Battery-Emulator/Software/src/battery/VOLVO-SPA-BATTERY.cpp
2025-09-18 10:48:56 +03:00

337 lines
15 KiB
C++

#include "VOLVO-SPA-BATTERY.h"
#include <cstring> //For unit test
#include "../communication/can/comm_can.h"
#include "../datalayer/datalayer.h"
#include "../datalayer/datalayer_extended.h" //For "More battery info" webpage
#include "../devboard/utils/events.h"
#include "../devboard/utils/logging.h"
void VolvoSpaBattery::
update_values() { //This function maps all the values fetched via CAN to the correct parameters used for the inverter
// Update webserver datalayer
datalayer_extended.VolvoPolestar.soc_bms = SOC_BMS;
datalayer_extended.VolvoPolestar.soc_calc = SOC_CALC;
datalayer_extended.VolvoPolestar.soc_rescaled = datalayer.battery.status.reported_soc;
datalayer_extended.VolvoPolestar.soh_bms = datalayer.battery.status.soh_pptt;
datalayer_extended.VolvoPolestar.BECMBatteryVoltage = BATT_U;
datalayer_extended.VolvoPolestar.BECMBatteryCurrent = BATT_I;
datalayer_extended.VolvoPolestar.BECMUDynMaxLim = MAX_U;
datalayer_extended.VolvoPolestar.BECMUDynMinLim = MIN_U;
datalayer_extended.VolvoPolestar.HvBattPwrLimDcha1 = HvBattPwrLimDcha1;
datalayer_extended.VolvoPolestar.HvBattPwrLimDchaSoft = HvBattPwrLimDchaSoft;
datalayer_extended.VolvoPolestar.HvBattPwrLimDchaSlowAgi = HvBattPwrLimDchaSlowAgi;
datalayer_extended.VolvoPolestar.HvBattPwrLimChrgSlowAgi = HvBattPwrLimChrgSlowAgi;
// Update requests from webserver datalayer
if (datalayer_extended.VolvoPolestar.UserRequestDTCreset) {
transmit_can_frame(&VOLVO_DTC_Erase); //Send global DTC erase command
datalayer_extended.VolvoPolestar.UserRequestDTCreset = false;
}
if (datalayer_extended.VolvoPolestar.UserRequestBECMecuReset) {
transmit_can_frame(&VOLVO_BECM_ECUreset); //Send BECM ecu reset command
datalayer_extended.VolvoPolestar.UserRequestBECMecuReset = false;
}
if (datalayer_extended.VolvoPolestar.UserRequestDTCreadout) {
transmit_can_frame(&VOLVO_DTCreadout); //Send DTC readout command
datalayer_extended.VolvoPolestar.UserRequestDTCreadout = false;
}
datalayer.battery.status.remaining_capacity_Wh = (datalayer.battery.info.total_capacity_Wh - CHARGE_ENERGY);
//datalayer.battery.status.real_soc = SOC_BMS; // Use BMS reported SOC, havent figured out how to get the BMS to calibrate empty/full yet
// Use calculated SOC based on remaining_capacity
SOC_CALC = (datalayer.battery.status.remaining_capacity_Wh / (datalayer.battery.info.total_capacity_Wh / 1000));
datalayer.battery.status.real_soc = SOC_CALC * 10; //Add one decimal to make it pptt
if (BATT_U > MAX_U) // Protect if overcharged
{
datalayer.battery.status.real_soc = 10000;
} else if (BATT_U < MIN_U) //Protect if undercharged
{
datalayer.battery.status.real_soc = 0;
}
datalayer.battery.status.voltage_dV = BATT_U * 10;
