mirror of
https://github.com/dalathegreat/Battery-Emulator.git
synced 2025-10-03 01:39:30 +02:00
755 lines
22 KiB
C++
755 lines
22 KiB
C++
/* Do not change any code below this line unless you are sure what you are doing */
|
|
/* Only change battery specific settings in "USER_SETTINGS.h" */
|
|
|
|
#include <Arduino.h>
|
|
#include <Preferences.h>
|
|
#include "HardwareSerial.h"
|
|
#include "USER_SETTINGS.h"
|
|
#include "src/battery/BATTERIES.h"
|
|
#include "src/charger/CHARGERS.h"
|
|
#include "src/devboard/config.h"
|
|
#include "src/devboard/utils/events.h"
|
|
#include "src/inverter/INVERTERS.h"
|
|
#include "src/lib/adafruit-Adafruit_NeoPixel/Adafruit_NeoPixel.h"
|
|
#include "src/lib/eModbus-eModbus/Logging.h"
|
|
#include "src/lib/eModbus-eModbus/ModbusServerRTU.h"
|
|
#include "src/lib/eModbus-eModbus/scripts/mbServerFCs.h"
|
|
#include "src/lib/miwagner-ESP32-Arduino-CAN/CAN_config.h"
|
|
#include "src/lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"
|
|
|
|
#ifdef WEBSERVER
|
|
#include "src/devboard/webserver/webserver.h"
|
|
#endif
|
|
|
|
Preferences settings; // Store user settings
|
|
|
|
// Interval settings
|
|
int intervalUpdateValues = 4800; // Interval at which to update inverter values / Modbus registers
|
|
const int interval10 = 10; // Interval for 10ms tasks
|
|
unsigned long previousMillis10ms = 50;
|
|
unsigned long previousMillisUpdateVal = 0;
|
|
|
|
// CAN parameters
|
|
CAN_device_t CAN_cfg; // CAN Config
|
|
const int rx_queue_size = 10; // Receive Queue size
|
|
|
|
#ifdef DUAL_CAN
|
|
#include "src/lib/pierremolinaro-acan2515/ACAN2515.h"
|
|
static const uint32_t QUARTZ_FREQUENCY = 8UL * 1000UL * 1000UL; // 8 MHz
|
|
ACAN2515 can(MCP2515_CS, SPI, MCP2515_INT);
|
|
static ACAN2515_Buffer16 gBuffer;
|
|
#endif
|
|
|
|
// ModbusRTU parameters
|
|
#if defined(BYD_MODBUS)
|
|
#define MB_RTU_NUM_VALUES 30000
|
|
#endif
|
|
#if defined(LUNA2000_MODBUS)
|
|
#define MB_RTU_NUM_VALUES 30000
|
|
#endif
|
|
#if defined(BYD_MODBUS) || defined(LUNA2000_MODBUS)
|
|
uint16_t mbPV[MB_RTU_NUM_VALUES]; // Process variable memory
|
|
// Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout
|
|
ModbusServerRTU MBserver(Serial2, 2000);
|
|
#endif
|
|
|
|
// Common inverter parameters. Batteries map their values to these variables
|
|
uint16_t max_voltage = ABSOLUTE_MAX_VOLTAGE; // If higher charging is not possible (goes into forced discharge)
|
|
uint16_t min_voltage = ABSOLUTE_MIN_VOLTAGE; // If lower disables discharging battery
|
|
uint16_t battery_voltage = 3700; //V+1, 0-500.0 (0-5000)
|
|
uint16_t battery_current = 0;
|
|
uint16_t SOC = 5000; //SOC%, 0-100.00 (0-10000)
|
|
uint16_t StateOfHealth = 9900; //SOH%, 0-100.00 (0-10000)
|
|
uint16_t capacity_Wh = BATTERY_WH_MAX; //Wh, 0-60000
|
|
uint16_t remaining_capacity_Wh = BATTERY_WH_MAX; //Wh, 0-60000
|
|
uint16_t max_target_discharge_power = 0; // 0W (0W > restricts to no discharge), Updates later on from CAN
|
|
uint16_t max_target_charge_power = 4312; // Init to 4.3kW, Updates later on from CAN
|
|
uint16_t temperature_max = 50; //C+1, Goes thru convert2unsignedint16 function (15.0C = 150, -15.0C = 65385)
|
|
uint16_t temperature_min = 60; // Reads from battery later
|
|
uint8_t bms_char_dis_status = STANDBY; // 0 standby, 1 discharging, 2, charging
|
|
uint8_t bms_status = ACTIVE; // ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
|
|
uint16_t stat_batt_power = 0; // Power going in/out of battery
|
|
uint16_t cell_max_voltage = 3700; // Stores the highest cell voltage value in the system
|
|
uint16_t cell_min_voltage = 3700; // Stores the minimum cell voltage value in the system
|
|
uint16_t cellvoltages[120]; // Stores all cell voltages
|
|
uint8_t nof_cellvoltages = 0; // Total number of cell voltages, set by each battery.
