1
0
Fork 0
mirror of https://github.com/DanielnetoDotCom/YouPHPTube synced 2025-10-05 02:39:46 +02:00
Daniel Neto 2023-12-11 11:59:56 -03:00
parent f0f62670c5
commit 7e26256cac
4563 changed files with 1246712 additions and 17558 deletions

View file

@ -0,0 +1,357 @@
/**
* Generate a texture that represents the luminosity of the current scene, adapted over time
* to simulate the optic nerve responding to the amount of light it is receiving.
* Based on a GDC2007 presentation by Wolfgang Engel titled "Post-Processing Pipeline"
*
* Full-screen tone-mapping shader based on http://www.graphics.cornell.edu/~jaf/publications/sig02_paper.pdf
*/
THREE.AdaptiveToneMappingPass = function ( adaptive, resolution ) {
THREE.Pass.call( this );
this.resolution = ( resolution !== undefined ) ? resolution : 256;
this.needsInit = true;
this.adaptive = adaptive !== undefined ? !! adaptive : true;
this.luminanceRT = null;
this.previousLuminanceRT = null;
this.currentLuminanceRT = null;
if ( THREE.CopyShader === undefined )
console.error( 'THREE.AdaptiveToneMappingPass relies on THREE.CopyShader' );
var copyShader = THREE.CopyShader;
this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
this.materialCopy = new THREE.ShaderMaterial( {
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
blending: THREE.NoBlending,
depthTest: false
} );
if ( THREE.LuminosityShader === undefined )
console.error( 'THREE.AdaptiveToneMappingPass relies on THREE.LuminosityShader' );
this.materialLuminance = new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( THREE.LuminosityShader.uniforms ),
vertexShader: THREE.LuminosityShader.vertexShader,
fragmentShader: THREE.LuminosityShader.fragmentShader,
blending: THREE.NoBlending
} );
this.adaptLuminanceShader = {
defines: {
'MIP_LEVEL_1X1': ( Math.log( this.resolution ) / Math.log( 2.0 ) ).toFixed( 1 )
},
uniforms: {
'lastLum': { value: null },
'currentLum': { value: null },
'minLuminance': { value: 0.01 },
'delta': { value: 0.016 },
'tau': { value: 1.0 }
},
vertexShader: [
'varying vec2 vUv;',
'void main() {',
' vUv = uv;',
' gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );',
'}'
].join( '\n' ),
fragmentShader: [
'varying vec2 vUv;',
'uniform sampler2D lastLum;',
'uniform sampler2D currentLum;',
'uniform float minLuminance;',
'uniform float delta;',
'uniform float tau;',
'void main() {',
' vec4 lastLum = texture2D( lastLum, vUv, MIP_LEVEL_1X1 );',
' vec4 currentLum = texture2D( currentLum, vUv, MIP_LEVEL_1X1 );',
' float fLastLum = max( minLuminance, lastLum.r );',
' float fCurrentLum = max( minLuminance, currentLum.r );',
//The adaption seems to work better in extreme lighting differences
//if the input luminance is squared.
' fCurrentLum *= fCurrentLum;',
// Adapt the luminance using Pattanaik's technique
' float fAdaptedLum = fLastLum + (fCurrentLum - fLastLum) * (1.0 - exp(-delta * tau));',
// "fAdaptedLum = sqrt(fAdaptedLum);",
' gl_FragColor.r = fAdaptedLum;',
'}'
].join( '\n' )
};
this.materialAdaptiveLum = new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( this.adaptLuminanceShader.uniforms ),
vertexShader: this.adaptLuminanceShader.vertexShader,
fragmentShader: this.adaptLuminanceShader.fragmentShader,
defines: Object.assign( {}, this.adaptLuminanceShader.defines ),
blending: THREE.NoBlending
} );
if ( THREE.ToneMapShader === undefined )
console.error( 'THREE.AdaptiveToneMappingPass relies on THREE.ToneMapShader' );
this.materialToneMap = new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( THREE.ToneMapShader.uniforms ),
vertexShader: THREE.ToneMapShader.vertexShader,
fragmentShader: THREE.ToneMapShader.fragmentShader,
blending: THREE.NoBlending
} );
this.fsQuad = new THREE.Pass.FullScreenQuad( null );
};
THREE.AdaptiveToneMappingPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.AdaptiveToneMappingPass,
render: function ( renderer, writeBuffer, readBuffer, deltaTime/*, maskActive*/ ) {
if ( this.needsInit ) {
this.reset( renderer );
this.luminanceRT.texture.type = readBuffer.texture.type;
this.previousLuminanceRT.texture.type = readBuffer.texture.type;
this.currentLuminanceRT.texture.type = readBuffer.texture.type;
this.needsInit = false;
}
if ( this.adaptive ) {
//Render the luminance of the current scene into a render target with mipmapping enabled
this.fsQuad.material = this.materialLuminance;
this.materialLuminance.uniforms.tDiffuse.value = readBuffer.texture;
renderer.setRenderTarget( this.currentLuminanceRT );
this.fsQuad.render( renderer );
//Use the new luminance values, the previous luminance and the frame delta to
//adapt the luminance over time.
this.fsQuad.material = this.materialAdaptiveLum;
this.materialAdaptiveLum.uniforms.delta.value = deltaTime;
this.materialAdaptiveLum.uniforms.lastLum.value = this.previousLuminanceRT.texture;
this.materialAdaptiveLum.uniforms.currentLum.value = this.currentLuminanceRT.texture;
renderer.setRenderTarget( this.luminanceRT );
this.fsQuad.render( renderer );
//Copy the new adapted luminance value so that it can be used by the next frame.
this.fsQuad.material = this.materialCopy;
this.copyUniforms.tDiffuse.value = this.luminanceRT.texture;
renderer.setRenderTarget( this.previousLuminanceRT );
this.fsQuad.render( renderer );
}
this.fsQuad.material = this.materialToneMap;
this.materialToneMap.uniforms.tDiffuse.value = readBuffer.texture;
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( writeBuffer );
if ( this.clear ) renderer.clear();
this.fsQuad.render( renderer );
}
},
reset: function () {
// render targets
if ( this.luminanceRT ) {
this.luminanceRT.dispose();
}
if ( this.currentLuminanceRT ) {
this.currentLuminanceRT.dispose();
}
if ( this.previousLuminanceRT ) {
this.previousLuminanceRT.dispose();
}
var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat }; // was RGB format. changed to RGBA format. see discussion in #8415 / #8450
this.luminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );
this.luminanceRT.texture.name = 'AdaptiveToneMappingPass.l';
this.luminanceRT.texture.generateMipmaps = false;
this.previousLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );
this.previousLuminanceRT.texture.name = 'AdaptiveToneMappingPass.pl';
this.previousLuminanceRT.texture.generateMipmaps = false;
// We only need mipmapping for the current luminosity because we want a down-sampled version to sample in our adaptive shader
pars.minFilter = THREE.LinearMipmapLinearFilter;
pars.generateMipmaps = true;
this.currentLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );
this.currentLuminanceRT.texture.name = 'AdaptiveToneMappingPass.cl';
if ( this.adaptive ) {
this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ] = '';
this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;
}
//Put something in the adaptive luminance texture so that the scene can render initially
this.fsQuad.material = new THREE.MeshBasicMaterial( { color: 0x777777 } );
this.materialLuminance.needsUpdate = true;
this.materialAdaptiveLum.needsUpdate = true;
this.materialToneMap.needsUpdate = true;
// renderer.render( this.scene, this.camera, this.luminanceRT );
// renderer.render( this.scene, this.camera, this.previousLuminanceRT );
// renderer.render( this.scene, this.camera, this.currentLuminanceRT );
},
setAdaptive: function ( adaptive ) {
if ( adaptive ) {
this.adaptive = true;
this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ] = '';
this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;
} else {
this.adaptive = false;
delete this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ];
this.materialToneMap.uniforms.luminanceMap.value = null;
}
this.materialToneMap.needsUpdate = true;
},
setAdaptionRate: function ( rate ) {
if ( rate ) {
this.materialAdaptiveLum.uniforms.tau.value = Math.abs( rate );
}
},
setMinLuminance: function ( minLum ) {
if ( minLum ) {
this.materialToneMap.uniforms.minLuminance.value = minLum;
this.materialAdaptiveLum.uniforms.minLuminance.value = minLum;
}
},
setMaxLuminance: function ( maxLum ) {
if ( maxLum ) {
this.materialToneMap.uniforms.maxLuminance.value = maxLum;
}
},
setAverageLuminance: function ( avgLum ) {
if ( avgLum ) {
this.materialToneMap.uniforms.averageLuminance.value = avgLum;
}
},
setMiddleGrey: function ( middleGrey ) {
if ( middleGrey ) {
this.materialToneMap.uniforms.middleGrey.value = middleGrey;
}
},
dispose: function () {
if ( this.luminanceRT ) {
this.luminanceRT.dispose();
}
if ( this.previousLuminanceRT ) {
this.previousLuminanceRT.dispose();
}
if ( this.currentLuminanceRT ) {
this.currentLuminanceRT.dispose();
}
if ( this.materialLuminance ) {
this.materialLuminance.dispose();
}
if ( this.materialAdaptiveLum ) {
this.materialAdaptiveLum.dispose();
}
if ( this.materialCopy ) {
this.materialCopy.dispose();
}
if ( this.materialToneMap ) {
this.materialToneMap.dispose();
}
}
} );