datalayer.battery.status.current_dA = BATT_I * 10;
datalayer.battery.status.max_discharge_power_W = HvBattPwrLimDchaSlowAgi * 1000; //kW to W
datalayer.battery.status.max_charge_power_W = HvBattPwrLimChrgSlowAgi * 1000; //kW to W
datalayer.battery.status.temperature_min_dC = BATT_T_MIN;
datalayer.battery.status.temperature_max_dC = BATT_T_MAX;
datalayer.battery.status.cell_max_voltage_mV = CELL_U_MAX * 10; // Use min/max reported from BMS
datalayer.battery.status.cell_min_voltage_mV = CELL_U_MIN * 10;
//Map all cell voltages to the global array
for (int i = 0; i < 108; ++i) {
datalayer.battery.status.cell_voltages_mV[i] = cell_voltages[i];
}
//If we have enough cell values populated (atleast 96 read) AND number_of_cells not initialized yet
if (cell_voltages[95] > 0 && datalayer.battery.info.number_of_cells == 0) {
// We can determine whether we have 96S or 108S battery
if (datalayer.battery.status.cell_voltages_mV[107] > 0) {
datalayer.battery.info.number_of_cells = 108;
datalayer.battery.info.max_design_voltage_dV = MAX_PACK_VOLTAGE_108S_DV;
datalayer.battery.info.min_design_voltage_dV = MIN_PACK_VOLTAGE_108S_DV;
datalayer.battery.info.total_capacity_Wh = 78200;
} else {
datalayer.battery.info.number_of_cells = 96;
datalayer.battery.info.max_design_voltage_dV = MAX_PACK_VOLTAGE_96S_DV;
datalayer.battery.info.min_design_voltage_dV = MIN_PACK_VOLTAGE_96S_DV;
datalayer.battery.info.total_capacity_Wh = 69511;
}
}
//Check safeties
if (datalayer_extended.VolvoPolestar.BECMsupplyVoltage < 10700) { //10.7V,
//If 12V voltage goes under this, latch battery OFF to prevent contactors from swinging between on/off
set_event(EVENT_12V_LOW, (datalayer_extended.VolvoPolestar.BECMsupplyVoltage / 100));
set_event(EVENT_BATTERY_CHG_DISCHG_STOP_REQ, 0);
}
}
void VolvoSpaBattery::handle_incoming_can_frame(CAN_frame rx_frame) {
switch (rx_frame.ID) {
case 0x3A:
datalayer.battery.status.CAN_battery_still_alive = CAN_STILL_ALIVE;
if ((rx_frame.data.u8[6] & 0x80) == 0x80)
BATT_I = (0 - ((((rx_frame.data.u8[6] & 0x7F) * 256.0 + rx_frame.data.u8[7]) * 0.1) - 1638));
else {
BATT_I = 0;
logging.println("BATT_I not valid");
}
if ((rx_frame.data.u8[2] & 0x08) == 0x08)
MAX_U = (((rx_frame.data.u8[2] & 0x07) * 256.0 + rx_frame.data.u8[3]) * 0.25);
else {
//MAX_U = 0;
//logging.println("MAX_U not valid"); // Value toggles between true/false from BMS
}
if ((rx_frame.data.u8[4] & 0x08) == 0x08)
MIN_U = (((rx_frame.data.u8[4] & 0x07) * 256.0 + rx_frame.data.u8[5]) * 0.25);
else {
//MIN_U = 0;
//logging.println("MIN_U not valid"); // Value toggles between true/false from BMS
}
if ((rx_frame.data.u8[0] & 0x08) == 0x08) {
BATT_U = (((rx_frame.data.u8[0] & 0x07) * 256.0 + rx_frame.data.u8[1]) * 0.25);
}
if ((rx_frame.data.u8[0] & 0x40) == 0x40)
