1
0
Fork 0
mirror of https://github.com/DanielnetoDotCom/YouPHPTube synced 2025-10-05 02:39:46 +02:00
Daniel Neto 2023-12-11 11:59:56 -03:00
parent f0f62670c5
commit 7e26256cac
4563 changed files with 1246712 additions and 17558 deletions

83
node_modules/three/examples/js/math/ColorConverter.js generated vendored Normal file
View file

@ -0,0 +1,83 @@
THREE.ColorConverter = {
setHSV: function ( color, h, s, v ) {
// https://gist.github.com/xpansive/1337890#file-index-js
h = THREE.MathUtils.euclideanModulo( h, 1 );
s = THREE.MathUtils.clamp( s, 0, 1 );
v = THREE.MathUtils.clamp( v, 0, 1 );
return color.setHSL( h, ( s * v ) / ( ( h = ( 2 - s ) * v ) < 1 ? h : ( 2 - h ) ), h * 0.5 );
},
getHSV: function () {
var hsl = {};
return function getHSV( color, target ) {
if ( target === undefined ) {
console.warn( 'THREE.ColorConverter: .getHSV() target is now required' );
target = { h: 0, s: 0, l: 0 };
}
color.getHSL( hsl );
// based on https://gist.github.com/xpansive/1337890#file-index-js
hsl.s *= ( hsl.l < 0.5 ) ? hsl.l : ( 1 - hsl.l );
target.h = hsl.h;
target.s = 2 * hsl.s / ( hsl.l + hsl.s );
target.v = hsl.l + hsl.s;
return target;
};
}(),
// where c, m, y, k is between 0 and 1
setCMYK: function ( color, c, m, y, k ) {
var r = ( 1 - c ) * ( 1 - k );
var g = ( 1 - m ) * ( 1 - k );
var b = ( 1 - y ) * ( 1 - k );
return color.setRGB( r, g, b );
},
getCMYK: function ( color, target ) {
if ( target === undefined ) {
console.warn( 'THREE.ColorConverter: .getCMYK() target is now required' );
target = { c: 0, m: 0, y: 0, k: 0 };
}
var r = color.r;
var g = color.g;
var b = color.b;
var k = 1 - Math.max( r, g, b );
var c = ( 1 - r - k ) / ( 1 - k );
var m = ( 1 - g - k ) / ( 1 - k );
var y = ( 1 - b - k ) / ( 1 - k );
target.c = c;
target.m = m;
target.y = y;
target.k = k;
return target;
}
};

1305
node_modules/three/examples/js/math/ConvexHull.js generated vendored Normal file

File diff suppressed because it is too large Load diff

72
node_modules/three/examples/js/math/ImprovedNoise.js generated vendored Normal file
View file

@ -0,0 +1,72 @@
// http://mrl.nyu.edu/~perlin/noise/
THREE.ImprovedNoise = function () {
var p = [ 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10,
23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87,
174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211,
133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208,
89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5,
202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119,
248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232,
178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249,
14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205,
93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 ];
for ( var i = 0; i < 256; i ++ ) {
p[ 256 + i ] = p[ i ];
}
function fade( t ) {
return t * t * t * ( t * ( t * 6 - 15 ) + 10 );
}
function lerp( t, a, b ) {
return a + t * ( b - a );
}
function grad( hash, x, y, z ) {
var h = hash & 15;
var u = h < 8 ? x : y, v = h < 4 ? y : h == 12 || h == 14 ? x : z;
return ( ( h & 1 ) == 0 ? u : - u ) + ( ( h & 2 ) == 0 ? v : - v );
}
return {
noise: function ( x, y, z ) {
var floorX = Math.floor( x ), floorY = Math.floor( y ), floorZ = Math.floor( z );
var X = floorX & 255, Y = floorY & 255, Z = floorZ & 255;
x -= floorX;
y -= floorY;
z -= floorZ;
var xMinus1 = x - 1, yMinus1 = y - 1, zMinus1 = z - 1;
var u = fade( x ), v = fade( y ), w = fade( z );
var A = p[ X ] + Y, AA = p[ A ] + Z, AB = p[ A + 1 ] + Z, B = p[ X + 1 ] + Y, BA = p[ B ] + Z, BB = p[ B + 1 ] + Z;
return lerp( w, lerp( v, lerp( u, grad( p[ AA ], x, y, z ),
grad( p[ BA ], xMinus1, y, z ) ),
lerp( u, grad( p[ AB ], x, yMinus1, z ),
grad( p[ BB ], xMinus1, yMinus1, z ) ) ),
lerp( v, lerp( u, grad( p[ AA + 1 ], x, y, zMinus1 ),
grad( p[ BA + 1 ], xMinus1, y, zMinus1 ) ),
lerp( u, grad( p[ AB + 1 ], x, yMinus1, zMinus1 ),
grad( p[ BB + 1 ], xMinus1, yMinus1, zMinus1 ) ) ) );
}
};
};