View file

@ -0,0 +1,89 @@
THREE.AfterimagePass = function ( damp ) {
THREE.Pass.call( this );
if ( THREE.AfterimageShader === undefined )
console.error( 'THREE.AfterimagePass relies on THREE.AfterimageShader' );
this.shader = THREE.AfterimageShader;
this.uniforms = THREE.UniformsUtils.clone( this.shader.uniforms );
this.uniforms[ 'damp' ].value = damp !== undefined ? damp : 0.96;
this.textureComp = new THREE.WebGLRenderTarget( window.innerWidth, window.innerHeight, {
minFilter: THREE.LinearFilter,
magFilter: THREE.NearestFilter,
format: THREE.RGBAFormat
} );
this.textureOld = new THREE.WebGLRenderTarget( window.innerWidth, window.innerHeight, {
minFilter: THREE.LinearFilter,
magFilter: THREE.NearestFilter,
format: THREE.RGBAFormat
} );
this.shaderMaterial = new THREE.ShaderMaterial( {
uniforms: this.uniforms,
vertexShader: this.shader.vertexShader,
fragmentShader: this.shader.fragmentShader
} );
this.compFsQuad = new THREE.Pass.FullScreenQuad( this.shaderMaterial );
var material = new THREE.MeshBasicMaterial();
this.copyFsQuad = new THREE.Pass.FullScreenQuad( material );
};
THREE.AfterimagePass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.AfterimagePass,
render: function ( renderer, writeBuffer, readBuffer ) {
this.uniforms[ 'tOld' ].value = this.textureOld.texture;
this.uniforms[ 'tNew' ].value = readBuffer.texture;
renderer.setRenderTarget( this.textureComp );
this.compFsQuad.render( renderer );
this.copyFsQuad.material.map = this.textureComp.texture;
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.copyFsQuad.render( renderer );
} else {
renderer.setRenderTarget( writeBuffer );
if ( this.clear ) renderer.clear();
this.copyFsQuad.render( renderer );
}
// Swap buffers.
var temp = this.textureOld;
this.textureOld = this.textureComp;
this.textureComp = temp;
// Now textureOld contains the latest image, ready for the next frame.
},
setSize: function ( width, height ) {
this.textureComp.setSize( width, height );
this.textureOld.setSize( width, height );
}
} );

