Battery-Emulator/Software/Software.cpp
2025-09-23 10:28:46 +03:00

575 lines
22 KiB
C++

#include <Arduino.h>
#include "HardwareSerial.h"
#include "esp_system.h"
#include "esp_task_wdt.h"
#include "esp_timer.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "src/battery/BATTERIES.h"
#include "src/charger/CHARGERS.h"
#include "src/communication/Transmitter.h"
#include "src/communication/can/comm_can.h"
#include "src/communication/contactorcontrol/comm_contactorcontrol.h"
#include "src/communication/equipmentstopbutton/comm_equipmentstopbutton.h"
#include "src/communication/nvm/comm_nvm.h"
#include "src/communication/precharge_control/precharge_control.h"
#include "src/communication/rs485/comm_rs485.h"
#include "src/datalayer/datalayer.h"
#include "src/devboard/mqtt/mqtt.h"
#include "src/devboard/sdcard/sdcard.h"
#include "src/devboard/utils/events.h"
#include "src/devboard/utils/led_handler.h"
#include "src/devboard/utils/logging.h"
#include "src/devboard/utils/time_meas.h"
#include "src/devboard/utils/timer.h"
#include "src/devboard/utils/types.h"
#include "src/devboard/utils/value_mapping.h"
#include "src/devboard/webserver/webserver.h"
#include "src/devboard/wifi/wifi.h"
#include "src/inverter/INVERTERS.h"
#if !defined(HW_LILYGO) && !defined(HW_LILYGO2CAN) && !defined(HW_STARK) && !defined(HW_3LB) && !defined(HW_DEVKIT)
#error You must select a target hardware!
#endif
// The current software version, shown on webserver
const char* version_number = "9.1.dev";
// Interval timers
volatile unsigned long currentMillis = 0;
unsigned long previousMillis10ms = 0;
unsigned long previousMillisUpdateVal = 0;
// Task time measurement for debugging
MyTimer core_task_timer_10s(INTERVAL_10_S);
uint64_t start_time_10ms = 0;
uint64_t start_time_values = 0;
uint64_t start_time_cantx = 0;
TaskHandle_t main_loop_task;
TaskHandle_t connectivity_loop_task;
TaskHandle_t logging_loop_task;
TaskHandle_t mqtt_loop_task;
Logging logging;
std::string mqtt_user; //TODO, move?
std::string mqtt_password; //TODO, move?
std::string http_username; //TODO, move?
std::string http_password; //TODO, move?
static std::list<Transmitter*> transmitters;
void register_transmitter(Transmitter* transmitter) {
transmitters.push_back(transmitter);
DEBUG_PRINTF("transmitter registered, total: %d\n", transmitters.size());
}
// Initialization functions
void init_serial() {
// Init Serial monitor
Serial.begin(115200);
#if HW_LILYGO2CAN
// Wait up to 100ms for Serial to be available. On the ESP32S3 Serial is
// provided by the USB controller, so will only work if the board is connected
// to a computer.