181
node_modules/three/examples/js/math/Lut.js generated vendored Normal file
View file

@ -0,0 +1,181 @@
THREE.Lut = function ( colormap, numberofcolors ) {
this.lut = [];
this.setColorMap( colormap, numberofcolors );
return this;
};
THREE.Lut.prototype = {
constructor: THREE.Lut,
lut: [], map: [], n: 256, minV: 0, maxV: 1,
set: function ( value ) {
if ( value instanceof THREE.Lut ) {
this.copy( value );
}
return this;
},
setMin: function ( min ) {
this.minV = min;
return this;
},
setMax: function ( max ) {
this.maxV = max;
return this;
},
setColorMap: function ( colormap, numberofcolors ) {
this.map = THREE.ColorMapKeywords[ colormap ] || THREE.ColorMapKeywords.rainbow;
this.n = numberofcolors || 32;
var step = 1.0 / this.n;
this.lut.length = 0;
for ( var i = 0; i <= 1; i += step ) {
for ( var j = 0; j < this.map.length - 1; j ++ ) {
if ( i >= this.map[ j ][ 0 ] && i < this.map[ j + 1 ][ 0 ] ) {
var min = this.map[ j ][ 0 ];
var max = this.map[ j + 1 ][ 0 ];
var minColor = new THREE.Color( this.map[ j ][ 1 ] );
var maxColor = new THREE.Color( this.map[ j + 1 ][ 1 ] );
var color = minColor.lerp( maxColor, ( i - min ) / ( max - min ) );
this.lut.push( color );
}
}
}
return this;
},
copy: function ( lut ) {
this.lut = lut.lut;
this.map = lut.map;
this.n = lut.n;
this.minV = lut.minV;
this.maxV = lut.maxV;
return this;
},
getColor: function ( alpha ) {
if ( alpha <= this.minV ) {
alpha = this.minV;
} else if ( alpha >= this.maxV ) {
alpha = this.maxV;
}
alpha = ( alpha - this.minV ) / ( this.maxV - this.minV );
var colorPosition = Math.round( alpha * this.n );
colorPosition == this.n ? colorPosition -= 1 : colorPosition;
return this.lut[ colorPosition ];
},
addColorMap: function ( colormapName, arrayOfColors ) {
THREE.ColorMapKeywords[ colormapName ] = arrayOfColors;
},
createCanvas: function () {
var canvas = document.createElement( 'canvas' );
canvas.width = 1;
canvas.height = this.n;
this.updateCanvas( canvas );
return canvas;
},
updateCanvas: function ( canvas ) {
var ctx = canvas.getContext( '2d', { alpha: false } );
var imageData = ctx.getImageData( 0, 0, 1, this.n );
var data = imageData.data;
var k = 0;
var step = 1.0 / this.n;
for ( var i = 1; i >= 0; i -= step ) {
for ( var j = this.map.length - 1; j >= 0; j -- ) {
if ( i < this.map[ j ][ 0 ] && i >= this.map[ j - 1 ][ 0 ] ) {
var min = this.map[ j - 1 ][ 0 ];
var max = this.map[ j ][ 0 ];
var minColor = new THREE.Color( this.map[ j - 1 ][ 1 ] );
var maxColor = new THREE.Color( this.map[ j ][ 1 ] );
var color = minColor.lerp( maxColor, ( i - min ) / ( max - min ) );
data[ k * 4 ] = Math.round( color.r * 255 );
data[ k * 4 + 1 ] = Math.round( color.g * 255 );
data[ k * 4 + 2 ] = Math.round( color.b * 255 );
data[ k * 4 + 3 ] = 255;
k += 1;
}
}
}
ctx.putImageData( imageData, 0, 0 );
return canvas;
}
};
THREE.ColorMapKeywords = {
'rainbow': [[ 0.0, 0x0000FF ], [ 0.2, 0x00FFFF ], [ 0.5, 0x00FF00 ], [ 0.8, 0xFFFF00 ], [ 1.0, 0xFF0000 ]],
'cooltowarm': [[ 0.0, 0x3C4EC2 ], [ 0.2, 0x9BBCFF ], [ 0.5, 0xDCDCDC ], [ 0.8, 0xF6A385 ], [ 1.0, 0xB40426 ]],
'blackbody': [[ 0.0, 0x000000 ], [ 0.2, 0x780000 ], [ 0.5, 0xE63200 ], [ 0.8, 0xFFFF00 ], [ 1.0, 0xFFFFFF ]],
'grayscale': [[ 0.0, 0x000000 ], [ 0.2, 0x404040 ], [ 0.5, 0x7F7F80 ], [ 0.8, 0xBFBFBF ], [ 1.0, 0xFFFFFF ]]
};