View file

@ -0,0 +1,116 @@
THREE.BloomPass = function ( strength, kernelSize, sigma, resolution ) {
THREE.Pass.call( this );
strength = ( strength !== undefined ) ? strength : 1;
kernelSize = ( kernelSize !== undefined ) ? kernelSize : 25;
sigma = ( sigma !== undefined ) ? sigma : 4.0;
resolution = ( resolution !== undefined ) ? resolution : 256;
// render targets
var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat };
this.renderTargetX = new THREE.WebGLRenderTarget( resolution, resolution, pars );
this.renderTargetX.texture.name = 'BloomPass.x';
this.renderTargetY = new THREE.WebGLRenderTarget( resolution, resolution, pars );
this.renderTargetY.texture.name = 'BloomPass.y';
// copy material
if ( THREE.CopyShader === undefined )
console.error( 'THREE.BloomPass relies on THREE.CopyShader' );
var copyShader = THREE.CopyShader;
this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
this.copyUniforms[ 'opacity' ].value = strength;
this.materialCopy = new THREE.ShaderMaterial( {
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
blending: THREE.AdditiveBlending,
transparent: true
} );
// convolution material
if ( THREE.ConvolutionShader === undefined )
console.error( 'THREE.BloomPass relies on THREE.ConvolutionShader' );
var convolutionShader = THREE.ConvolutionShader;
this.convolutionUniforms = THREE.UniformsUtils.clone( convolutionShader.uniforms );
this.convolutionUniforms[ 'uImageIncrement' ].value = THREE.BloomPass.blurX;
this.convolutionUniforms[ 'cKernel' ].value = THREE.ConvolutionShader.buildKernel( sigma );
this.materialConvolution = new THREE.ShaderMaterial( {
uniforms: this.convolutionUniforms,
vertexShader: convolutionShader.vertexShader,
fragmentShader: convolutionShader.fragmentShader,
defines: {
'KERNEL_SIZE_FLOAT': kernelSize.toFixed( 1 ),
'KERNEL_SIZE_INT': kernelSize.toFixed( 0 )
}
} );
this.needsSwap = false;
this.fsQuad = new THREE.Pass.FullScreenQuad( null );
};
THREE.BloomPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.BloomPass,
render: function ( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) {
if ( maskActive ) renderer.state.buffers.stencil.setTest( false );
// Render quad with blured scene into texture (convolution pass 1)
this.fsQuad.material = this.materialConvolution;
this.convolutionUniforms[ 'tDiffuse' ].value = readBuffer.texture;
this.convolutionUniforms[ 'uImageIncrement' ].value = THREE.BloomPass.blurX;
renderer.setRenderTarget( this.renderTargetX );
renderer.clear();
this.fsQuad.render( renderer );
// Render quad with blured scene into texture (convolution pass 2)
this.convolutionUniforms[ 'tDiffuse' ].value = this.renderTargetX.texture;
this.convolutionUniforms[ 'uImageIncrement' ].value = THREE.BloomPass.blurY;
renderer.setRenderTarget( this.renderTargetY );
renderer.clear();
this.fsQuad.render( renderer );
// Render original scene with superimposed blur to texture
this.fsQuad.material = this.materialCopy;
this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetY.texture;
if ( maskActive ) renderer.state.buffers.stencil.setTest( true );
renderer.setRenderTarget( readBuffer );
if ( this.clear ) renderer.clear();
this.fsQuad.render( renderer );
}
} );
THREE.BloomPass.blurX = new THREE.Vector2( 0.001953125, 0.0 );
THREE.BloomPass.blurY = new THREE.Vector2( 0.0, 0.001953125 );

