Battery-Emulator/Software/Software.ino
2024-08-15 12:37:49 +03:00

946 lines
32 KiB
C++

/* Do not change any code below this line unless you are sure what you are doing */
/* Only change battery specific settings in "USER_SETTINGS.h" */
#include "src/include.h"
#include "HardwareSerial.h"
#include "USER_SETTINGS.h"
#include "esp_system.h"
#include "esp_task_wdt.h"
#include "esp_timer.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "src/charger/CHARGERS.h"
#include "src/devboard/utils/events.h"
#include "src/devboard/utils/led_handler.h"
#include "src/devboard/utils/value_mapping.h"
#include "src/lib/YiannisBourkelis-Uptime-Library/src/uptime.h"
#include "src/lib/YiannisBourkelis-Uptime-Library/src/uptime_formatter.h"
#include "src/lib/bblanchon-ArduinoJson/ArduinoJson.h"
#include "src/lib/eModbus-eModbus/Logging.h"
#include "src/lib/eModbus-eModbus/ModbusServerRTU.h"
#include "src/lib/eModbus-eModbus/scripts/mbServerFCs.h"
#include "src/lib/miwagner-ESP32-Arduino-CAN/CAN_config.h"
#include "src/lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"
#include "src/datalayer/datalayer.h"
#ifdef WEBSERVER
#include <ESPmDNS.h>
#include "src/devboard/webserver/webserver.h"
#endif
Preferences settings; // Store user settings
// The current software version, shown on webserver
const char* version_number = "7.0.0";
// Interval settings
uint16_t intervalUpdateValues = INTERVAL_5_S; // Interval at which to update inverter values / Modbus registers
unsigned long previousMillis10ms = 50;
unsigned long previousMillisUpdateVal = 0;
// CAN parameters
CAN_device_t CAN_cfg; // CAN Config
const int rx_queue_size = 10; // Receive Queue size
#ifdef DUAL_CAN
#include "src/lib/pierremolinaro-acan2515/ACAN2515.h"
static const uint32_t QUARTZ_FREQUENCY = 8UL * 1000UL * 1000UL; // 8 MHz
ACAN2515 can(MCP2515_CS, SPI, MCP2515_INT);
static ACAN2515_Buffer16 gBuffer;
#endif
#ifdef CAN_FD
#include "src/lib/pierremolinaro-ACAN2517FD/ACAN2517FD.h"
ACAN2517FD canfd(MCP2517_CS, SPI, MCP2517_INT);
#else
typedef char CANFDMessage;
#endif
// ModbusRTU parameters
#ifdef MODBUS_INVERTER_SELECTED
#define MB_RTU_NUM_VALUES 30000
uint16_t mbPV[MB_RTU_NUM_VALUES]; // Process variable memory
// Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout
ModbusServerRTU MBserver(Serial2, 2000);
#endif
// Common charger parameters
volatile float charger_setpoint_HV_VDC = 0.0f;
volatile float charger_setpoint_HV_IDC = 0.0f;
volatile float charger_setpoint_HV_IDC_END = 0.0f;
bool charger_HV_enabled = false;
bool charger_aux12V_enabled = false;
// Common charger statistics, instantaneous values
float charger_stat_HVcur = 0;
float charger_stat_HVvol = 0;
float charger_stat_ACcur = 0;
float charger_stat_ACvol = 0;
float charger_stat_LVcur = 0;
float charger_stat_LVvol = 0;
// Task time measurement for debugging and for setting CPU load events
int64_t core_task_time_us;
MyTimer core_task_timer_10s(INTERVAL_10_S);
int64_t connectivity_task_time_us;
MyTimer connectivity_task_timer_10s(INTERVAL_10_S);
MyTimer loop_task_timer_10s(INTERVAL_10_S);
// Contactor parameters
#ifdef CONTACTOR_CONTROL
enum State { DISCONNECTED, PRECHARGE, NEGATIVE, POSITIVE, PRECHARGE_OFF, COMPLETED, SHUTDOWN_REQUESTED };
State contactorStatus = DISCONNECTED;
#define MAX_ALLOWED_FAULT_TICKS 1000
/* NOTE: modify the precharge time constant below to account for the resistance and capacitance of the target system.