422
node_modules/three/examples/js/math/SimplexNoise.js generated vendored Normal file
View file

@ -0,0 +1,422 @@
// Ported from Stefan Gustavson's java implementation
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
// Read Stefan's excellent paper for details on how this code works.
//
// Sean McCullough banksean@gmail.com
//
// Added 4D noise
/**
* You can pass in a random number generator object if you like.
* It is assumed to have a random() method.
*/
THREE.SimplexNoise = function ( r ) {
if ( r == undefined ) r = Math;
this.grad3 = [[ 1, 1, 0 ], [ - 1, 1, 0 ], [ 1, - 1, 0 ], [ - 1, - 1, 0 ],
[ 1, 0, 1 ], [ - 1, 0, 1 ], [ 1, 0, - 1 ], [ - 1, 0, - 1 ],
[ 0, 1, 1 ], [ 0, - 1, 1 ], [ 0, 1, - 1 ], [ 0, - 1, - 1 ]];
this.grad4 = [[ 0, 1, 1, 1 ], [ 0, 1, 1, - 1 ], [ 0, 1, - 1, 1 ], [ 0, 1, - 1, - 1 ],
[ 0, - 1, 1, 1 ], [ 0, - 1, 1, - 1 ], [ 0, - 1, - 1, 1 ], [ 0, - 1, - 1, - 1 ],
[ 1, 0, 1, 1 ], [ 1, 0, 1, - 1 ], [ 1, 0, - 1, 1 ], [ 1, 0, - 1, - 1 ],
[ - 1, 0, 1, 1 ], [ - 1, 0, 1, - 1 ], [ - 1, 0, - 1, 1 ], [ - 1, 0, - 1, - 1 ],
[ 1, 1, 0, 1 ], [ 1, 1, 0, - 1 ], [ 1, - 1, 0, 1 ], [ 1, - 1, 0, - 1 ],
[ - 1, 1, 0, 1 ], [ - 1, 1, 0, - 1 ], [ - 1, - 1, 0, 1 ], [ - 1, - 1, 0, - 1 ],
[ 1, 1, 1, 0 ], [ 1, 1, - 1, 0 ], [ 1, - 1, 1, 0 ], [ 1, - 1, - 1, 0 ],
[ - 1, 1, 1, 0 ], [ - 1, 1, - 1, 0 ], [ - 1, - 1, 1, 0 ], [ - 1, - 1, - 1, 0 ]];
this.p = [];
for ( var i = 0; i < 256; i ++ ) {
this.p[ i ] = Math.floor( r.random() * 256 );
}
// To remove the need for index wrapping, double the permutation table length
this.perm = [];
for ( var i = 0; i < 512; i ++ ) {
this.perm[ i ] = this.p[ i & 255 ];
}
// A lookup table to traverse the simplex around a given point in 4D.
// Details can be found where this table is used, in the 4D noise method.
this.simplex = [
[ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 2, 3, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 3, 0 ],
[ 0, 2, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 3, 2, 0 ],
[ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ],
[ 1, 2, 0, 3 ], [ 0, 0, 0, 0 ], [ 1, 3, 0, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ],
[ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 3, 1 ], [ 0, 0, 0, 0 ], [ 2, 1, 3, 0 ],
[ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ],
[ 2, 0, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ], [ 0, 0, 0, 0 ], [ 3, 1, 2, 0 ],
[ 2, 1, 0, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 1, 0, 2 ], [ 0, 0, 0, 0 ], [ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]];
};
THREE.SimplexNoise.prototype.dot = function ( g, x, y ) {
return g[ 0 ] * x + g[ 1 ] * y;
};
THREE.SimplexNoise.prototype.dot3 = function ( g, x, y, z ) {
return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z;
};
THREE.SimplexNoise.prototype.dot4 = function ( g, x, y, z, w ) {
return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z + g[ 3 ] * w;
};
THREE.SimplexNoise.prototype.noise = function ( xin, yin ) {
var n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
var F2 = 0.5 * ( Math.sqrt( 3.0 ) - 1.0 );
var s = ( xin + yin ) * F2; // Hairy factor for 2D
var i = Math.floor( xin + s );
var j = Math.floor( yin + s );
var G2 = ( 3.0 - Math.sqrt( 3.0 ) ) / 6.0;
var t = ( i + j ) * G2;
var X0 = i - t; // Unskew the cell origin back to (x,y) space
var Y0 = j - t;
var x0 = xin - X0; // The x,y distances from the cell origin
var y0 = yin - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if ( x0 > y0 ) {
i1 = 1; j1 = 0;
// lower triangle, XY order: (0,0)->(1,0)->(1,1)
} else {
i1 = 0; j1 = 1;
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
var y1 = y0 - j1 + G2;
var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
var y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
var ii = i & 255;
var jj = j & 255;
var gi0 = this.perm[ ii + this.perm[ jj ] ] % 12;
var gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 ] ] % 12;