datalayer_extended.VolvoPolestar.HVSysRlySts = ((rx_frame.data.u8[0] & 0x30) >> 4);
else
datalayer_extended.VolvoPolestar.HVSysRlySts = 0xFF;
if ((rx_frame.data.u8[2] & 0x40) == 0x40)
datalayer_extended.VolvoPolestar.HVSysDCRlySts1 = ((rx_frame.data.u8[2] & 0x30) >> 4);
else
datalayer_extended.VolvoPolestar.HVSysDCRlySts1 = 0xFF;
if ((rx_frame.data.u8[2] & 0x80) == 0x80)
datalayer_extended.VolvoPolestar.HVSysDCRlySts2 = ((rx_frame.data.u8[4] & 0x30) >> 4);
else
datalayer_extended.VolvoPolestar.HVSysDCRlySts2 = 0xFF;
if ((rx_frame.data.u8[0] & 0x80) == 0x80)
datalayer_extended.VolvoPolestar.HVSysIsoRMonrSts = ((rx_frame.data.u8[4] & 0xC0) >> 6);
else
datalayer_extended.VolvoPolestar.HVSysIsoRMonrSts = 0xFF;
break;
case 0x1A1:
if ((rx_frame.data.u8[4] & 0x10) == 0x10)
CHARGE_ENERGY = ((((rx_frame.data.u8[4] & 0x0F) * 256.0 + rx_frame.data.u8[5]) * 50) - 500);
else {
CHARGE_ENERGY = 0;
set_event(EVENT_KWH_PLAUSIBILITY_ERROR, CHARGE_ENERGY);
}
break;
case 0x413:
if ((rx_frame.data.u8[0] & 0x80) == 0x80)
BATT_ERR_INDICATION = ((rx_frame.data.u8[0] & 0x40) >> 6);
else {
BATT_ERR_INDICATION = 0;
logging.println("BATT_ERR_INDICATION not valid");
}
if ((rx_frame.data.u8[0] & 0x20) == 0x20) {
BATT_T_MAX = ((rx_frame.data.u8[2] & 0x1F) * 256.0 + rx_frame.data.u8[3]);
BATT_T_MIN = ((rx_frame.data.u8[4] & 0x1F) * 256.0 + rx_frame.data.u8[5]);
BATT_T_AVG = ((rx_frame.data.u8[0] & 0x1F) * 256.0 + rx_frame.data.u8[1]);
} else {
BATT_T_MAX = 0;
BATT_T_MIN = 0;
BATT_T_AVG = 0;
logging.println("BATT_T not valid");
}
break;
case 0x369:
if ((rx_frame.data.u8[0] & 0x80) == 0x80) {
HvBattPwrLimDchaSoft = (((rx_frame.data.u8[6] & 0x03) * 256 + rx_frame.data.u8[6]) >> 2);
} else {
HvBattPwrLimDchaSoft = 0;
logging.println("HvBattPwrLimDchaSoft not valid");
}
break;
case 0x175:
if ((rx_frame.data.u8[4] & 0x80) == 0x80) {
HvBattPwrLimDcha1 = (((rx_frame.data.u8[2] & 0x07) * 256 + rx_frame.data.u8[3]) >> 2);
} else {
HvBattPwrLimDcha1 = 0;
}
break;
case 0x177:
if ((rx_frame.data.u8[4] & 0x08) == 0x08) {
HvBattPwrLimDchaSlowAgi = (((rx_frame.data.u8[4] & 0x07) * 256 + rx_frame.data.u8[5]) >> 2);
} else {
HvBattPwrLimDchaSlowAgi = 0;
}
if ((rx_frame.data.u8[2] & 0x08) == 0x08) {
HvBattPwrLimChrgSlowAgi = (((rx_frame.data.u8[2] & 0x07) * 256 + rx_frame.data.u8[3]) >> 2);
} else {
HvBattPwrLimChrgSlowAgi = 0;
}
break;
case 0x37D:
if ((rx_frame.data.u8[0] & 0x40) == 0x40) {
SOC_BMS = ((rx_frame.data.u8[6] & 0x03) * 256 + rx_frame.data.u8[7]);
} else {
SOC_BMS = 0;
logging.println("SOC_BMS not valid");
}
if ((rx_frame.data.u8[0] & 0x04) == 0x04) {
CELL_U_MAX = ((rx_frame.data.u8[2] & 0x01) * 256 + rx_frame.data.u8[3]);
}
if ((rx_frame.data.u8[0] & 0x02) == 0x02) {
CELL_U_MIN = ((rx_frame.data.u8[0] & 0x01) * 256.0 + rx_frame.data.u8[1]);