* t=3RC at minimum, t=5RC ideally
*/
#define PRECHARGE_TIME_MS 160
#define NEGATIVE_CONTACTOR_TIME_MS 1000
#define POSITIVE_CONTACTOR_TIME_MS 2000
#ifdef PWM_CONTACTOR_CONTROL
#define PWM_Freq 20000 // 20 kHz frequency, beyond audible range
#define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100%
#define PWM_Hold_Duty 250
#define POSITIVE_PWM_Ch 0
#define NEGATIVE_PWM_Ch 1
#endif
unsigned long prechargeStartTime = 0;
unsigned long negativeStartTime = 0;
unsigned long timeSpentInFaultedMode = 0;
#endif
TaskHandle_t main_loop_task;
TaskHandle_t connectivity_loop_task;
// Initialization
void setup() {
init_serial();
init_stored_settings();
#ifdef WEBSERVER
xTaskCreatePinnedToCore((TaskFunction_t)&connectivity_loop, "connectivity_loop", 4096, &connectivity_task_time_us,
TASK_CONNECTIVITY_PRIO, &connectivity_loop_task, WIFI_CORE);
#endif
init_events();
init_CAN();
init_contactors();
init_rs485();
init_serialDataLink();
init_inverter();
init_battery();
// BOOT button at runtime is used as an input for various things
pinMode(0, INPUT_PULLUP);
esp_task_wdt_deinit(); // Disable watchdog
check_reset_reason();
xTaskCreatePinnedToCore((TaskFunction_t)&core_loop, "core_loop", 4096, &core_task_time_us, TASK_CORE_PRIO,
&main_loop_task, CORE_FUNCTION_CORE);
}
// Perform main program functions
void loop() {
START_TIME_MEASUREMENT(loop_func);
run_event_handling();
END_TIME_MEASUREMENT_MAX(loop_func, datalayer.system.status.loop_task_10s_max_us);
#ifdef FUNCTION_TIME_MEASUREMENT
if (loop_task_timer_10s.elapsed()) {
datalayer.system.status.loop_task_10s_max_us = 0;
}
#endif
}
#ifdef WEBSERVER
void connectivity_loop(void* task_time_us) {
// Init
init_webserver();
init_mDNS();
#ifdef MQTT
init_mqtt();
#endif
while (true) {
START_TIME_MEASUREMENT(wifi);
wifi_monitor();
END_TIME_MEASUREMENT_MAX(wifi, datalayer.system.status.wifi_task_10s_max_us);
#ifdef MQTT
START_TIME_MEASUREMENT(mqtt);
mqtt_loop();
END_TIME_MEASUREMENT_MAX(mqtt, datalayer.system.status.mqtt_task_10s_max_us);
#endif
#ifdef FUNCTION_TIME_MEASUREMENT
if (connectivity_task_timer_10s.elapsed()) {
datalayer.system.status.mqtt_task_10s_max_us = 0;
datalayer.system.status.wifi_task_10s_max_us = 0;
}
#endif
delay(1);
}
}
#endif
void core_loop(void* task_time_us) {
TickType_t xLastWakeTime = xTaskGetTickCount();
const TickType_t xFrequency = pdMS_TO_TICKS(1); // Convert 1ms to ticks
led_init();
while (true) {
START_TIME_MEASUREMENT(all);
START_TIME_MEASUREMENT(comm);
// Input, Runs as fast as possible
receive_can_native(); // Receive CAN messages from native CAN port
#ifdef CAN_FD
receive_canfd(); // Receive CAN-FD messages.
#endif
#ifdef DUAL_CAN
receive_can_addonMCP2515(); // Receive CAN messages on add-on MCP2515 chip
#endif
#if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER)
runSerialDataLink();
#endif
END_TIME_MEASUREMENT_MAX(comm, datalayer.system.status.time_comm_us);
#ifdef WEBSERVER
START_TIME_MEASUREMENT(ota);
ElegantOTA.loop();
END_TIME_MEASUREMENT_MAX(ota, datalayer.system.status.time_ota_us);
#endif
START_TIME_MEASUREMENT(time_10ms);
// Process
if (millis() - previousMillis10ms >= INTERVAL_10_MS) {
previousMillis10ms = millis();
led_exe();
#ifdef CONTACTOR_CONTROL
handle_contactors(); // Take care of startup precharge/contactor closing
#endif
#ifdef DOUBLE_BATTERY
check_interconnect_available();
#endif
}
END_TIME_MEASUREMENT_MAX(time_10ms, datalayer.system.status.time_10ms_us);
START_TIME_MEASUREMENT(time_5s);
if (millis() - previousMillisUpdateVal >= intervalUpdateValues) // Every 5s normally
{
previousMillisUpdateVal = millis(); // Order matters on the update_loop!