View file

@ -0,0 +1,118 @@
/**
* Depth-of-field post-process with bokeh shader
*/
THREE.BokehPass = function ( scene, camera, params ) {
THREE.Pass.call( this );
this.scene = scene;
this.camera = camera;
var focus = ( params.focus !== undefined ) ? params.focus : 1.0;
var aspect = ( params.aspect !== undefined ) ? params.aspect : camera.aspect;
var aperture = ( params.aperture !== undefined ) ? params.aperture : 0.025;
var maxblur = ( params.maxblur !== undefined ) ? params.maxblur : 1.0;
// render targets
var width = params.width || window.innerWidth || 1;
var height = params.height || window.innerHeight || 1;
this.renderTargetDepth = new THREE.WebGLRenderTarget( width, height, {
minFilter: THREE.NearestFilter,
magFilter: THREE.NearestFilter
} );
this.renderTargetDepth.texture.name = 'BokehPass.depth';
// depth material
this.materialDepth = new THREE.MeshDepthMaterial();
this.materialDepth.depthPacking = THREE.RGBADepthPacking;
this.materialDepth.blending = THREE.NoBlending;
// bokeh material
if ( THREE.BokehShader === undefined ) {
console.error( 'THREE.BokehPass relies on THREE.BokehShader' );
}
var bokehShader = THREE.BokehShader;
var bokehUniforms = THREE.UniformsUtils.clone( bokehShader.uniforms );
bokehUniforms[ 'tDepth' ].value = this.renderTargetDepth.texture;
bokehUniforms[ 'focus' ].value = focus;
bokehUniforms[ 'aspect' ].value = aspect;
bokehUniforms[ 'aperture' ].value = aperture;
bokehUniforms[ 'maxblur' ].value = maxblur;
bokehUniforms[ 'nearClip' ].value = camera.near;
bokehUniforms[ 'farClip' ].value = camera.far;
this.materialBokeh = new THREE.ShaderMaterial( {
defines: Object.assign( {}, bokehShader.defines ),
uniforms: bokehUniforms,
vertexShader: bokehShader.vertexShader,
fragmentShader: bokehShader.fragmentShader
} );
this.uniforms = bokehUniforms;
this.needsSwap = false;
this.fsQuad = new THREE.Pass.FullScreenQuad( this.materialBokeh );
this._oldClearColor = new THREE.Color();
};
THREE.BokehPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.BokehPass,
render: function ( renderer, writeBuffer, readBuffer/*, deltaTime, maskActive*/ ) {
// Render depth into texture
this.scene.overrideMaterial = this.materialDepth;
renderer.getClearColor( this._oldClearColor );
var oldClearAlpha = renderer.getClearAlpha();
var oldAutoClear = renderer.autoClear;
renderer.autoClear = false;
renderer.setClearColor( 0xffffff );
renderer.setClearAlpha( 1.0 );
renderer.setRenderTarget( this.renderTargetDepth );
renderer.clear();
renderer.render( this.scene, this.camera );
// Render bokeh composite
this.uniforms[ 'tColor' ].value = readBuffer.texture;
this.uniforms[ 'nearClip' ].value = this.camera.near;
this.uniforms[ 'farClip' ].value = this.camera.far;
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( writeBuffer );
renderer.clear();
this.fsQuad.render( renderer );
}
this.scene.overrideMaterial = null;
renderer.setClearColor( this._oldClearColor );
renderer.setClearAlpha( oldClearAlpha );
renderer.autoClear = oldAutoClear;
}
} );

View file

@ -0,0 +1,41 @@
THREE.ClearPass = function ( clearColor, clearAlpha ) {
THREE.Pass.call( this );
this.needsSwap = false;
this.clearColor = ( clearColor !== undefined ) ? clearColor : 0x000000;
this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0;
this._oldClearColor = new THREE.Color();
};
THREE.ClearPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.ClearPass,
render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {
var oldClearAlpha;
if ( this.clearColor ) {
renderer.getClearColor( this._oldClearColor );
oldClearAlpha = renderer.getClearAlpha();
renderer.setClearColor( this.clearColor, this.clearAlpha );
}
renderer.setRenderTarget( this.renderToScreen ? null : readBuffer );
renderer.clear();
if ( this.clearColor ) {
renderer.setClearColor( this._oldClearColor, oldClearAlpha );
}
}
} );

View file

@ -0,0 +1,66 @@
THREE.CubeTexturePass = function ( camera, envMap, opacity ) {
THREE.Pass.call( this );
this.camera = camera;
this.needsSwap = false;
this.cubeShader = THREE.ShaderLib[ 'cube' ];
this.cubeMesh = new THREE.Mesh(
new THREE.BoxGeometry( 10, 10, 10 ),
new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( this.cubeShader.uniforms ),
vertexShader: this.cubeShader.vertexShader,
fragmentShader: this.cubeShader.fragmentShader,
depthTest: false,
depthWrite: false,
side: THREE.BackSide
} )
);
Object.defineProperty( this.cubeMesh.material, 'envMap', {
get: function () {
return this.uniforms.envMap.value;
}
} );
this.envMap = envMap;
this.opacity = ( opacity !== undefined ) ? opacity : 1.0;
this.cubeScene = new THREE.Scene();
this.cubeCamera = new THREE.PerspectiveCamera();
this.cubeScene.add( this.cubeMesh );
};
THREE.CubeTexturePass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.CubeTexturePass,
render: function ( renderer, writeBuffer, readBuffer/*, deltaTime, maskActive*/ ) {
var oldAutoClear = renderer.autoClear;
renderer.autoClear = false;
this.cubeCamera.projectionMatrix.copy( this.camera.projectionMatrix );
this.cubeCamera.quaternion.setFromRotationMatrix( this.camera.matrixWorld );
this.cubeMesh.material.uniforms.envMap.value = this.envMap;
this.cubeMesh.material.uniforms.flipEnvMap.value = ( this.envMap.isCubeTexture && this.envMap._needsFlipEnvMap ) ? - 1 : 1;
this.cubeMesh.material.uniforms.opacity.value = this.opacity;
this.cubeMesh.material.transparent = ( this.opacity < 1.0 );
renderer.setRenderTarget( this.renderToScreen ? null : readBuffer );
if ( this.clear ) renderer.clear();
renderer.render( this.cubeScene, this.cubeCamera );
renderer.autoClear = oldAutoClear;
}
} );

View file

@ -0,0 +1,52 @@
THREE.DotScreenPass = function ( center, angle, scale ) {
THREE.Pass.call( this );
if ( THREE.DotScreenShader === undefined )
console.error( 'THREE.DotScreenPass relies on THREE.DotScreenShader' );
var shader = THREE.DotScreenShader;
this.uniforms = THREE.UniformsUtils.clone( shader.uniforms );
if ( center !== undefined ) this.uniforms[ 'center' ].value.copy( center );
if ( angle !== undefined ) this.uniforms[ 'angle' ].value = angle;
if ( scale !== undefined ) this.uniforms[ 'scale' ].value = scale;
this.material = new THREE.ShaderMaterial( {
uniforms: this.uniforms,
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader
} );
this.fsQuad = new THREE.Pass.FullScreenQuad( this.material );
};
THREE.DotScreenPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.DotScreenPass,
render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {
this.uniforms[ 'tDiffuse' ].value = readBuffer.texture;
this.uniforms[ 'tSize' ].value.set( readBuffer.width, readBuffer.height );
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( writeBuffer );
if ( this.clear ) renderer.clear();
this.fsQuad.render( renderer );
}
}
} );

