case(16):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x83;
break;
case(17):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x84;
break;
case(18):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x85;
break;
case(19):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x86;
break;
default:
break;
}
ESP32Can.CANWriteFrame(&LEAF_1F2); //Contains (CHG_STA_RQ == 1 == Normal Charge)
mprun10r++;
if(mprun10r > 19) // 0x1F2 patter repeats after 20 messages,
{
mprun10r = 0;
}
//Serial.println("CAN 10ms done");
}
}
uint16_t convert2unsignedint16(uint16_t signed_value)
{
if(signed_value < 0)
{
return(65535 + signed_value);
}
else
{
return signed_value;
}
}
void handle_LED_state()
{
// Determine how bright the green LED should be
if (rampUp && green < maxBrightness)
{
green++;
}
else if (rampUp && green == maxBrightness)
{
rampUp = false;
}
else if (!rampUp && green > 0)
{
green--;
} else if (!rampUp && green == 0)
{
rampUp = true;
}
pixels.setPixelColor(0, pixels.Color(0, green, 0)); // Set LED to green according to calculated value
if(bms_status == FAULT)
{
pixels.setPixelColor(0, pixels.Color(255, 0, 0)); // Red LED full brightness
}
pixels.show(); // This sends the updated pixel color to the hardware.
}