update_values_battery(); // Fetch battery values
#ifdef DOUBLE_BATTERY
update_values_battery2();
#endif
update_SOC(); // Check if real or calculated SOC% value should be sent
#ifndef SERIAL_LINK_RECEIVER
update_machineryprotection(); // Check safeties (Not on serial link reciever board)
#endif
update_values_inverter(); // Update values heading towards inverter
if (DUMMY_EVENT_ENABLED) {
set_event(EVENT_DUMMY_ERROR, (uint8_t)millis());
}
}
END_TIME_MEASUREMENT_MAX(time_5s, datalayer.system.status.time_5s_us);
START_TIME_MEASUREMENT(cantx);
// Output
send_can(); // Send CAN messages to all components
END_TIME_MEASUREMENT_MAX(cantx, datalayer.system.status.time_cantx_us);
END_TIME_MEASUREMENT_MAX(all, datalayer.system.status.core_task_10s_max_us);
#ifdef FUNCTION_TIME_MEASUREMENT
if (datalayer.system.status.core_task_10s_max_us > datalayer.system.status.core_task_max_us) {
// Update worst case total time
datalayer.system.status.core_task_max_us = datalayer.system.status.core_task_10s_max_us;
// Record snapshots of task times
datalayer.system.status.time_snap_comm_us = datalayer.system.status.time_comm_us;
datalayer.system.status.time_snap_10ms_us = datalayer.system.status.time_10ms_us;
datalayer.system.status.time_snap_5s_us = datalayer.system.status.time_5s_us;
datalayer.system.status.time_snap_cantx_us = datalayer.system.status.time_cantx_us;
datalayer.system.status.time_snap_ota_us = datalayer.system.status.time_ota_us;
}
datalayer.system.status.core_task_max_us =
MAX(datalayer.system.status.core_task_10s_max_us, datalayer.system.status.core_task_max_us);
if (core_task_timer_10s.elapsed()) {
datalayer.system.status.time_ota_us = 0;
datalayer.system.status.time_comm_us = 0;
datalayer.system.status.time_10ms_us = 0;
datalayer.system.status.time_5s_us = 0;
datalayer.system.status.time_cantx_us = 0;
datalayer.system.status.core_task_10s_max_us = 0;
}
#endif
vTaskDelayUntil(&xLastWakeTime, xFrequency);
}
}
#ifdef WEBSERVER
// Initialise mDNS
void init_mDNS() {
// Calulate the host name using the last two chars from the MAC address so each one is likely unique on a network.
// e.g batteryemulator8C.local where the mac address is 08:F9:E0:D1:06:8C
String mac = WiFi.macAddress();
String mdnsHost = "batteryemulator" + mac.substring(mac.length() - 2);
// Initialize mDNS .local resolution
if (!MDNS.begin(mdnsHost)) {
#ifdef DEBUG_VIA_USB
Serial.println("Error setting up MDNS responder!");
#endif
} else {
// Advertise via bonjour the service so we can auto discover these battery emulators on the local network.
MDNS.addService("battery_emulator", "tcp", 80);
}
}
#endif
// Initialization functions
void init_serial() {
// Init Serial monitor
Serial.begin(115200);
while (!Serial) {}
#ifdef DEBUG_VIA_USB
Serial.println("__ OK __");
#endif
}
void init_stored_settings() {
settings.begin("batterySettings", false);
#ifndef LOAD_SAVED_SETTINGS_ON_BOOT
settings.clear(); // If this clear function is executed, no settings will be read from storage
#endif
char tempSSIDstring[63]; // Allocate buffer with sufficient size
size_t lengthSSID = settings.getString("SSID", tempSSIDstring, sizeof(tempSSIDstring));
if (lengthSSID > 0) { // Successfully read the string from memory. Set it to SSID!
ssid = tempSSIDstring;
} else { // Reading from settings failed. Do nothing with SSID. Raise event?
}
char tempPasswordString[63]; // Allocate buffer with sufficient size
size_t lengthPassword = settings.getString("PASSWORD", tempPasswordString, sizeof(tempPasswordString));
if (lengthPassword > 7) { // Successfully read the string from memory. Set it to password!
password = tempPasswordString;
} else { // Reading from settings failed. Do nothing with SSID. Raise event?