View file

@ -0,0 +1,306 @@
THREE.EffectComposer = function ( renderer, renderTarget ) {
this.renderer = renderer;
if ( renderTarget === undefined ) {
var parameters = {
minFilter: THREE.LinearFilter,
magFilter: THREE.LinearFilter,
format: THREE.RGBAFormat
};
var size = renderer.getSize( new THREE.Vector2() );
this._pixelRatio = renderer.getPixelRatio();
this._width = size.width;
this._height = size.height;
renderTarget = new THREE.WebGLRenderTarget( this._width * this._pixelRatio, this._height * this._pixelRatio, parameters );
renderTarget.texture.name = 'EffectComposer.rt1';
} else {
this._pixelRatio = 1;
this._width = renderTarget.width;
this._height = renderTarget.height;
}
this.renderTarget1 = renderTarget;
this.renderTarget2 = renderTarget.clone();
this.renderTarget2.texture.name = 'EffectComposer.rt2';
this.writeBuffer = this.renderTarget1;
this.readBuffer = this.renderTarget2;
this.renderToScreen = true;
this.passes = [];
// dependencies
if ( THREE.CopyShader === undefined ) {
console.error( 'THREE.EffectComposer relies on THREE.CopyShader' );
}
if ( THREE.ShaderPass === undefined ) {
console.error( 'THREE.EffectComposer relies on THREE.ShaderPass' );
}
this.copyPass = new THREE.ShaderPass( THREE.CopyShader );
this.clock = new THREE.Clock();
};
Object.assign( THREE.EffectComposer.prototype, {
swapBuffers: function () {
var tmp = this.readBuffer;
this.readBuffer = this.writeBuffer;
this.writeBuffer = tmp;
},
addPass: function ( pass ) {
this.passes.push( pass );
pass.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio );
},
insertPass: function ( pass, index ) {
this.passes.splice( index, 0, pass );
pass.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio );
},
removePass: function ( pass ) {
const index = this.passes.indexOf( pass );
if ( index !== - 1 ) {
this.passes.splice( index, 1 );
}
},
isLastEnabledPass: function ( passIndex ) {
for ( var i = passIndex + 1; i < this.passes.length; i ++ ) {
if ( this.passes[ i ].enabled ) {
return false;
}
}
return true;
},
render: function ( deltaTime ) {
// deltaTime value is in seconds
if ( deltaTime === undefined ) {
deltaTime = this.clock.getDelta();
}
var currentRenderTarget = this.renderer.getRenderTarget();
var maskActive = false;
var pass, i, il = this.passes.length;
for ( i = 0; i < il; i ++ ) {
pass = this.passes[ i ];
if ( pass.enabled === false ) continue;
pass.renderToScreen = ( this.renderToScreen && this.isLastEnabledPass( i ) );
pass.render( this.renderer, this.writeBuffer, this.readBuffer, deltaTime, maskActive );
if ( pass.needsSwap ) {
if ( maskActive ) {
var context = this.renderer.getContext();
var stencil = this.renderer.state.buffers.stencil;
//context.stencilFunc( context.NOTEQUAL, 1, 0xffffffff );
stencil.setFunc( context.NOTEQUAL, 1, 0xffffffff );
this.copyPass.render( this.renderer, this.writeBuffer, this.readBuffer, deltaTime );
//context.stencilFunc( context.EQUAL, 1, 0xffffffff );
stencil.setFunc( context.EQUAL, 1, 0xffffffff );
}
this.swapBuffers();
}
if ( THREE.MaskPass !== undefined ) {
if ( pass instanceof THREE.MaskPass ) {
maskActive = true;
} else if ( pass instanceof THREE.ClearMaskPass ) {
maskActive = false;
}
}
}
this.renderer.setRenderTarget( currentRenderTarget );
},
reset: function ( renderTarget ) {
if ( renderTarget === undefined ) {
var size = this.renderer.getSize( new THREE.Vector2() );
this._pixelRatio = this.renderer.getPixelRatio();
this._width = size.width;
this._height = size.height;
renderTarget = this.renderTarget1.clone();
renderTarget.setSize( this._width * this._pixelRatio, this._height * this._pixelRatio );
}
this.renderTarget1.dispose();
this.renderTarget2.dispose();
this.renderTarget1 = renderTarget;
this.renderTarget2 = renderTarget.clone();
this.writeBuffer = this.renderTarget1;
this.readBuffer = this.renderTarget2;
},
setSize: function ( width, height ) {
this._width = width;
this._height = height;
var effectiveWidth = this._width * this._pixelRatio;
var effectiveHeight = this._height * this._pixelRatio;
this.renderTarget1.setSize( effectiveWidth, effectiveHeight );
this.renderTarget2.setSize( effectiveWidth, effectiveHeight );
for ( var i = 0; i < this.passes.length; i ++ ) {
this.passes[ i ].setSize( effectiveWidth, effectiveHeight );
}
},
setPixelRatio: function ( pixelRatio ) {
this._pixelRatio = pixelRatio;
this.setSize( this._width, this._height );
}
} );
THREE.Pass = function () {
// if set to true, the pass is processed by the composer
this.enabled = true;
// if set to true, the pass indicates to swap read and write buffer after rendering
this.needsSwap = true;
// if set to true, the pass clears its buffer before rendering
this.clear = false;
// if set to true, the result of the pass is rendered to screen. This is set automatically by EffectComposer.
this.renderToScreen = false;
};
Object.assign( THREE.Pass.prototype, {
setSize: function ( /* width, height */ ) {},
render: function ( /* renderer, writeBuffer, readBuffer, deltaTime, maskActive */ ) {
console.error( 'THREE.Pass: .render() must be implemented in derived pass.' );
}
} );
// Helper for passes that need to fill the viewport with a single quad.
THREE.Pass.FullScreenQuad = ( function () {
var camera = new THREE.OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
var geometry = new THREE.PlaneGeometry( 2, 2 );
var FullScreenQuad = function ( material ) {
this._mesh = new THREE.Mesh( geometry, material );
};
Object.defineProperty( FullScreenQuad.prototype, 'material', {
get: function () {
return this._mesh.material;
},
set: function ( value ) {
this._mesh.material = value;
}
} );
Object.assign( FullScreenQuad.prototype, {
dispose: function () {
this._mesh.geometry.dispose();
},
render: function ( renderer ) {
renderer.render( this._mesh, camera );
}
} );
return FullScreenQuad;
} )();