|
|
bool LFP_Chemistry = false;
|
|
|
|
// Common charger parameters
|
|
volatile float charger_setpoint_HV_VDC = 0.0f;
|
|
volatile float charger_setpoint_HV_IDC = 0.0f;
|
|
volatile float charger_setpoint_HV_IDC_END = 0.0f;
|
|
bool charger_HV_enabled = false;
|
|
bool charger_aux12V_enabled = false;
|
|
|
|
// Common charger statistics, instantaneous values
|
|
float charger_stat_HVcur = 0;
|
|
float charger_stat_HVvol = 0;
|
|
float charger_stat_ACcur = 0;
|
|
float charger_stat_ACvol = 0;
|
|
float charger_stat_LVcur = 0;
|
|
float charger_stat_LVvol = 0;
|
|
|
|
// LED parameters
|
|
Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800);
|
|
static uint8_t brightness = 0;
|
|
static bool rampUp = true;
|
|
const uint8_t maxBrightness = 100;
|
|
uint8_t LEDcolor = GREEN;
|
|
|
|
// Contactor parameters
|
|
#ifdef CONTACTOR_CONTROL
|
|
enum State { DISCONNECTED, PRECHARGE, NEGATIVE, POSITIVE, PRECHARGE_OFF, COMPLETED, SHUTDOWN_REQUESTED };
|
|
State contactorStatus = DISCONNECTED;
|
|
|
|
#define MAX_ALLOWED_FAULT_TICKS 500
|
|
#define PRECHARGE_TIME_MS 160
|
|
#define NEGATIVE_CONTACTOR_TIME_MS 1000
|
|
#define POSITIVE_CONTACTOR_TIME_MS 2000
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
#define PWM_Freq 20000 // 20 kHz frequency, beyond audible range
|
|
#define PWM_Res 10 // 10 Bit resolution 0 to 1023, maps 'nicely' to 0% 100%
|
|
#define PWM_Hold_Duty 250
|
|
#define POSITIVE_PWM_Ch 0
|
|
#define NEGATIVE_PWM_Ch 1
|
|
#endif
|
|
unsigned long prechargeStartTime = 0;
|
|
unsigned long negativeStartTime = 0;
|
|
unsigned long timeSpentInFaultedMode = 0;
|
|
#endif
|
|
bool batteryAllowsContactorClosing = false;
|
|
bool inverterAllowsContactorClosing = true;
|
|
|
|
// Initialization
|
|
void setup() {
|
|
init_serial();
|
|
|
|
init_stored_settings();
|
|
|
|
#ifdef WEBSERVER
|
|
init_webserver();
|
|
#endif
|
|
|
|
init_events();
|
|
|
|
init_CAN();
|
|
|
|
init_LED();
|
|
|
|
init_contactors();
|
|
|
|
init_modbus();
|
|
|
|
init_serialDataLink();
|
|
|
|
inform_user_on_inverter();
|
|
|
|
inform_user_on_battery();
|
|
|
|
#ifdef BATTERY_HAS_INIT
|
|
init_battery();
|
|
#endif
|
|
}
|
|
|
|
// Perform main program functions
|
|
void loop() {
|
|
|
|
#ifdef WEBSERVER
|
|
// Over-the-air updates by ElegantOTA
|
|
ElegantOTA.loop();
|
|
WiFi_monitor_loop();
|
|
#ifdef MQTT
|
|
mqtt_loop();
|
|
#endif
|
|
#endif
|
|
|
|
// Input
|
|
receive_can(); // Receive CAN messages. Runs as fast as possible
|
|
#ifdef DUAL_CAN
|
|
receive_can2();
|
|
#endif
|
|
#if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER)
|
|
runSerialDataLink();
|
|
#endif
|
|
|
|
// Process
|
|
if (millis() - previousMillis10ms >= interval10) // Every 10ms
|
|
{
|
|
previousMillis10ms = millis();
|
|
handle_LED_state(); // Set the LED color according to state
|
|
#ifdef CONTACTOR_CONTROL
|
|
handle_contactors(); // Take care of startup precharge/contactor closing
|
|
#endif
|
|
}
|
|
|
|
if (millis() - previousMillisUpdateVal >= intervalUpdateValues) // Every 4.8s
|
|
{
|
|
previousMillisUpdateVal = millis();
|
|
update_values(); // Update values heading towards inverter. Prepare for sending on CAN, or write directly to Modbus.