}
static uint32_t temp = 0;
temp = settings.getUInt("BATTERY_WH_MAX", false);
if (temp != 0) {
datalayer.battery.info.total_capacity_Wh = temp;
}
temp = settings.getUInt("MAXPERCENTAGE", false);
if (temp != 0) {
datalayer.battery.settings.max_percentage = temp * 10; // Multiply by 10 for backwards compatibility
}
temp = settings.getUInt("MINPERCENTAGE", false);
if (temp != 0) {
datalayer.battery.settings.min_percentage = temp * 10; // Multiply by 10 for backwards compatibility
}
temp = settings.getUInt("MAXCHARGEAMP", false);
if (temp != 0) {
datalayer.battery.info.max_charge_amp_dA = temp;
}
temp = settings.getUInt("MAXDISCHARGEAMP", false);
if (temp != 0) {
datalayer.battery.info.max_discharge_amp_dA = temp;
temp = settings.getBool("USE_SCALED_SOC", false);
datalayer.battery.settings.soc_scaling_active = temp; //This bool needs to be checked inside the temp!= block
} // No way to know if it wasnt reset otherwise
settings.end();
}
void init_CAN() {
// CAN pins
#ifdef CAN_SE_PIN
pinMode(CAN_SE_PIN, OUTPUT);
digitalWrite(CAN_SE_PIN, LOW);
#endif
CAN_cfg.speed = CAN_SPEED_500KBPS;
CAN_cfg.tx_pin_id = GPIO_NUM_27;
CAN_cfg.rx_pin_id = GPIO_NUM_26;
CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t));
// Init CAN Module
ESP32Can.CANInit();
#ifdef DUAL_CAN
#ifdef DEBUG_VIA_USB
Serial.println("Dual CAN Bus (ESP32+MCP2515) selected");
#endif
gBuffer.initWithSize(25);
SPI.begin(MCP2515_SCK, MCP2515_MISO, MCP2515_MOSI);
ACAN2515Settings settings(QUARTZ_FREQUENCY, 500UL * 1000UL); // CAN bit rate 500 kb/s
settings.mRequestedMode = ACAN2515Settings::NormalMode;
can.begin(settings, [] { can.isr(); });
#endif
#ifdef CAN_FD
#ifdef DEBUG_VIA_USB
Serial.println("CAN FD add-on (ESP32+MCP2517) selected");
#endif
SPI.begin(MCP2517_SCK, MCP2517_SDO, MCP2517_SDI);
ACAN2517FDSettings settings(ACAN2517FDSettings::OSC_40MHz, 500 * 1000,
DataBitRateFactor::x4); // Arbitration bit rate: 500 kbit/s, data bit rate: 2 Mbit/s
#ifdef USE_CANFD_INTERFACE_AS_CLASSIC_CAN
settings.mRequestedMode = ACAN2517FDSettings::Normal20B; // ListenOnly / Normal20B / NormalFD
#else
settings.mRequestedMode = ACAN2517FDSettings::NormalFD; // ListenOnly / Normal20B / NormalFD
#endif
const uint32_t errorCode = canfd.begin(settings, [] { canfd.isr(); });
canfd.poll();
if (errorCode == 0) {
#ifdef DEBUG_VIA_USB
Serial.print("Bit Rate prescaler: ");
Serial.println(settings.mBitRatePrescaler);
Serial.print("Arbitration Phase segment 1: ");
Serial.println(settings.mArbitrationPhaseSegment1);
Serial.print("Arbitration Phase segment 2: ");
Serial.println(settings.mArbitrationPhaseSegment2);
Serial.print("Arbitration SJW:");
Serial.println(settings.mArbitrationSJW);
Serial.print("Actual Arbitration Bit Rate: ");
Serial.print(settings.actualArbitrationBitRate());
Serial.println(" bit/s");
Serial.print("Exact Arbitration Bit Rate ? ");
Serial.println(settings.exactArbitrationBitRate() ? "yes" : "no");
Serial.print("Arbitration Sample point: ");
Serial.print(settings.arbitrationSamplePointFromBitStart());
Serial.println("%");
#endif
} else {
#ifdef DEBUG_VIA_USB
Serial.print("CAN-FD Configuration error 0x");
Serial.println(errorCode, HEX);
#endif
set_event(EVENT_CANFD_INIT_FAILURE, (uint8_t)errorCode);
}
#endif
}
void init_contactors() {
// Init contactor pins
#ifdef CONTACTOR_CONTROL
pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcAttachChannel(POSITIVE_CONTACTOR_PIN, PWM_Freq, PWM_Res,
POSITIVE_PWM_Ch); // Setup PWM Channel Frequency and Resolution
ledcAttachChannel(NEGATIVE_CONTACTOR_PIN, PWM_Freq, PWM_Res,
NEGATIVE_PWM_Ch); // Setup PWM Channel Frequency and Resolution
ledcWrite(POSITIVE_PWM_Ch, 0); // Set Positive PWM to 0%
ledcWrite(NEGATIVE_PWM_Ch, 0); // Set Negative PWM to 0%
#endif
pinMode(PRECHARGE_PIN, OUTPUT);
digitalWrite(PRECHARGE_PIN, LOW);
#endif
// Init BMS contactor
#ifdef HW_STARK // TODO: Rewrite this so LilyGo can aslo handle this BMS contactor