for (int i = 0; i < 10; i++) {
if (Serial)
break;
delay(10);
}
#else
while (!Serial) {}
#endif
}
void connectivity_loop(void*) {
esp_task_wdt_add(NULL); // Register this task with WDT
// Init wifi
init_WiFi();
init_webserver();
if (mdns_enabled) {
init_mDNS();
}
while (true) {
START_TIME_MEASUREMENT(wifi);
wifi_monitor();
ota_monitor();
END_TIME_MEASUREMENT_MAX(wifi, datalayer.system.status.wifi_task_10s_max_us);
esp_task_wdt_reset(); // Reset watchdog
delay(1);
}
}
void logging_loop(void*) {
init_logging_buffers();
init_sdcard();
while (true) {
if (datalayer.system.info.SD_logging_active) {
write_log_to_sdcard();
}
if (datalayer.system.info.CAN_SD_logging_active) {
write_can_frame_to_sdcard();
}
}
}
void check_interconnect_available() {
if (datalayer.battery.status.voltage_dV == 0 || datalayer.battery2.status.voltage_dV == 0) {
return; // Both voltage values need to be available to start check
}
uint16_t voltage_diff = abs(datalayer.battery.status.voltage_dV - datalayer.battery2.status.voltage_dV);
if (voltage_diff <= 30) { // If we are within 3.0V between the batteries
clear_event(EVENT_VOLTAGE_DIFFERENCE);
if (datalayer.battery.status.bms_status == FAULT) {
// If main battery is in fault state, disengage the second battery
datalayer.system.status.battery2_allowed_contactor_closing = false;
} else { // If main battery is OK, allow second battery to join
datalayer.system.status.battery2_allowed_contactor_closing = true;
}
} else { //Voltage between the two packs is too large
set_event(EVENT_VOLTAGE_DIFFERENCE, (uint8_t)(voltage_diff / 10));
}
}
void update_calculated_values() {
/* Update CPU temperature*/
union {
float temp;
uint32_t hex;
} temp = {.temp = temperatureRead()};
if (temp.hex != 0x42555555) {
// Ignoring erroneous temperature value that ESP32 sometimes returns
datalayer.system.info.CPU_temperature = temp.temp;
}
/* Calculate allowed charge/discharge currents*/
if (datalayer.battery.status.voltage_dV > 10) {
// Only update value when we have voltage available to avoid div0. TODO: This should be based on nominal voltage
datalayer.battery.status.max_charge_current_dA =
((datalayer.battery.status.max_charge_power_W * 100) / datalayer.battery.status.voltage_dV);
datalayer.battery.status.max_discharge_current_dA =
((datalayer.battery.status.max_discharge_power_W * 100) / datalayer.battery.status.voltage_dV);
}
/* Restrict values from user settings if needed*/
if (datalayer.battery.status.max_charge_current_dA > datalayer.battery.settings.max_user_set_charge_dA) {
datalayer.battery.status.max_charge_current_dA = datalayer.battery.settings.max_user_set_charge_dA;
datalayer.battery.settings.user_settings_limit_charge = true;
} else {
datalayer.battery.settings.user_settings_limit_charge = false;
}
if (datalayer.battery.status.max_discharge_current_dA > datalayer.battery.settings.max_user_set_discharge_dA) {
datalayer.battery.status.max_discharge_current_dA = datalayer.battery.settings.max_user_set_discharge_dA;
datalayer.battery.settings.user_settings_limit_discharge = true;
} else {
datalayer.battery.settings.user_settings_limit_discharge = false;
}
/* Calculate active power based on voltage and current*/
datalayer.battery.status.active_power_W =
(datalayer.battery.status.current_dA * (datalayer.battery.status.voltage_dV / 100));
/* Calculate if battery or inverter is limiting factor*/
if (datalayer.battery.status.current_dA == 0) { //Battery idle
if (datalayer.battery.status.max_discharge_current_dA > 0) {
//We allow discharge, but inverter does nothing. Inverter is limiting
datalayer.battery.settings.inverter_limits_discharge = true;
} else {
datalayer.battery.settings.inverter_limits_discharge = false;
}
if (datalayer.battery.status.max_charge_current_dA > 0) {
//We allow charge, but inverter does nothing. Inverter is limiting