|
|
set_event(EVENT_DUMMY, (uint8_t)millis());
|
|
}
|
|
|
|
// Output
|
|
send_can(); // Send CAN messages
|
|
#ifdef DUAL_CAN
|
|
send_can2();
|
|
#endif
|
|
run_event_handling();
|
|
}
|
|
|
|
// Initialization functions
|
|
void init_serial() {
|
|
// Init Serial monitor
|
|
Serial.begin(115200);
|
|
while (!Serial) {}
|
|
Serial.println("__ OK __");
|
|
}
|
|
|
|
void init_stored_settings() {
|
|
settings.begin("batterySettings", false);
|
|
|
|
#ifndef LOAD_SAVED_SETTINGS_ON_BOOT
|
|
settings.clear(); // If this clear function is executed, no settings will be read from storage
|
|
#endif
|
|
|
|
static uint16_t temp = 0;
|
|
temp = settings.getUInt("BATTERY_WH_MAX", false);
|
|
if (temp != 0) {
|
|
BATTERY_WH_MAX = temp;
|
|
}
|
|
temp = settings.getUInt("MAXPERCENTAGE", false);
|
|
if (temp != 0) {
|
|
MAXPERCENTAGE = temp;
|
|
}
|
|
temp = settings.getUInt("MINPERCENTAGE", false);
|
|
if (temp != 0) {
|
|
MINPERCENTAGE = temp;
|
|
}
|
|
temp = settings.getUInt("MAXCHARGEAMP", false);
|
|
if (temp != 0) {
|
|
MAXCHARGEAMP = temp;
|
|
}
|
|
temp = settings.getUInt("MAXDISCHARGEAMP", false);
|
|
if (temp != 0) {
|
|
MAXDISCHARGEAMP = temp;
|
|
}
|
|
settings.end();
|
|
}
|
|
|
|
void init_CAN() {
|
|
// CAN pins
|
|
pinMode(CAN_SE_PIN, OUTPUT);
|
|
digitalWrite(CAN_SE_PIN, LOW);
|
|
CAN_cfg.speed = CAN_SPEED_500KBPS;
|
|
CAN_cfg.tx_pin_id = GPIO_NUM_27;
|
|
CAN_cfg.rx_pin_id = GPIO_NUM_26;
|
|
CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t));
|
|
// Init CAN Module
|
|
ESP32Can.CANInit();
|
|
Serial.println(CAN_cfg.speed);
|
|
|
|
#ifdef DUAL_CAN
|
|
Serial.println("Dual CAN Bus (ESP32+MCP2515) selected");
|
|
gBuffer.initWithSize(25);
|
|
SPI.begin(MCP2515_SCK, MCP2515_MISO, MCP2515_MOSI);
|
|
Serial.println("Configure ACAN2515");
|
|
ACAN2515Settings settings(QUARTZ_FREQUENCY, 500UL * 1000UL); // CAN bit rate 500 kb/s
|
|
settings.mRequestedMode = ACAN2515Settings::NormalMode; // Select loopback mode
|
|
can.begin(settings, [] { can.isr(); });
|
|
#endif
|
|
}
|
|
|
|
void init_LED() {
|
|
// Init LED control
|
|
pixels.begin();
|
|
}
|
|
|
|
void init_contactors() {
|
|
// Init contactor pins
|
|
#ifdef CONTACTOR_CONTROL
|
|
pinMode(POSITIVE_CONTACTOR_PIN, OUTPUT);
|
|
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
|
|
pinMode(NEGATIVE_CONTACTOR_PIN, OUTPUT);
|
|
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcSetup(POSITIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
|
|
ledcSetup(NEGATIVE_PWM_Ch, PWM_Freq, PWM_Res); // Setup PWM Channel Frequency and Resolution
|
|
ledcAttachPin(POSITIVE_CONTACTOR_PIN, POSITIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
|
|
ledcAttachPin(NEGATIVE_CONTACTOR_PIN, NEGATIVE_PWM_Ch); // Attach Positive Contactor Pin to Hardware PWM Channel
|
|
ledcWrite(POSITIVE_PWM_Ch, 0); // Set Positive PWM to 0%
|
|
ledcWrite(NEGATIVE_PWM_Ch, 0); // Set Negative PWM to 0%
|
|
#endif
|
|
pinMode(PRECHARGE_PIN, OUTPUT);
|
|