var gi2 = this.perm[ ii + 1 + this.perm[ jj + 1 ] ] % 12;
// Calculate the contribution from the three corners
var t0 = 0.5 - x0 * x0 - y0 * y0;
if ( t0 < 0 ) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * this.dot( this.grad3[ gi0 ], x0, y0 ); // (x,y) of grad3 used for 2D gradient
}
var t1 = 0.5 - x1 * x1 - y1 * y1;
if ( t1 < 0 ) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * this.dot( this.grad3[ gi1 ], x1, y1 );
}
var t2 = 0.5 - x2 * x2 - y2 * y2;
if ( t2 < 0 ) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * this.dot( this.grad3[ gi2 ], x2, y2 );
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * ( n0 + n1 + n2 );
};
// 3D simplex noise
THREE.SimplexNoise.prototype.noise3d = function ( xin, yin, zin ) {
var n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
var F3 = 1.0 / 3.0;
var s = ( xin + yin + zin ) * F3; // Very nice and simple skew factor for 3D
var i = Math.floor( xin + s );
var j = Math.floor( yin + s );
var k = Math.floor( zin + s );
var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
var t = ( i + j + k ) * G3;
var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
var Y0 = j - t;
var Z0 = k - t;
var x0 = xin - X0; // The x,y,z distances from the cell origin
var y0 = yin - Y0;
var z0 = zin - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if ( x0 >= y0 ) {
if ( y0 >= z0 ) {
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
// X Y Z order
} else if ( x0 >= z0 ) {
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;
// X Z Y order
} else {
i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;
} // Z X Y order
} else { // x0<y0
if ( y0 < z0 ) {
i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;
// Z Y X order
} else if ( x0 < z0 ) {
i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;
// Y Z X order
} else {
i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
} // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
var y1 = y0 - j1 + G3;
var z1 = z0 - k1 + G3;
var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
var y2 = y0 - j2 + 2.0 * G3;
var z2 = z0 - k2 + 2.0 * G3;
var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
var y3 = y0 - 1.0 + 3.0 * G3;
var z3 = z0 - 1.0 + 3.0 * G3;
// Work out the hashed gradient indices of the four simplex corners
var ii = i & 255;
var jj = j & 255;
var kk = k & 255;
var gi0 = this.perm[ ii + this.perm[ jj + this.perm[ kk ] ] ] % 12;
var gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 + this.perm[ kk + k1 ] ] ] % 12;
var gi2 = this.perm[ ii + i2 + this.perm[ jj + j2 + this.perm[ kk + k2 ] ] ] % 12;
var gi3 = this.perm[ ii + 1 + this.perm[ jj + 1 + this.perm[ kk + 1 ] ] ] % 12;
// Calculate the contribution from the four corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if ( t0 < 0 ) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * this.dot3( this.grad3[ gi0 ], x0, y0, z0 );
}
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if ( t1 < 0 ) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * this.dot3( this.grad3[ gi1 ], x1, y1, z1 );
}
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if ( t2 < 0 ) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * this.dot3( this.grad3[ gi2 ], x2, y2, z2 );
}
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if ( t3 < 0 ) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * this.dot3( this.grad3[ gi3 ], x3, y3, z3 );
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * ( n0 + n1 + n2 + n3 );
};
// 4D simplex noise
THREE.SimplexNoise.prototype.noise4d = function ( x, y, z, w ) {
// For faster and easier lookups
var grad4 = this.grad4;
var simplex = this.simplex;
var perm = this.perm;
// The skewing and unskewing factors are hairy again for the 4D case
var F4 = ( Math.sqrt( 5.0 ) - 1.0 ) / 4.0;
var G4 = ( 5.0 - Math.sqrt( 5.0 ) ) / 20.0;
var n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
var s = ( x + y + z + w ) * F4; // Factor for 4D skewing