datalayer.battery.settings.inverter_limits_charge = true;
} else {
datalayer.battery.settings.inverter_limits_charge = false;
}
} else if (datalayer.battery.status.current_dA < 0) { //Battery discharging
if (-datalayer.battery.status.current_dA < datalayer.battery.status.max_discharge_current_dA) {
datalayer.battery.settings.inverter_limits_discharge = true;
} else {
datalayer.battery.settings.inverter_limits_discharge = false;
}
} else { // > 0 Battery charging
//If actual current is smaller than max we allow, inverter is limiting factor
if (datalayer.battery.status.current_dA < datalayer.battery.status.max_charge_current_dA) {
datalayer.battery.settings.inverter_limits_charge = true;
} else {
datalayer.battery.settings.inverter_limits_charge = false;
}
}
if (battery2) {
/* Calculate active power based on voltage and current for battery 2*/
datalayer.battery2.status.active_power_W =
(datalayer.battery2.status.current_dA * (datalayer.battery2.status.voltage_dV / 100));
}
if (datalayer.battery.settings.soc_scaling_active) {
/** SOC Scaling
* A static version of a stochastic oscillator. The scaled SoC is calculated as:
*
* 10000 * (real_soc - min_percentage)
* ---------------------------------------
* (max_percentage - min_percentage)
*
* And scaled capacity is:
*
* reported_total_capacity_Wh = total_capacity_Wh * (max - min) / 10000
* reported_remaining_capacity_Wh = reported_total_capacity_Wh * scaled_soc / 10000
*/
// Compute delta_pct and clamped_soc
int32_t delta_pct = datalayer.battery.settings.max_percentage - datalayer.battery.settings.min_percentage;
int32_t clamped_soc = CONSTRAIN(datalayer.battery.status.real_soc, datalayer.battery.settings.min_percentage,
datalayer.battery.settings.max_percentage);
int32_t scaled_soc = 0;
int32_t scaled_total_capacity = 0;
if (delta_pct != 0) { //Safeguard against division by 0
scaled_soc = 10000 * (clamped_soc - datalayer.battery.settings.min_percentage) / delta_pct;
}
datalayer.battery.status.reported_soc = scaled_soc;
// If battery info is valid
if (datalayer.battery.info.total_capacity_Wh > 0 && datalayer.battery.status.real_soc > 0) {
// Scale total usable capacity
scaled_total_capacity = (datalayer.battery.info.total_capacity_Wh * delta_pct) / 10000;
datalayer.battery.info.reported_total_capacity_Wh = scaled_total_capacity;
// Scale remaining capacity based on scaled SOC
datalayer.battery.status.reported_remaining_capacity_Wh = (scaled_total_capacity * scaled_soc) / 10000;
} else {
// Fallback if scaling cannot be performed
datalayer.battery.info.reported_total_capacity_Wh = datalayer.battery.info.total_capacity_Wh;
datalayer.battery.status.reported_remaining_capacity_Wh = datalayer.battery.status.remaining_capacity_Wh;
}
if (battery2) {
// If battery info is valid
if (datalayer.battery2.info.total_capacity_Wh > 0 && datalayer.battery.status.real_soc > 0) {
datalayer.battery2.info.reported_total_capacity_Wh = scaled_total_capacity;
// Scale remaining capacity based on scaled SOC
datalayer.battery2.status.reported_remaining_capacity_Wh = (scaled_total_capacity * scaled_soc) / 10000;
} else {
// Fallback if scaling cannot be performed
datalayer.battery2.info.reported_total_capacity_Wh = datalayer.battery2.info.total_capacity_Wh;
datalayer.battery2.status.reported_remaining_capacity_Wh = datalayer.battery2.status.remaining_capacity_Wh;
}
//Since we are running double battery, the scaled value of battery1 becomes the sum of battery1+battery2
//This way the inverter connected to the system sees both batteries as one large battery
datalayer.battery.info.reported_total_capacity_Wh += datalayer.battery2.info.reported_total_capacity_Wh;
datalayer.battery.status.reported_remaining_capacity_Wh +=
datalayer.battery2.status.reported_remaining_capacity_Wh;
}
} else { // soc_scaling_active == false. No SOC window wanted. Set scaled to same as real.