pinMode(BMS_POWER, OUTPUT);
digitalWrite(BMS_POWER, HIGH);
#endif
}
void init_rs485() {
// Set up Modbus RTU Server
#ifdef RS485_EN_PIN
pinMode(RS485_EN_PIN, OUTPUT);
digitalWrite(RS485_EN_PIN, HIGH);
#endif
#ifdef RS485_SE_PIN
pinMode(RS485_SE_PIN, OUTPUT);
digitalWrite(RS485_SE_PIN, HIGH);
#endif
#ifdef PIN_5V_EN
pinMode(PIN_5V_EN, OUTPUT);
digitalWrite(PIN_5V_EN, HIGH);
#endif
#ifdef MODBUS_INVERTER_SELECTED
#ifdef BYD_MODBUS
// Init Static data to the RTU Modbus
handle_static_data_modbus_byd();
#endif
// Init Serial2 connected to the RTU Modbus
RTUutils::prepareHardwareSerial(Serial2);
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
// Register served function code worker for server
MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03);
MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06);
MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16);
MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23);
// Start ModbusRTU background task
MBserver.begin(Serial2, MODBUS_CORE);
#endif
}
void init_inverter() {
#ifdef SOLAX_CAN
datalayer.system.status.inverter_allows_contactor_closing = false; // The inverter needs to allow first
intervalUpdateValues = 800; // This protocol also requires the values to be updated faster
#endif
}
void init_battery() {
// Inform user what battery is used and perform setup
setup_battery();
#ifdef CHADEMO_BATTERY
intervalUpdateValues = 800; // This mode requires the values to be updated faster
#endif
}
#ifdef CAN_FD
// Functions
#ifdef DEBUG_CANFD_DATA
void print_canfd_frame(CANFDMessage rx_frame) {
int i = 0;
Serial.print(rx_frame.id, HEX);
Serial.print(" ");
for (i = 0; i < rx_frame.len; i++) {
Serial.print(rx_frame.data[i] < 16 ? "0" : "");
Serial.print(rx_frame.data[i], HEX);
Serial.print(" ");
}
Serial.println(" ");
}
#endif
void receive_canfd() { // This section checks if we have a complete CAN-FD message incoming
CANFDMessage frame;
if (canfd.available()) {
canfd.receive(frame);
#ifdef DEBUG_CANFD_DATA
print_canfd_frame(frame);
#endif
CAN_frame rx_frame;
rx_frame.ID = frame.id;
rx_frame.ext_ID = frame.ext;
rx_frame.DLC = frame.len;
for (uint8_t i = 0; i < rx_frame.DLC && i < 64; i++) {
rx_frame.data.u8[i] = frame.data[i];
}
//message incoming, pass it on to the handler
receive_can(&rx_frame, CAN_ADDON_FD_MCP2518);
}
}
#endif
void receive_can_native() { // This section checks if we have a complete CAN message incoming on native CAN port
CAN_frame_t rx_frame_native;
if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame_native, 0) == pdTRUE) {
CAN_frame rx_frame;
rx_frame.ID = rx_frame_native.MsgID;
if (rx_frame_native.FIR.B.FF == CAN_frame_std) {
rx_frame.ext_ID = false;
} else { //CAN_frame_ext == 1
rx_frame.ext_ID = true;
}
rx_frame.DLC = rx_frame_native.FIR.B.DLC;
for (uint8_t i = 0; i < rx_frame.DLC && i < 8; i++) {
rx_frame.data.u8[i] = rx_frame_native.data.u8[i];
}
//message incoming, pass it on to the handler
receive_can(&rx_frame, CAN_NATIVE);
}
}
void send_can() {
send_can_battery();
#ifdef CAN_INVERTER_SELECTED
send_can_inverter();
#endif // CAN_INVERTER_SELECTED
#ifdef CHARGER_SELECTED
send_can_charger();
#endif // CHARGER_SELECTED
}
#ifdef DUAL_CAN
void receive_can_addonMCP2515() { // This section checks if we have a complete CAN message incoming on add-on CAN port
CAN_frame rx_frame; // Struct with our CAN format
CANMessage MCP2515Frame; // Struct with ACAN2515 library format, needed to use the MCP2515 library
if (can.available()) {
can.receive(MCP2515Frame);
rx_frame.ID = MCP2515Frame.id;
rx_frame.ext_ID = MCP2515Frame.ext ? CAN_frame_ext : CAN_frame_std;
rx_frame.DLC = MCP2515Frame.len;
for (uint8_t i = 0; i < MCP2515Frame.len && i < 8; i++) {
rx_frame.data.u8[i] = MCP2515Frame.data[i];
}
//message incoming, pass it on to the handler
receive_can(&rx_frame, CAN_ADDON_MCP2515);
}
}