View file

@ -0,0 +1,53 @@
THREE.FilmPass = function ( noiseIntensity, scanlinesIntensity, scanlinesCount, grayscale ) {
THREE.Pass.call( this );
if ( THREE.FilmShader === undefined )
console.error( 'THREE.FilmPass relies on THREE.FilmShader' );
var shader = THREE.FilmShader;
this.uniforms = THREE.UniformsUtils.clone( shader.uniforms );
this.material = new THREE.ShaderMaterial( {
uniforms: this.uniforms,
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader
} );
if ( grayscale !== undefined ) this.uniforms.grayscale.value = grayscale;
if ( noiseIntensity !== undefined ) this.uniforms.nIntensity.value = noiseIntensity;
if ( scanlinesIntensity !== undefined ) this.uniforms.sIntensity.value = scanlinesIntensity;
if ( scanlinesCount !== undefined ) this.uniforms.sCount.value = scanlinesCount;
this.fsQuad = new THREE.Pass.FullScreenQuad( this.material );
};
THREE.FilmPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.FilmPass,
render: function ( renderer, writeBuffer, readBuffer, deltaTime /*, maskActive */ ) {
this.uniforms[ 'tDiffuse' ].value = readBuffer.texture;
this.uniforms[ 'time' ].value += deltaTime;
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( writeBuffer );
if ( this.clear ) renderer.clear();
this.fsQuad.render( renderer );
}
}
} );

View file

@ -0,0 +1,107 @@
THREE.GlitchPass = function ( dt_size ) {
THREE.Pass.call( this );
if ( THREE.DigitalGlitch === undefined ) console.error( 'THREE.GlitchPass relies on THREE.DigitalGlitch' );
var shader = THREE.DigitalGlitch;
this.uniforms = THREE.UniformsUtils.clone( shader.uniforms );
if ( dt_size == undefined ) dt_size = 64;
this.uniforms[ 'tDisp' ].value = this.generateHeightmap( dt_size );
this.material = new THREE.ShaderMaterial( {
uniforms: this.uniforms,
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader
} );
this.fsQuad = new THREE.Pass.FullScreenQuad( this.material );
this.goWild = false;
this.curF = 0;
this.generateTrigger();
};
THREE.GlitchPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.GlitchPass,
render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {
this.uniforms[ 'tDiffuse' ].value = readBuffer.texture;
this.uniforms[ 'seed' ].value = Math.random();//default seeding
this.uniforms[ 'byp' ].value = 0;
if ( this.curF % this.randX == 0 || this.goWild == true ) {
this.uniforms[ 'amount' ].value = Math.random() / 30;
this.uniforms[ 'angle' ].value = THREE.MathUtils.randFloat( - Math.PI, Math.PI );
this.uniforms[ 'seed_x' ].value = THREE.MathUtils.randFloat( - 1, 1 );
this.uniforms[ 'seed_y' ].value = THREE.MathUtils.randFloat( - 1, 1 );
this.uniforms[ 'distortion_x' ].value = THREE.MathUtils.randFloat( 0, 1 );
this.uniforms[ 'distortion_y' ].value = THREE.MathUtils.randFloat( 0, 1 );
this.curF = 0;
this.generateTrigger();
} else if ( this.curF % this.randX < this.randX / 5 ) {
this.uniforms[ 'amount' ].value = Math.random() / 90;
this.uniforms[ 'angle' ].value = THREE.MathUtils.randFloat( - Math.PI, Math.PI );
this.uniforms[ 'distortion_x' ].value = THREE.MathUtils.randFloat( 0, 1 );
this.uniforms[ 'distortion_y' ].value = THREE.MathUtils.randFloat( 0, 1 );
this.uniforms[ 'seed_x' ].value = THREE.MathUtils.randFloat( - 0.3, 0.3 );
this.uniforms[ 'seed_y' ].value = THREE.MathUtils.randFloat( - 0.3, 0.3 );
} else if ( this.goWild == false ) {
this.uniforms[ 'byp' ].value = 1;
}
this.curF ++;
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( writeBuffer );
if ( this.clear ) renderer.clear();
this.fsQuad.render( renderer );
}
},
generateTrigger: function () {
this.randX = THREE.MathUtils.randInt( 120, 240 );
},
generateHeightmap: function ( dt_size ) {
var data_arr = new Float32Array( dt_size * dt_size * 3 );
var length = dt_size * dt_size;
for ( var i = 0; i < length; i ++ ) {
var val = THREE.MathUtils.randFloat( 0, 1 );
data_arr[ i * 3 + 0 ] = val;
data_arr[ i * 3 + 1 ] = val;
data_arr[ i * 3 + 2 ] = val;
}
return new THREE.DataTexture( data_arr, dt_size, dt_size, THREE.RGBFormat, THREE.FloatType );
}
} );