datalayer.battery.status.reported_soc = datalayer.battery.status.real_soc;
datalayer.battery.status.reported_remaining_capacity_Wh = datalayer.battery.status.remaining_capacity_Wh;
datalayer.battery.info.reported_total_capacity_Wh = datalayer.battery.info.total_capacity_Wh;
if (battery2) {
datalayer.battery2.status.reported_soc = datalayer.battery2.status.real_soc;
datalayer.battery2.status.reported_remaining_capacity_Wh = datalayer.battery2.status.remaining_capacity_Wh;
datalayer.battery2.info.reported_total_capacity_Wh = datalayer.battery2.info.total_capacity_Wh;
}
}
if (battery2) {
// Perform extra SOC sanity checks on double battery setups
if (datalayer.battery.status.real_soc < 100) { //If this battery is under 1.00%, use this as SOC instead of average
datalayer.battery.status.reported_soc = datalayer.battery.status.real_soc;
datalayer.battery.status.reported_remaining_capacity_Wh = datalayer.battery.status.remaining_capacity_Wh;
}
if (datalayer.battery2.status.real_soc <
100) { //If this battery is under 1.00%, use this as SOC instead of average
datalayer.battery.status.reported_soc = datalayer.battery2.status.real_soc;
datalayer.battery.status.reported_remaining_capacity_Wh = datalayer.battery2.status.remaining_capacity_Wh;
}
if (datalayer.battery.status.real_soc >
9900) { //If this battery is over 99.00%, use this as SOC instead of average
datalayer.battery.status.reported_soc = datalayer.battery.status.real_soc;
datalayer.battery.status.reported_remaining_capacity_Wh = datalayer.battery.status.remaining_capacity_Wh;
}
if (datalayer.battery2.status.real_soc >
9900) { //If this battery is over 99.00%, use this as SOC instead of average
datalayer.battery.status.reported_soc = datalayer.battery2.status.real_soc;
datalayer.battery.status.reported_remaining_capacity_Wh = datalayer.battery2.status.remaining_capacity_Wh;
}
}
}
void check_reset_reason() {
esp_reset_reason_t reason = esp_reset_reason();
switch (reason) {
case ESP_RST_UNKNOWN: //Reset reason can not be determined
set_event(EVENT_RESET_UNKNOWN, reason);
break;
case ESP_RST_POWERON: //OK Reset due to power-on event
set_event(EVENT_RESET_POWERON, reason);
break;
case ESP_RST_EXT: //Reset by external pin (not applicable for ESP32)
set_event(EVENT_RESET_EXT, reason);
break;
case ESP_RST_SW: //OK Software reset via esp_restart
set_event(EVENT_RESET_SW, reason);
break;
case ESP_RST_PANIC: //Software reset due to exception/panic
set_event(EVENT_RESET_PANIC, reason);
break;
case ESP_RST_INT_WDT: //Reset (software or hardware) due to interrupt watchdog
set_event(EVENT_RESET_INT_WDT, reason);
break;
case ESP_RST_TASK_WDT: //Reset due to task watchdog
set_event(EVENT_RESET_TASK_WDT, reason);
break;
case ESP_RST_WDT: //Reset due to other watchdogs
set_event(EVENT_RESET_WDT, reason);
break;
case ESP_RST_DEEPSLEEP: //Reset after exiting deep sleep mode
set_event(EVENT_RESET_DEEPSLEEP, reason);
break;
case ESP_RST_BROWNOUT: //Brownout reset (software or hardware)
set_event(EVENT_RESET_BROWNOUT, reason);
break;
case ESP_RST_SDIO: //Reset over SDIO
set_event(EVENT_RESET_SDIO, reason);
break;
case ESP_RST_USB: //Reset by USB peripheral
set_event(EVENT_RESET_USB, reason);
break;
case ESP_RST_JTAG: //Reset by JTAG
set_event(EVENT_RESET_JTAG, reason);
break;
case ESP_RST_EFUSE: //Reset due to efuse error
set_event(EVENT_RESET_EFUSE, reason);