#endif // DUAL_CAN
#ifdef DOUBLE_BATTERY
void check_interconnect_available() {
if (datalayer.battery.status.voltage_dV == 0 || datalayer.battery2.status.voltage_dV == 0) {
return; // Both voltage values need to be available to start check
}
if (abs(datalayer.battery.status.voltage_dV - datalayer.battery2.status.voltage_dV) < 30) { // If we are within 3.0V
clear_event(EVENT_VOLTAGE_DIFFERENCE);
if (datalayer.battery.status.bms_status != FAULT) { // Only proceed if we are not in faulted state
datalayer.system.status.battery2_allows_contactor_closing = true;
}
} else { //We are over 3.0V diff
set_event(EVENT_VOLTAGE_DIFFERENCE,
(uint8_t)(abs(datalayer.battery.status.voltage_dV - datalayer.battery2.status.voltage_dV) / 10));
}
}
#endif //DOUBLE_BATTERY
#ifdef CONTACTOR_CONTROL
void handle_contactors() {
// First check if we have any active errors, incase we do, turn off the battery
if (datalayer.battery.status.bms_status == FAULT) {
timeSpentInFaultedMode++;
} else {
timeSpentInFaultedMode = 0;
}
if (timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS) {
contactorStatus = SHUTDOWN_REQUESTED;
}
if (contactorStatus == SHUTDOWN_REQUESTED) {
digitalWrite(PRECHARGE_PIN, LOW);
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
set_event(EVENT_ERROR_OPEN_CONTACTOR, 0);
return; // A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured)
}
// After that, check if we are OK to start turning on the battery
if (contactorStatus == DISCONNECTED) {
digitalWrite(PRECHARGE_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(POSITIVE_PWM_Ch, 0);
ledcWrite(NEGATIVE_PWM_Ch, 0);
#endif
if (datalayer.system.status.battery_allows_contactor_closing &&
datalayer.system.status.inverter_allows_contactor_closing) {
contactorStatus = PRECHARGE;
}
}
// In case the inverter requests contactors to open, set the state accordingly
if (contactorStatus == COMPLETED) {
if (!datalayer.system.status.inverter_allows_contactor_closing)
contactorStatus = DISCONNECTED;
// Skip running the state machine below if it has already completed
return;
}
unsigned long currentTime = millis();
// Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge
switch (contactorStatus) {
case PRECHARGE:
digitalWrite(PRECHARGE_PIN, HIGH);
prechargeStartTime = currentTime;
contactorStatus = NEGATIVE;
break;
case NEGATIVE:
if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) {
digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(NEGATIVE_PWM_Ch, 1023);
#endif
negativeStartTime = currentTime;
contactorStatus = POSITIVE;
}
break;
case POSITIVE:
if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) {
digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(POSITIVE_PWM_Ch, 1023);
#endif
contactorStatus = PRECHARGE_OFF;
}
break;
case PRECHARGE_OFF:
if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) {
digitalWrite(PRECHARGE_PIN, LOW);
#ifdef PWM_CONTACTOR_CONTROL
ledcWrite(NEGATIVE_PWM_Ch, PWM_Hold_Duty);
ledcWrite(POSITIVE_PWM_Ch, PWM_Hold_Duty);
#endif
contactorStatus = COMPLETED;
}
break;
default:
break;
}
}
#endif
void update_SOC() {
if (datalayer.battery.settings.soc_scaling_active) {
/** SOC Scaling
*
* This is essentially a more static version of a stochastic oscillator (https://en.wikipedia.org/wiki/Stochastic_oscillator)
*
* The idea is this:
*
* real_soc - min_percent 3000 - 1000
* ------------------------- = scaled_soc, or ----------- = 0.25
* max_percent - min-percent 8000 - 1000
*
* Because we use integers, we want to account for the scaling:
*
* 10000 * (real_soc - min_percent) 10000 * (3000 - 1000)
* -------------------------------- = scaled_soc, or --------------------- = 2500
* max_percent - min_percent 8000 - 1000
*
* Or as a one-liner: (10000 * (real_soc - min_percentage)) / (max_percentage - min_percentage)
*
* Before we use real_soc, we must make sure that it's within the range of min_percentage and max_percentage.