}
if ((rx_frame.data.u8[0] & 0x08) == 0x08) {
CELL_ID_U_MAX = ((rx_frame.data.u8[4] & 0x01) * 256.0 + rx_frame.data.u8[5]);
}
break;
case 0x635: // Diag request response
if ((rx_frame.data.u8[0] == 0x07) && (rx_frame.data.u8[1] == 0x62) && (rx_frame.data.u8[2] == 0x49) &&
(rx_frame.data.u8[3] == 0x6D)) // SOH response frame
{
datalayer.battery.status.soh_pptt = ((rx_frame.data.u8[6] << 8) | rx_frame.data.u8[7]);
transmit_can_frame(&VOLVO_BECMsupplyVoltage_Req); //Send BECM supply voltage req
} else if ((rx_frame.data.u8[0] == 0x05) && (rx_frame.data.u8[1] == 0x62) && (rx_frame.data.u8[2] == 0xF4) &&
(rx_frame.data.u8[3] == 0x42)) // BECM module voltage supply
{
datalayer_extended.VolvoPolestar.BECMsupplyVoltage = ((rx_frame.data.u8[4] << 8) | rx_frame.data.u8[5]);
transmit_can_frame(&VOLVO_BECM_HVIL_Status_Req); //Send HVIL status readout command
} else if ((rx_frame.data.u8[0] == 0x04) && (rx_frame.data.u8[1] == 0x62) && (rx_frame.data.u8[2] == 0x49) &&
(rx_frame.data.u8[3] == 0x1A)) // BECM HVIL status
{
datalayer_extended.VolvoPolestar.HVILstatusBits = (rx_frame.data.u8[4]);
transmit_can_frame(&VOLVO_DTCreadout); //Send DTC readout command
} else if ((rx_frame.data.u8[0] == 0x10) && (rx_frame.data.u8[1] == 0x0B) && (rx_frame.data.u8[2] == 0x62) &&
(rx_frame.data.u8[3] == 0x4B)) // First response frame of cell voltages
{
cell_voltages[battery_request_idx++] = ((rx_frame.data.u8[5] << 8) | rx_frame.data.u8[6]);
cell_voltages[battery_request_idx] = (rx_frame.data.u8[7] << 8);
transmit_can_frame(&VOLVO_FlowControl); // Send flow control
rxConsecutiveFrames = true;
} else if ((rx_frame.data.u8[0] == 0x10) && (rx_frame.data.u8[2] == 0x59) &&
(rx_frame.data.u8[3] == 0x03)) // First response frame for DTC with more than one code
{
datalayer_extended.VolvoPolestar.DTCcount = ((rx_frame.data.u8[1] - 2) / 4);
transmit_can_frame(&VOLVO_FlowControl); // Send flow control
} else if ((rx_frame.data.u8[1] == 0x59) &&
(rx_frame.data.u8[2] == 0x03)) // Response frame for DTC with 0 or 1 code
{
if (rx_frame.data.u8[0] != 0x02) {
datalayer_extended.VolvoPolestar.DTCcount = 1;
} else {
datalayer_extended.VolvoPolestar.DTCcount = 0;
}
} else if ((rx_frame.data.u8[0] == 0x21) && (rxConsecutiveFrames)) {
cell_voltages[battery_request_idx++] = cell_voltages[battery_request_idx] | rx_frame.data.u8[1];
cell_voltages[battery_request_idx++] = (rx_frame.data.u8[2] << 8) | rx_frame.data.u8[3];
cell_voltages[battery_request_idx++] = (rx_frame.data.u8[4] << 8) | rx_frame.data.u8[5];
if (batteryModuleNumber <= 0x2A) // Run until last pack is read
{
VOLVO_CELL_U_Req.data.u8[3] = batteryModuleNumber++;
transmit_can_frame(&VOLVO_CELL_U_Req); //Send cell voltage read request for next module
} else {
min_max_voltage[0] = 9999;