break;
case ESP_RST_PWR_GLITCH: //Reset due to power glitch detected
set_event(EVENT_RESET_PWR_GLITCH, reason);
break;
case ESP_RST_CPU_LOCKUP: //Reset due to CPU lock up
set_event(EVENT_RESET_CPU_LOCKUP, reason);
break;
default:
break;
}
}
void core_loop(void*) {
esp_task_wdt_add(NULL); // Register this task with WDT
TickType_t xLastWakeTime = xTaskGetTickCount();
const TickType_t xFrequency = pdMS_TO_TICKS(1); // Convert 1ms to ticks
while (true) {
START_TIME_MEASUREMENT(all);
START_TIME_MEASUREMENT(comm);
monitor_equipment_stop_button();
// Input, Runs as fast as possible
receive_can(); // Receive CAN messages
receive_rs485(); // Process serial2 RS485 interface
END_TIME_MEASUREMENT_MAX(comm, datalayer.system.status.time_comm_us);
START_TIME_MEASUREMENT(ota);
ElegantOTA.loop();
END_TIME_MEASUREMENT_MAX(ota, datalayer.system.status.time_ota_us);
// Process
currentMillis = millis();
if (currentMillis - previousMillis10ms >= INTERVAL_10_MS) {
if ((currentMillis - previousMillis10ms >= INTERVAL_10_MS_DELAYED) &&
(milliseconds(currentMillis) > esp32hal->BOOTUP_TIME())) {
set_event(EVENT_TASK_OVERRUN, (currentMillis - previousMillis10ms));
}
previousMillis10ms = currentMillis;
if (datalayer.system.info.performance_measurement_active) {
START_TIME_MEASUREMENT(10ms);
}
led_exe();
handle_contactors(); // Take care of startup precharge/contactor closing
if (precharge_control_enabled) {
handle_precharge_control(currentMillis); //Drive the hia4v1 via PWM
}
if (datalayer.system.info.performance_measurement_active) {
END_TIME_MEASUREMENT_MAX(10ms, datalayer.system.status.time_10ms_us);
}
}
if (currentMillis - previousMillisUpdateVal >= INTERVAL_1_S) {
previousMillisUpdateVal = currentMillis; // Order matters on the update_loop!
if (datalayer.system.info.performance_measurement_active) {
START_TIME_MEASUREMENT(values);
}
update_pause_state(); // Check if we are OK to send CAN or need to pause
// Fetch battery values
if (battery) {
battery->update_values();
}
if (battery2) {
battery2->update_values();
check_interconnect_available();
}
update_calculated_values();
update_machineryprotection(); // Check safeties
// Update values heading towards inverter
if (inverter) {
inverter->update_values();
}
if (datalayer.system.info.performance_measurement_active) {
END_TIME_MEASUREMENT_MAX(values, datalayer.system.status.time_values_us);
}
}
if (datalayer.system.info.performance_measurement_active) {
START_TIME_MEASUREMENT(cantx);
}
// Let all transmitter objects send their messages
for (auto& transmitter : transmitters) {
transmitter->transmit(currentMillis);
}
if (datalayer.system.info.performance_measurement_active) {
END_TIME_MEASUREMENT_MAX(cantx, datalayer.system.status.time_cantx_us);
END_TIME_MEASUREMENT_MAX(all, datalayer.system.status.core_task_10s_max_us);
if (datalayer.system.status.core_task_10s_max_us > datalayer.system.status.core_task_max_us) {
// Update worst case total time
datalayer.system.status.core_task_max_us = datalayer.system.status.core_task_10s_max_us;
// Record snapshots of task times
datalayer.system.status.time_snap_comm_us = datalayer.system.status.time_comm_us;
datalayer.system.status.time_snap_10ms_us = datalayer.system.status.time_10ms_us;
datalayer.system.status.time_snap_values_us = datalayer.system.status.time_values_us;
datalayer.system.status.time_snap_cantx_us = datalayer.system.status.time_cantx_us;