digitalWrite(PRECHARGE_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void init_modbus() {
|
|
// Set up Modbus RTU Server
|
|
pinMode(RS485_EN_PIN, OUTPUT);
|
|
digitalWrite(RS485_EN_PIN, HIGH);
|
|
pinMode(RS485_SE_PIN, OUTPUT);
|
|
digitalWrite(RS485_SE_PIN, HIGH);
|
|
pinMode(PIN_5V_EN, OUTPUT);
|
|
digitalWrite(PIN_5V_EN, HIGH);
|
|
|
|
#ifdef BYD_MODBUS
|
|
// Init Static data to the RTU Modbus
|
|
handle_static_data_modbus_byd();
|
|
#endif
|
|
#if defined(BYD_MODBUS) || defined(LUNA2000_MODBUS)
|
|
#if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER)
|
|
// Check that Dual LilyGo via RS485 option isn't enabled, this collides with Modbus!
|
|
#error MODBUS CANNOT BE USED IN DOUBLE LILYGO SETUPS! CHECK USER SETTINGS!
|
|
#endif
|
|
|
|
// Init Serial2 connected to the RTU Modbus
|
|
RTUutils::prepareHardwareSerial(Serial2);
|
|
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
|
|
// Register served function code worker for server
|
|
MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03);
|
|
MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06);
|
|
MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16);
|
|
MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23);
|
|
// Start ModbusRTU background task
|
|
MBserver.begin(Serial2);
|
|
#endif
|
|
}
|
|
|
|
void inform_user_on_inverter() {
|
|
// Inform user what Inverter is used
|
|
#ifdef BYD_CAN
|
|
Serial.println("BYD CAN protocol selected");
|
|
#endif
|
|
#ifdef BYD_MODBUS
|
|
Serial.println("BYD Modbus RTU protocol selected");
|
|
#endif
|
|
#ifdef LUNA2000_MODBUS
|
|
Serial.println("Luna2000 Modbus RTU protocol selected");
|
|
#endif
|
|
#ifdef PYLON_CAN
|
|
Serial.println("PYLON CAN protocol selected");
|
|
#endif
|
|
#ifdef SMA_CAN
|
|
Serial.println("SMA CAN protocol selected");
|
|
#endif
|
|
#ifdef SOFAR_CAN
|
|
Serial.println("SOFAR CAN protocol selected");
|
|
#endif
|
|
#ifdef SOLAX_CAN
|
|
inverterAllowsContactorClosing = false; // The inverter needs to allow first on this protocol
|
|
intervalUpdateValues = 800; // This protocol also requires the values to be updated faster
|
|
Serial.println("SOLAX CAN protocol selected");
|
|
#endif
|
|
}
|
|
|
|
void inform_user_on_battery() {
|
|
// Inform user what battery is used
|
|
#ifdef BMW_I3_BATTERY
|
|
Serial.println("BMW i3 battery selected");
|
|
#endif
|
|
#ifdef CHADEMO_BATTERY
|
|
Serial.println("Chademo battery selected");
|
|
#endif
|
|
#ifdef IMIEV_CZERO_ION_BATTERY
|
|
Serial.println("Mitsubishi i-MiEV / Citroen C-Zero / Peugeot Ion battery selected");
|
|
#endif
|
|
#ifdef KIA_HYUNDAI_64_BATTERY
|
|
Serial.println("Kia Niro / Hyundai Kona 64kWh battery selected");
|
|
#endif
|
|
#ifdef NISSAN_LEAF_BATTERY
|
|
Serial.println("Nissan LEAF battery selected");
|
|
#endif
|
|
#ifdef RENAULT_KANGOO_BATTERY
|
|
Serial.println("Renault Kangoo battery selected");
|
|
#endif
|
|
#ifdef SANTA_FE_PHEV_BATTERY
|
|
Serial.println("Hyundai Santa Fe PHEV battery selected");
|
|
#endif
|
|
#ifdef RENAULT_ZOE_BATTERY
|
|