min_max_voltage[1] = 0;
for (cellcounter = 0; cellcounter < 108; cellcounter++) {
if (min_max_voltage[0] > cell_voltages[cellcounter])
min_max_voltage[0] = cell_voltages[cellcounter];
if (min_max_voltage[1] < cell_voltages[cellcounter])
min_max_voltage[1] = cell_voltages[cellcounter];
}
transmit_can_frame(&VOLVO_SOH_Req); //Send SOH read request
}
rxConsecutiveFrames = false;
}
break;
default:
break;
}
}
void VolvoSpaBattery::readCellVoltages() {
battery_request_idx = 0;
batteryModuleNumber = 0x10;
rxConsecutiveFrames = false;
VOLVO_CELL_U_Req.data.u8[3] = batteryModuleNumber++;
transmit_can_frame(&VOLVO_CELL_U_Req); //Send cell voltage read request for first module
}
void VolvoSpaBattery::transmit_can(unsigned long currentMillis) {
// Send 100ms CAN Message
if (currentMillis - previousMillis100 >= INTERVAL_100_MS) {
previousMillis100 = currentMillis;
transmit_can_frame(&VOLVO_536); //Send 0x536 Network managing frame to keep BMS alive
transmit_can_frame(&VOLVO_372); //Send 0x372 ECMAmbientTempCalculated
if ((datalayer.battery.status.bms_status == ACTIVE) && startedUp) {
datalayer.system.status.battery_allows_contactor_closing = true;
transmit_can_frame(&VOLVO_140_CLOSE); //Send 0x140 Close contactors message
} else { //datalayer.battery.status.bms_status == FAULT , OR inverter requested opening contactors, OR system not started yet
datalayer.system.status.battery_allows_contactor_closing = false;
transmit_can_frame(&VOLVO_140_OPEN); //Send 0x140 Open contactors message
}
}
if (currentMillis - previousMillis1s >= INTERVAL_1_S) {
previousMillis1s = currentMillis;
if (!startedUp) {
transmit_can_frame(&VOLVO_DTC_Erase); //Erase any DTCs preventing startup
DTC_reset_counter++;
if (DTC_reset_counter > 1) { // Performed twice before starting
startedUp = true;
}
}
}
if (currentMillis - previousMillis60s >= INTERVAL_60_S) {
previousMillis60s = currentMillis;
if (datalayer.battery.status.bms_status == ACTIVE) {
readCellVoltages();
}
}
}
void VolvoSpaBattery::setup(void) { // Performs one time setup at startup
strncpy(datalayer.system.info.battery_protocol, Name, 63);
datalayer.system.info.battery_protocol[63] = '\0';
datalayer.battery.info.number_of_cells = 0; // Initializes when all cells have been read
datalayer.battery.info.total_capacity_Wh = 78200; //Startout in 78kWh mode (This value used for SOC calc)
datalayer.battery.info.max_design_voltage_dV = MAX_PACK_VOLTAGE_108S_DV; //Startout with max allowed range
datalayer.battery.info.min_design_voltage_dV = MIN_PACK_VOLTAGE_96S_DV; //Startout with min allowed range
datalayer.battery.info.max_cell_voltage_mV = MAX_CELL_VOLTAGE_MV;
datalayer.battery.info.min_cell_voltage_mV = MIN_CELL_VOLTAGE_MV;
datalayer.battery.info.max_cell_voltage_deviation_mV = MAX_CELL_DEVIATION_MV;
}