*/
uint32_t calc_soc;
// Make sure that the SOC starts out between min and max percentages
calc_soc = CONSTRAIN(datalayer.battery.status.real_soc, datalayer.battery.settings.min_percentage,
datalayer.battery.settings.max_percentage);
// Perform scaling
calc_soc = 10000 * (calc_soc - datalayer.battery.settings.min_percentage);
calc_soc = calc_soc / (datalayer.battery.settings.max_percentage - datalayer.battery.settings.min_percentage);
datalayer.battery.status.reported_soc = calc_soc;
} else { // No SOC window wanted. Set scaled to same as real.
datalayer.battery.status.reported_soc = datalayer.battery.status.real_soc;
}
#ifdef DOUBLE_BATTERY
// Perform extra SOC sanity checks on double battery setups
if (datalayer.battery.status.real_soc < 100) { //If this battery is under 1.00%, use this as SOC instead of average
datalayer.battery.status.reported_soc = datalayer.battery.status.real_soc;
}
if (datalayer.battery2.status.real_soc < 100) { //If this battery is under 1.00%, use this as SOC instead of average
datalayer.battery.status.reported_soc = datalayer.battery2.status.real_soc;
}
if (datalayer.battery.status.real_soc > 9900) { //If this battery is over 99.00%, use this as SOC instead of average
datalayer.battery.status.reported_soc = datalayer.battery.status.real_soc;
}
if (datalayer.battery2.status.real_soc > 9900) { //If this battery is over 99.00%, use this as SOC instead of average
datalayer.battery.status.reported_soc = datalayer.battery2.status.real_soc;
}
#endif //DOUBLE_BATTERY
}
void update_values_inverter() {
#ifdef CAN_INVERTER_SELECTED
update_values_can_inverter();
#endif
#ifdef MODBUS_INVERTER_SELECTED
update_modbus_registers_inverter();
#endif
}
#if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER)
void runSerialDataLink() {
static unsigned long updateTime = 0;
unsigned long currentMillis = millis();
if ((currentMillis - updateTime) > 1) { //Every 2ms
updateTime = currentMillis;
#ifdef SERIAL_LINK_RECEIVER
manageSerialLinkReceiver();
#endif
#ifdef SERIAL_LINK_TRANSMITTER
manageSerialLinkTransmitter();
#endif
}
}
#endif
void init_serialDataLink() {
#if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER)
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
#endif
}
void storeSettings() {
settings.begin("batterySettings", false);
settings.putString("SSID", String(ssid.c_str()));
settings.putString("PASSWORD", String(password.c_str()));
settings.putUInt("BATTERY_WH_MAX", datalayer.battery.info.total_capacity_Wh);
settings.putUInt("MAXPERCENTAGE",
datalayer.battery.settings.max_percentage / 10); // Divide by 10 for backwards compatibility
settings.putUInt("MINPERCENTAGE",
datalayer.battery.settings.min_percentage / 10); // Divide by 10 for backwards compatibility
settings.putUInt("MAXCHARGEAMP", datalayer.battery.info.max_charge_amp_dA);
settings.putUInt("MAXDISCHARGEAMP", datalayer.battery.info.max_discharge_amp_dA);
settings.putBool("USE_SCALED_SOC", datalayer.battery.settings.soc_scaling_active);
settings.end();
}
/** Reset reason numbering and description
*
typedef enum {
ESP_RST_UNKNOWN, //!< 0 Reset reason can not be determined
ESP_RST_POWERON, //!< 1 OK Reset due to power-on event
ESP_RST_EXT, //!< 2 Reset by external pin (not applicable for ESP32)
ESP_RST_SW, //!< 3 OK Software reset via esp_restart
ESP_RST_PANIC, //!< 4 Software reset due to exception/panic
ESP_RST_INT_WDT, //!< 5 Reset (software or hardware) due to interrupt watchdog
ESP_RST_TASK_WDT, //!< 6 Reset due to task watchdog
ESP_RST_WDT, //!< 7 Reset due to other watchdogs
ESP_RST_DEEPSLEEP, //!< 8 Reset after exiting deep sleep mode