View file

@ -0,0 +1,69 @@
/**
* RGB Halftone pass for three.js effects composer. Requires THREE.HalftoneShader.
*/
THREE.HalftonePass = function ( width, height, params ) {
THREE.Pass.call( this );
if ( THREE.HalftoneShader === undefined ) {
console.error( 'THREE.HalftonePass requires THREE.HalftoneShader' );
}
this.uniforms = THREE.UniformsUtils.clone( THREE.HalftoneShader.uniforms );
this.material = new THREE.ShaderMaterial( {
uniforms: this.uniforms,
fragmentShader: THREE.HalftoneShader.fragmentShader,
vertexShader: THREE.HalftoneShader.vertexShader
} );
// set params
this.uniforms.width.value = width;
this.uniforms.height.value = height;
for ( var key in params ) {
if ( params.hasOwnProperty( key ) && this.uniforms.hasOwnProperty( key ) ) {
this.uniforms[ key ].value = params[ key ];
}
}
this.fsQuad = new THREE.Pass.FullScreenQuad( this.material );
};
THREE.HalftonePass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.HalftonePass,
render: function ( renderer, writeBuffer, readBuffer/*, deltaTime, maskActive*/ ) {
this.material.uniforms[ 'tDiffuse' ].value = readBuffer.texture;
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( writeBuffer );
if ( this.clear ) renderer.clear();
this.fsQuad.render( renderer );
}
},
setSize: function ( width, height ) {
this.uniforms.width.value = width;
this.uniforms.height.value = height;
}
} );

View file

@ -0,0 +1,102 @@
THREE.MaskPass = function ( scene, camera ) {
THREE.Pass.call( this );
this.scene = scene;
this.camera = camera;
this.clear = true;
this.needsSwap = false;
this.inverse = false;
};
THREE.MaskPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.MaskPass,
render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {
var context = renderer.getContext();
var state = renderer.state;
// don't update color or depth
state.buffers.color.setMask( false );
state.buffers.depth.setMask( false );
// lock buffers
state.buffers.color.setLocked( true );
state.buffers.depth.setLocked( true );
// set up stencil
var writeValue, clearValue;
if ( this.inverse ) {
writeValue = 0;
clearValue = 1;
} else {
writeValue = 1;
clearValue = 0;
}
state.buffers.stencil.setTest( true );
state.buffers.stencil.setOp( context.REPLACE, context.REPLACE, context.REPLACE );
state.buffers.stencil.setFunc( context.ALWAYS, writeValue, 0xffffffff );
state.buffers.stencil.setClear( clearValue );
state.buffers.stencil.setLocked( true );
// draw into the stencil buffer
renderer.setRenderTarget( readBuffer );
if ( this.clear ) renderer.clear();
renderer.render( this.scene, this.camera );
renderer.setRenderTarget( writeBuffer );
if ( this.clear ) renderer.clear();
renderer.render( this.scene, this.camera );
// unlock color and depth buffer for subsequent rendering
state.buffers.color.setLocked( false );
state.buffers.depth.setLocked( false );
// only render where stencil is set to 1
state.buffers.stencil.setLocked( false );
state.buffers.stencil.setFunc( context.EQUAL, 1, 0xffffffff ); // draw if == 1
state.buffers.stencil.setOp( context.KEEP, context.KEEP, context.KEEP );
state.buffers.stencil.setLocked( true );
}
} );
THREE.ClearMaskPass = function () {
THREE.Pass.call( this );
this.needsSwap = false;
};
THREE.ClearMaskPass.prototype = Object.create( THREE.Pass.prototype );
Object.assign( THREE.ClearMaskPass.prototype, {
render: function ( renderer /*, writeBuffer, readBuffer, deltaTime, maskActive */ ) {
renderer.state.buffers.stencil.setLocked( false );
renderer.state.buffers.stencil.setTest( false );
}
} );