Serial.println("Renault Zoe battery selected");
|
|
#endif
|
|
#ifdef TESLA_MODEL_3_BATTERY
|
|
Serial.println("Tesla Model 3 battery selected");
|
|
#endif
|
|
#ifdef TEST_FAKE_BATTERY
|
|
Serial.println("Test mode with fake battery selected");
|
|
#endif
|
|
#ifdef SERIAL_LINK_RECEIVER
|
|
Serial.println("SERIAL_DATA_LINK_RECEIVER selected");
|
|
#endif
|
|
#if !defined(ABSOLUTE_MAX_VOLTAGE)
|
|
#error No battery selected! Choose one from the USER_SETTINGS.h file
|
|
#endif
|
|
}
|
|
|
|
// Functions
|
|
void receive_can() { // This section checks if we have a complete CAN message incoming
|
|
// Depending on which battery/inverter is selected, we forward this to their respective CAN routines
|
|
CAN_frame_t rx_frame;
|
|
if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 3 * portTICK_PERIOD_MS) == pdTRUE) {
|
|
if (rx_frame.FIR.B.FF == CAN_frame_std) {
|
|
//printf("New standard frame");
|
|
// Battery
|
|
#ifdef BMW_I3_BATTERY
|
|
receive_can_i3_battery(rx_frame);
|
|
#endif
|
|
#ifdef CHADEMO_BATTERY
|
|
receive_can_chademo_battery(rx_frame);
|
|
#endif
|
|
#ifdef IMIEV_CZERO_ION_BATTERY
|
|
receive_can_imiev_battery(rx_frame);
|
|
#endif
|
|
#ifdef KIA_HYUNDAI_64_BATTERY
|
|
receive_can_kiaHyundai_64_battery(rx_frame);
|
|
#endif
|
|
#ifdef NISSAN_LEAF_BATTERY
|
|
receive_can_leaf_battery(rx_frame);
|
|
#endif
|
|
#ifdef RENAULT_KANGOO_BATTERY
|
|
receive_can_kangoo_battery(rx_frame);
|
|
#endif
|
|
#ifdef SANTA_FE_PHEV_BATTERY
|
|
receive_can_santafe_phev_battery(rx_frame);
|
|
#endif
|
|
#ifdef RENAULT_ZOE_BATTERY
|
|
receive_can_zoe_battery(rx_frame);
|
|
#endif
|
|
#ifdef TESLA_MODEL_3_BATTERY
|
|
receive_can_tesla_model_3_battery(rx_frame);
|
|
#endif
|
|
#ifdef TEST_FAKE_BATTERY
|
|
receive_can_test_battery(rx_frame);
|
|
#endif
|
|
// Inverter
|
|
#ifdef BYD_CAN
|
|
receive_can_byd(rx_frame);
|
|
#endif
|
|
#ifdef SMA_CAN
|
|
receive_can_sma(rx_frame);
|
|
#endif
|
|
// Charger
|
|
#ifdef CHEVYVOLT_CHARGER
|
|
receive_can_chevyvolt_charger(rx_frame);
|
|
#endif
|
|
#ifdef NISSANLEAF_CHARGER
|
|
receive_can_nissanleaf_charger(rx_frame);
|
|
#endif
|
|
} else {
|
|
//printf("New extended frame");
|
|
#ifdef PYLON_CAN
|
|
receive_can_pylon(rx_frame);
|
|
#endif
|
|
#ifdef SOFAR_CAN
|
|
receive_can_sofar(rx_frame);
|
|
#endif
|
|
#ifdef SOLAX_CAN
|
|
receive_can_solax(rx_frame);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
void send_can() {
|
|
// Send CAN messages
|
|
// Inverter
|
|
#ifdef BYD_CAN
|
|
send_can_byd();
|
|
#endif
|
|
#ifdef SMA_CAN
|
|
send_can_sma();
|
|
#endif
|
|
#ifdef SOFAR_CAN
|
|
send_can_sofar();
|
|
#endif
|
|
// Battery
|
|
#ifdef BMW_I3_BATTERY
|
|
send_can_i3_battery();
|
|
#endif
|
|
#ifdef CHADEMO_BATTERY
|
|
send_can_chademo_battery();
|
|
#endif
|
|
#ifdef IMIEV_CZERO_ION_BATTERY
|
|
send_can_imiev_battery();
|
|
#endif
|
|
#ifdef KIA_HYUNDAI_64_BATTERY
|
|
send_can_kiaHyundai_64_battery();
|
|
#endif
|
|
#ifdef NISSAN_LEAF_BATTERY
|
|
send_can_leaf_battery();
|
|
#endif
|
|