ESP_RST_BROWNOUT, //!< 9 Brownout reset (software or hardware)
ESP_RST_SDIO, //!< 10 Reset over SDIO
ESP_RST_USB, //!< 11 Reset by USB peripheral
ESP_RST_JTAG, //!< 12 Reset by JTAG
ESP_RST_EFUSE, //!< 13 Reset due to efuse error
ESP_RST_PWR_GLITCH, //!< 14 Reset due to power glitch detected
ESP_RST_CPU_LOCKUP, //!< 15 Reset due to CPU lock up
} esp_reset_reason_t;
*/
void check_reset_reason() {
esp_reset_reason_t reason = esp_reset_reason();
switch (reason) {
case ESP_RST_UNKNOWN:
set_event(EVENT_RESET_UNKNOWN, reason);
break;
case ESP_RST_POWERON:
set_event(EVENT_RESET_POWERON, reason);
break;
case ESP_RST_EXT:
set_event(EVENT_RESET_EXT, reason);
break;
case ESP_RST_SW:
set_event(EVENT_RESET_SW, reason);
break;
case ESP_RST_PANIC:
set_event(EVENT_RESET_PANIC, reason);
break;
case ESP_RST_INT_WDT:
set_event(EVENT_RESET_INT_WDT, reason);
break;
case ESP_RST_TASK_WDT:
set_event(EVENT_RESET_TASK_WDT, reason);
break;
case ESP_RST_WDT:
set_event(EVENT_RESET_WDT, reason);
break;
case ESP_RST_DEEPSLEEP:
set_event(EVENT_RESET_DEEPSLEEP, reason);
break;
case ESP_RST_BROWNOUT:
set_event(EVENT_RESET_BROWNOUT, reason);
break;
case ESP_RST_SDIO:
set_event(EVENT_RESET_SDIO, reason);
break;
case ESP_RST_USB:
set_event(EVENT_RESET_USB, reason);
break;
case ESP_RST_JTAG:
set_event(EVENT_RESET_JTAG, reason);
break;
case ESP_RST_EFUSE:
set_event(EVENT_RESET_EFUSE, reason);
break;
case ESP_RST_PWR_GLITCH:
set_event(EVENT_RESET_PWR_GLITCH, reason);
break;
case ESP_RST_CPU_LOCKUP:
set_event(EVENT_RESET_CPU_LOCKUP, reason);
break;
default:
break;
}
}
void transmit_can(CAN_frame* tx_frame, int interface) {
switch (interface) {
case CAN_NATIVE:
CAN_frame_t frame;
frame.MsgID = tx_frame->ID;
frame.FIR.B.FF = tx_frame->ext_ID ? CAN_frame_ext : CAN_frame_std;
frame.FIR.B.DLC = tx_frame->DLC;
frame.FIR.B.RTR = CAN_no_RTR;
for (uint8_t i = 0; i < tx_frame->DLC; i++) {
frame.data.u8[i] = tx_frame->data.u8[i];
}
ESP32Can.CANWriteFrame(&frame);
break;
case CAN_ADDON_MCP2515: {
#ifdef DUAL_CAN
//Struct with ACAN2515 library format, needed to use the MCP2515 library for CAN2
CANMessage MCP2515Frame;
MCP2515Frame.id = tx_frame->ID;
MCP2515Frame.ext = tx_frame->ext_ID ? CAN_frame_ext : CAN_frame_std;
MCP2515Frame.len = tx_frame->DLC;
MCP2515Frame.rtr = false;
for (uint8_t i = 0; i < MCP2515Frame.len; i++) {
MCP2515Frame.data[i] = tx_frame->data.u8[i];
}
can.tryToSend(MCP2515Frame);
#else // Interface not compiled, and settings try to use it
set_event(EVENT_INTERFACE_MISSING, interface);
#endif //DUAL_CAN
} break;
case CANFD_NATIVE:
case CAN_ADDON_FD_MCP2518: {
#ifdef CAN_FD
CANFDMessage MCP2518Frame;
MCP2518Frame.id = tx_frame->ID;
MCP2518Frame.ext = tx_frame->ext_ID ? CAN_frame_ext : CAN_frame_std;
MCP2518Frame.len = tx_frame->DLC;
for (uint8_t i = 0; i < MCP2518Frame.len; i++) {
MCP2518Frame.data[i] = tx_frame->data.u8[i];
}
canfd.tryToSend(MCP2518Frame);
#else // Interface not compiled, and settings try to use it
set_event(EVENT_INTERFACE_MISSING, interface);
#endif //CAN_FD
} break;
default:
// Invalid interface sent with function call. TODO: Raise event that coders messed up
break;
}
}
void receive_can(CAN_frame* rx_frame, int interface) {
if (interface == can_config.battery) {
receive_can_battery(*rx_frame);
}
if (interface == can_config.inverter) {
#ifdef CAN_INVERTER_SELECTED
receive_can_inverter(*rx_frame);
#endif
}
if (interface == can_config.battery_double) {
#ifdef DOUBLE_BATTERY
receive_can_battery2(*rx_frame);
#endif
}
if (interface == can_config.charger) {
#ifdef CHARGER_SELECTED
receive_can_charger(*rx_frame);
#endif
}
}