var i = Math.floor( x + s );
var j = Math.floor( y + s );
var k = Math.floor( z + s );
var l = Math.floor( w + s );
var t = ( i + j + k + l ) * G4; // Factor for 4D unskewing
var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
var Y0 = j - t;
var Z0 = k - t;
var W0 = l - t;
var x0 = x - X0; // The x,y,z,w distances from the cell origin
var y0 = y - Y0;
var z0 = z - Z0;
var w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// The method below is a good way of finding the ordering of x,y,z,w and
// then find the correct traversal order for the simplex were in.
// First, six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to add up binary bits
// for an integer index.
var c1 = ( x0 > y0 ) ? 32 : 0;
var c2 = ( x0 > z0 ) ? 16 : 0;
var c3 = ( y0 > z0 ) ? 8 : 0;
var c4 = ( x0 > w0 ) ? 4 : 0;
var c5 = ( y0 > w0 ) ? 2 : 0;
var c6 = ( z0 > w0 ) ? 1 : 0;
var c = c1 + c2 + c3 + c4 + c5 + c6;
var i1, j1, k1, l1; // The integer offsets for the second simplex corner
var i2, j2, k2, l2; // The integer offsets for the third simplex corner
var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// The number 3 in the "simplex" array is at the position of the largest coordinate.
i1 = simplex[ c ][ 0 ] >= 3 ? 1 : 0;
j1 = simplex[ c ][ 1 ] >= 3 ? 1 : 0;
k1 = simplex[ c ][ 2 ] >= 3 ? 1 : 0;
l1 = simplex[ c ][ 3 ] >= 3 ? 1 : 0;
// The number 2 in the "simplex" array is at the second largest coordinate.
i2 = simplex[ c ][ 0 ] >= 2 ? 1 : 0;
j2 = simplex[ c ][ 1 ] >= 2 ? 1 : 0; k2 = simplex[ c ][ 2 ] >= 2 ? 1 : 0;
l2 = simplex[ c ][ 3 ] >= 2 ? 1 : 0;
// The number 1 in the "simplex" array is at the second smallest coordinate.
i3 = simplex[ c ][ 0 ] >= 1 ? 1 : 0;
j3 = simplex[ c ][ 1 ] >= 1 ? 1 : 0;
k3 = simplex[ c ][ 2 ] >= 1 ? 1 : 0;
l3 = simplex[ c ][ 3 ] >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to look that up.
var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
var y1 = y0 - j1 + G4;
var z1 = z0 - k1 + G4;
var w1 = w0 - l1 + G4;
var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
var y2 = y0 - j2 + 2.0 * G4;
var z2 = z0 - k2 + 2.0 * G4;
var w2 = w0 - l2 + 2.0 * G4;
var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
var y3 = y0 - j3 + 3.0 * G4;
var z3 = z0 - k3 + 3.0 * G4;
var w3 = w0 - l3 + 3.0 * G4;
var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
var y4 = y0 - 1.0 + 4.0 * G4;
var z4 = z0 - 1.0 + 4.0 * G4;
var w4 = w0 - 1.0 + 4.0 * G4;
// Work out the hashed gradient indices of the five simplex corners
var ii = i & 255;
var jj = j & 255;
var kk = k & 255;
var ll = l & 255;
var gi0 = perm[ ii + perm[ jj + perm[ kk + perm[ ll ] ] ] ] % 32;
var gi1 = perm[ ii + i1 + perm[ jj + j1 + perm[ kk + k1 + perm[ ll + l1 ] ] ] ] % 32;
var gi2 = perm[ ii + i2 + perm[ jj + j2 + perm[ kk + k2 + perm[ ll + l2 ] ] ] ] % 32;
var gi3 = perm[ ii + i3 + perm[ jj + j3 + perm[ kk + k3 + perm[ ll + l3 ] ] ] ] % 32;
var gi4 = perm[ ii + 1 + perm[ jj + 1 + perm[ kk + 1 + perm[ ll + 1 ] ] ] ] % 32;
// Calculate the contribution from the five corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if ( t0 < 0 ) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * this.dot4( grad4[ gi0 ], x0, y0, z0, w0 );
}
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if ( t1 < 0 ) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * this.dot4( grad4[ gi1 ], x1, y1, z1, w1 );
}
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if ( t2 < 0 ) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * this.dot4( grad4[ gi2 ], x2, y2, z2, w2 );
}
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if ( t3 < 0 ) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * this.dot4( grad4[ gi3 ], x3, y3, z3, w3 );
}
var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if ( t4 < 0 ) n4 = 0.0;
else {
t4 *= t4;
n4 = t4 * t4 * this.dot4( grad4[ gi4 ], x4, y4, z4, w4 );
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * ( n0 + n1 + n2 + n3 + n4 );
};