#ifdef RENAULT_KANGOO_BATTERY
|
|
send_can_kangoo_battery();
|
|
#endif
|
|
#ifdef SANTA_FE_PHEV_BATTERY
|
|
send_can_santafe_phev_battery();
|
|
#endif
|
|
#ifdef RENAULT_ZOE_BATTERY
|
|
send_can_zoe_battery();
|
|
#endif
|
|
#ifdef TESLA_MODEL_3_BATTERY
|
|
send_can_tesla_model_3_battery();
|
|
#endif
|
|
#ifdef TEST_FAKE_BATTERY
|
|
send_can_test_battery();
|
|
#endif
|
|
#ifdef CHEVYVOLT_CHARGER
|
|
send_can_chevyvolt_charger();
|
|
#endif
|
|
#ifdef NISSANLEAF_CHARGER
|
|
send_can_nissanleaf_charger();
|
|
#endif
|
|
}
|
|
|
|
#ifdef DUAL_CAN
|
|
void receive_can2() { // This function is similar to receive_can, but just takes care of inverters in the 2nd bus.
|
|
// Depending on which inverter is selected, we forward this to their respective CAN routines
|
|
CAN_frame_t rx_frame2; // Struct with ESP32Can library format, compatible with the rest of the program
|
|
CANMessage MCP2515Frame; // Struct with ACAN2515 library format, needed to use thw MCP2515 library
|
|
|
|
if (can.available()) {
|
|
can.receive(MCP2515Frame);
|
|
|
|
rx_frame2.MsgID = MCP2515Frame.id;
|
|
rx_frame2.FIR.B.FF = MCP2515Frame.ext ? CAN_frame_ext : CAN_frame_std;
|
|
rx_frame2.FIR.B.RTR = MCP2515Frame.rtr ? CAN_RTR : CAN_no_RTR;
|
|
rx_frame2.FIR.B.DLC = MCP2515Frame.len;
|
|
for (uint8_t i = 0; i < MCP2515Frame.len; i++) {
|
|
rx_frame2.data.u8[i] = MCP2515Frame.data[i];
|
|
}
|
|
|
|
if (rx_frame2.FIR.B.FF == CAN_frame_std) {
|
|
//Serial.println("New standard frame");
|
|
#ifdef BYD_CAN
|
|
receive_can_byd(rx_frame2);
|
|
#endif
|
|
} else {
|
|
//Serial.println("New extended frame");
|
|
#ifdef PYLON_CAN
|
|
receive_can_pylon(rx_frame2);
|
|
#endif
|
|
#ifdef SOLAX_CAN
|
|
receive_can_solax(rx_frame2);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
void send_can2() {
|
|
// Send CAN
|
|
// Inverter
|
|
#ifdef BYD_CAN
|
|
send_can_byd();
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void handle_LED_state() {
|
|
// Determine how bright the LED should be
|
|
if (rampUp && brightness < maxBrightness) {
|
|
brightness++;
|
|
} else if (rampUp && brightness == maxBrightness) {
|
|
rampUp = false;
|
|
} else if (!rampUp && brightness > 0) {
|
|
brightness--;
|
|
} else if (!rampUp && brightness == 0) {
|
|
rampUp = true;
|
|
}
|
|
switch (LEDcolor) {
|
|
case GREEN:
|
|
pixels.setPixelColor(0, pixels.Color(0, brightness, 0)); // Green pulsing LED
|
|
break;
|
|
case YELLOW:
|
|
pixels.setPixelColor(0, pixels.Color(brightness, brightness, 0)); // Yellow pulsing LED
|
|
break;
|
|
case BLUE:
|
|
pixels.setPixelColor(0, pixels.Color(0, 0, brightness)); // Blue pulsing LED
|
|
break;
|
|
case RED:
|
|
pixels.setPixelColor(0, pixels.Color(150, 0, 0)); // Red LED full brightness
|
|
break;
|
|
case TEST_ALL_COLORS:
|
|
pixels.setPixelColor(0, pixels.Color(brightness, abs((100 - brightness)), abs((50 - brightness)))); // RGB
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
pixels.show(); // This sends the updated pixel color to the hardware.