datalayer.system.status.time_snap_ota_us = datalayer.system.status.time_ota_us;
}
datalayer.system.status.core_task_max_us =
MAX(datalayer.system.status.core_task_10s_max_us, datalayer.system.status.core_task_max_us);
if (core_task_timer_10s.elapsed()) {
datalayer.system.status.time_ota_us = 0;
datalayer.system.status.time_comm_us = 0;
datalayer.system.status.time_10ms_us = 0;
datalayer.system.status.time_values_us = 0;
datalayer.system.status.time_cantx_us = 0;
datalayer.system.status.core_task_10s_max_us = 0;
datalayer.system.status.wifi_task_10s_max_us = 0;
datalayer.system.status.mqtt_task_10s_max_us = 0;
}
}
esp_task_wdt_reset(); // Reset watchdog to prevent reset
vTaskDelayUntil(&xLastWakeTime, xFrequency);
}
}
void mqtt_loop(void*) {
esp_task_wdt_add(NULL); // Register this task with WDT
while (true) {
START_TIME_MEASUREMENT(mqtt);
mqtt_client_loop();
END_TIME_MEASUREMENT_MAX(mqtt, datalayer.system.status.mqtt_task_10s_max_us);
esp_task_wdt_reset(); // Reset watchdog
delay(1);
}
}
// Initialization
void setup() {
init_hal();
init_serial();
// We print this after setting up serial, so that is also printed if configured to do so
DEBUG_PRINTF("Battery emulator %s build " __DATE__ " " __TIME__ "\n", version_number);
init_events();
init_stored_settings();
if (wifi_enabled) {
xTaskCreatePinnedToCore((TaskFunction_t)&connectivity_loop, "connectivity_loop", 4096, NULL, TASK_CONNECTIVITY_PRIO,
&connectivity_loop_task, esp32hal->WIFICORE());
}
led_init();
if (datalayer.system.info.CAN_SD_logging_active || datalayer.system.info.SD_logging_active) {
xTaskCreatePinnedToCore((TaskFunction_t)&logging_loop, "logging_loop", 4096, NULL, TASK_CONNECTIVITY_PRIO,
&logging_loop_task, esp32hal->WIFICORE());
}
init_contactors();
init_precharge_control();
setup_charger();
setup_inverter();
setup_battery();
setup_can_shunt();
// Init CAN only after any CAN receivers have had a chance to register.
init_CAN();
init_rs485();
init_equipment_stop_button();
// BOOT button at runtime is used as an input for various things
pinMode(0, INPUT_PULLUP);
check_reset_reason();
// Initialize Task Watchdog for subscribed tasks
esp_task_wdt_config_t wdt_config = {// 5s should be enough for the connectivity tasks (which are all contending
// for the same core) to yield to each other and reset their watchdogs.
.timeout_ms = INTERVAL_5_S,
// We don't benefit from idle task watchdogs, our critical loops have their
// own. The idle watchdogs can cause nuisance reboots under heavy load.
.idle_core_mask = 0,
// Panic (and reboot) on timeout
.trigger_panic = true};
#ifdef CONFIG_ESP_TASK_WDT
// ESP-IDF will have already initialized it, so reconfigure.
// Arduino and PlatformIO have different watchdog defaults, so we reconfigure
// for consistency.
esp_task_wdt_reconfigure(&wdt_config);
#else
// Otherwise initialize it for the first time.
esp_task_wdt_init(&wdt_config);
#endif
// Start tasks
if (mqtt_enabled) {
init_mqtt();
xTaskCreatePinnedToCore((TaskFunction_t)&mqtt_loop, "mqtt_loop", 4096, NULL, TASK_MQTT_PRIO, &mqtt_loop_task,
esp32hal->WIFICORE());
}
xTaskCreatePinnedToCore((TaskFunction_t)&core_loop, "core_loop", 4096, NULL, TASK_CORE_PRIO, &main_loop_task,
esp32hal->CORE_FUNCTION_CORE());
DEBUG_PRINTF("Setup complete!\n");
}
// Loop empty, all functionality runs in tasks
void loop() {}