|
|
}
|
|
|
|
#ifdef CONTACTOR_CONTROL
|
|
void handle_contactors() {
|
|
// First check if we have any active errors, incase we do, turn off the battery
|
|
if (bms_status == FAULT) {
|
|
timeSpentInFaultedMode++;
|
|
} else {
|
|
timeSpentInFaultedMode = 0;
|
|
}
|
|
|
|
if (timeSpentInFaultedMode > MAX_ALLOWED_FAULT_TICKS) {
|
|
contactorStatus = SHUTDOWN_REQUESTED;
|
|
}
|
|
if (contactorStatus == SHUTDOWN_REQUESTED) {
|
|
digitalWrite(PRECHARGE_PIN, LOW);
|
|
digitalWrite(NEGATIVE_CONTACTOR_PIN, LOW);
|
|
digitalWrite(POSITIVE_CONTACTOR_PIN, LOW);
|
|
return; // A fault scenario latches the contactor control. It is not possible to recover without a powercycle (and investigation why fault occured)
|
|
}
|
|
|
|
// After that, check if we are OK to start turning on the battery
|
|
if (contactorStatus == DISCONNECTED) {
|
|
digitalWrite(PRECHARGE_PIN, LOW);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcWrite(POSITIVE_PWM_Ch, 0);
|
|
ledcWrite(NEGATIVE_PWM_Ch, 0);
|
|
#endif
|
|
|
|
if (batteryAllowsContactorClosing && inverterAllowsContactorClosing) {
|
|
contactorStatus = PRECHARGE;
|
|
}
|
|
}
|
|
|
|
// In case the inverter requests contactors to open, set the state accordingly
|
|
if (contactorStatus == COMPLETED) {
|
|
if (!inverterAllowsContactorClosing)
|
|
contactorStatus = DISCONNECTED;
|
|
// Skip running the state machine below if it has already completed
|
|
return;
|
|
}
|
|
|
|
unsigned long currentTime = millis();
|
|
// Handle actual state machine. This first turns on Precharge, then Negative, then Positive, and finally turns OFF precharge
|
|
switch (contactorStatus) {
|
|
case PRECHARGE:
|
|
digitalWrite(PRECHARGE_PIN, HIGH);
|
|
prechargeStartTime = currentTime;
|
|
contactorStatus = NEGATIVE;
|
|
break;
|
|
|
|
case NEGATIVE:
|
|
if (currentTime - prechargeStartTime >= PRECHARGE_TIME_MS) {
|
|
digitalWrite(NEGATIVE_CONTACTOR_PIN, HIGH);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcWrite(NEGATIVE_PWM_Ch, 1023);
|
|
#endif
|
|
negativeStartTime = currentTime;
|
|
contactorStatus = POSITIVE;
|
|
}
|
|
break;
|
|
|
|
case POSITIVE:
|
|
if (currentTime - negativeStartTime >= NEGATIVE_CONTACTOR_TIME_MS) {
|
|
digitalWrite(POSITIVE_CONTACTOR_PIN, HIGH);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcWrite(POSITIVE_PWM_Ch, 1023);
|
|
#endif
|
|
contactorStatus = PRECHARGE_OFF;
|
|
}
|
|
break;
|
|
|
|
case PRECHARGE_OFF:
|
|
if (currentTime - negativeStartTime >= POSITIVE_CONTACTOR_TIME_MS) {
|
|
digitalWrite(PRECHARGE_PIN, LOW);
|
|
#ifdef PWM_CONTACTOR_CONTROL
|
|
ledcWrite(NEGATIVE_PWM_Ch, PWM_Hold_Duty);
|
|
ledcWrite(POSITIVE_PWM_Ch, PWM_Hold_Duty);
|
|
#endif
|
|
contactorStatus = COMPLETED;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void update_values() {
|
|
// Battery
|
|
#ifdef BMW_I3_BATTERY
|
|
update_values_i3_battery(); // Map the values to the correct registers
|
|
#endif
|
|
#ifdef CHADEMO_BATTERY
|
|
update_values_chademo_battery(); // Map the values to the correct registers
|
|
#endif
|
|
#ifdef IMIEV_CZERO_ION_BATTERY
|
|
update_values_imiev_battery(); // Map the values to the correct registers
|
|
#endif
|
|
#ifdef KIA_HYUNDAI_64_BATTERY
|
|
update_values_kiaHyundai_64_battery(); // Map the values to the correct registers
|
|
#endif
|
|
#ifdef NISSAN_LEAF_BATTERY
|
|
update_values_leaf_battery(); // Map the values to the correct registers
|
|
#endif
|
|
#ifdef RENAULT_KANGOO_BATTERY
|
|
update_values_kangoo_battery(); // Map the values to the correct registers
|
|
#endif
|
|
#ifdef SANTA_FE_PHEV_BATTERY
|
|
update_values_santafe_phev_battery(); // Map the values to the correct registers
|
|
#endif
|
|
#ifdef RENAULT_ZOE_BATTERY
|
|
update_values_zoe_battery(); // Map the values to the correct registers
|
|
#endif
|
|
#ifdef TESLA_MODEL_3_BATTERY
|
|
update_values_tesla_model_3_battery(); // Map the values to the correct registers
|
|
#endif
|
|
#ifdef TEST_FAKE_BATTERY
|
|
update_values_test_battery(); // Map the fake values to the correct registers
|
|
#endif
|
|
// Inverter
|
|
#ifdef BYD_CAN
|
|
update_values_can_byd();
|
|
#endif
|
|
#ifdef BYD_MODBUS
|
|
update_modbus_registers_byd();
|
|
#endif
|
|
#ifdef LUNA2000_MODBUS
|
|
update_modbus_registers_luna2000();
|
|
#endif
|
|
#ifdef PYLON_CAN
|
|
update_values_can_pylon();
|
|
#endif
|
|
#ifdef SMA_CAN
|
|
update_values_can_sma();
|
|
#endif
|
|
#ifdef SOFAR_CAN
|
|
update_values_can_sofar();
|
|
#endif
|
|
#ifdef SOLAX_CAN
|
|
update_values_can_solax();
|
|
#endif
|
|
}
|
|
|
|
void runSerialDataLink() {
|
|
static unsigned long updateTime = 0;
|
|
unsigned long currentMillis = millis();
|
|
#ifdef SERIAL_LINK_RECEIVER
|
|
if ((currentMillis - updateTime) > 1) { //Every 2ms
|
|
updateTime = currentMillis;
|
|
manageSerialLinkReceiver();
|
|
}
|
|
#endif
|
|
|
|
#ifdef SERIAL_LINK_TRANSMITTER
|
|
if ((currentMillis - updateTime) > 1) { //Every 2ms
|
|
updateTime = currentMillis;
|
|
manageSerialLinkTransmitter();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void init_serialDataLink() {
|
|
#if defined(SERIAL_LINK_RECEIVER) || defined(SERIAL_LINK_TRANSMITTER)
|
|
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
|
|
#endif
|
|
}
|
|
|
|
void storeSettings() {
|
|
settings.begin("batterySettings", false);
|
|
settings.putUInt("BATTERY_WH_MAX", BATTERY_WH_MAX);
|
|
settings.putUInt("MAXPERCENTAGE", MAXPERCENTAGE);
|
|
settings.putUInt("MINPERCENTAGE", MINPERCENTAGE);
|
|
settings.putUInt("MAXCHARGEAMP", MAXCHARGEAMP);
|
|
settings.putUInt("MAXDISCHARGEAMP", MAXDISCHARGEAMP);
|
|
settings.end();
|
|
}
|