View file

@ -0,0 +1,616 @@
THREE.OutlinePass = function ( resolution, scene, camera, selectedObjects ) {
this.renderScene = scene;
this.renderCamera = camera;
this.selectedObjects = selectedObjects !== undefined ? selectedObjects : [];
this.visibleEdgeColor = new THREE.Color( 1, 1, 1 );
this.hiddenEdgeColor = new THREE.Color( 0.1, 0.04, 0.02 );
this.edgeGlow = 0.0;
this.usePatternTexture = false;
this.edgeThickness = 1.0;
this.edgeStrength = 3.0;
this.downSampleRatio = 2;
this.pulsePeriod = 0;
this._visibilityCache = new Map();
THREE.Pass.call( this );
this.resolution = ( resolution !== undefined ) ? new THREE.Vector2( resolution.x, resolution.y ) : new THREE.Vector2( 256, 256 );
var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat };
var resx = Math.round( this.resolution.x / this.downSampleRatio );
var resy = Math.round( this.resolution.y / this.downSampleRatio );
this.maskBufferMaterial = new THREE.MeshBasicMaterial( { color: 0xffffff } );
this.maskBufferMaterial.side = THREE.DoubleSide;
this.renderTargetMaskBuffer = new THREE.WebGLRenderTarget( this.resolution.x, this.resolution.y, pars );
this.renderTargetMaskBuffer.texture.name = 'OutlinePass.mask';
this.renderTargetMaskBuffer.texture.generateMipmaps = false;
this.depthMaterial = new THREE.MeshDepthMaterial();
this.depthMaterial.side = THREE.DoubleSide;
this.depthMaterial.depthPacking = THREE.RGBADepthPacking;
this.depthMaterial.blending = THREE.NoBlending;
this.prepareMaskMaterial = this.getPrepareMaskMaterial();
this.prepareMaskMaterial.side = THREE.DoubleSide;
this.prepareMaskMaterial.fragmentShader = replaceDepthToViewZ( this.prepareMaskMaterial.fragmentShader, this.renderCamera );
this.renderTargetDepthBuffer = new THREE.WebGLRenderTarget( this.resolution.x, this.resolution.y, pars );
this.renderTargetDepthBuffer.texture.name = 'OutlinePass.depth';
this.renderTargetDepthBuffer.texture.generateMipmaps = false;
this.renderTargetMaskDownSampleBuffer = new THREE.WebGLRenderTarget( resx, resy, pars );
this.renderTargetMaskDownSampleBuffer.texture.name = 'OutlinePass.depthDownSample';
this.renderTargetMaskDownSampleBuffer.texture.generateMipmaps = false;
this.renderTargetBlurBuffer1 = new THREE.WebGLRenderTarget( resx, resy, pars );
this.renderTargetBlurBuffer1.texture.name = 'OutlinePass.blur1';
this.renderTargetBlurBuffer1.texture.generateMipmaps = false;
this.renderTargetBlurBuffer2 = new THREE.WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ), pars );
this.renderTargetBlurBuffer2.texture.name = 'OutlinePass.blur2';
this.renderTargetBlurBuffer2.texture.generateMipmaps = false;
this.edgeDetectionMaterial = this.getEdgeDetectionMaterial();
this.renderTargetEdgeBuffer1 = new THREE.WebGLRenderTarget( resx, resy, pars );
this.renderTargetEdgeBuffer1.texture.name = 'OutlinePass.edge1';
this.renderTargetEdgeBuffer1.texture.generateMipmaps = false;
this.renderTargetEdgeBuffer2 = new THREE.WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ), pars );
this.renderTargetEdgeBuffer2.texture.name = 'OutlinePass.edge2';
this.renderTargetEdgeBuffer2.texture.generateMipmaps = false;
var MAX_EDGE_THICKNESS = 4;
var MAX_EDGE_GLOW = 4;
this.separableBlurMaterial1 = this.getSeperableBlurMaterial( MAX_EDGE_THICKNESS );
this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy );
this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = 1;
this.separableBlurMaterial2 = this.getSeperableBlurMaterial( MAX_EDGE_GLOW );
this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( Math.round( resx / 2 ), Math.round( resy / 2 ) );
this.separableBlurMaterial2.uniforms[ 'kernelRadius' ].value = MAX_EDGE_GLOW;
// Overlay material
this.overlayMaterial = this.getOverlayMaterial();
// copy material
if ( THREE.CopyShader === undefined )
console.error( 'THREE.OutlinePass relies on THREE.CopyShader' );
var copyShader = THREE.CopyShader;
this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
this.copyUniforms[ 'opacity' ].value = 1.0;
this.materialCopy = new THREE.ShaderMaterial( {
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
blending: THREE.NoBlending,
depthTest: false,
depthWrite: false,
transparent: true
} );
this.enabled = true;
this.needsSwap = false;
this._oldClearColor = new THREE.Color();
this.oldClearAlpha = 1;
this.fsQuad = new THREE.Pass.FullScreenQuad( null );
this.tempPulseColor1 = new THREE.Color();
this.tempPulseColor2 = new THREE.Color();
this.textureMatrix = new THREE.Matrix4();
function replaceDepthToViewZ( string, camera ) {
var type = camera.isPerspectiveCamera ? 'perspective' : 'orthographic';
return string.replace( /DEPTH_TO_VIEW_Z/g, type + 'DepthToViewZ' );
}
};
THREE.OutlinePass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.OutlinePass,
dispose: function () {
this.renderTargetMaskBuffer.dispose();
this.renderTargetDepthBuffer.dispose();
this.renderTargetMaskDownSampleBuffer.dispose();
this.renderTargetBlurBuffer1.dispose();
this.renderTargetBlurBuffer2.dispose();
this.renderTargetEdgeBuffer1.dispose();
this.renderTargetEdgeBuffer2.dispose();
},
setSize: function ( width, height ) {
this.renderTargetMaskBuffer.setSize( width, height );
var resx = Math.round( width / this.downSampleRatio );
var resy = Math.round( height / this.downSampleRatio );
this.renderTargetMaskDownSampleBuffer.setSize( resx, resy );
this.renderTargetBlurBuffer1.setSize( resx, resy );
this.renderTargetEdgeBuffer1.setSize( resx, resy );
this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy );
resx = Math.round( resx / 2 );
resy = Math.round( resy / 2 );
this.renderTargetBlurBuffer2.setSize( resx, resy );
this.renderTargetEdgeBuffer2.setSize( resx, resy );
this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( resx, resy );
},
changeVisibilityOfSelectedObjects: function ( bVisible ) {
var cache = this._visibilityCache;
function gatherSelectedMeshesCallBack( object ) {
if ( object.isMesh ) {
if ( bVisible === true ) {
object.visible = cache.get( object );
} else {
cache.set( object, object.visible );
object.visible = bVisible;
}
}
}
for ( var i = 0; i < this.selectedObjects.length; i ++ ) {
var selectedObject = this.selectedObjects[ i ];
selectedObject.traverse( gatherSelectedMeshesCallBack );
}
},
changeVisibilityOfNonSelectedObjects: function ( bVisible ) {
var cache = this._visibilityCache;
var selectedMeshes = [];
function gatherSelectedMeshesCallBack( object ) {
if ( object.isMesh ) selectedMeshes.push( object );
}
for ( var i = 0; i < this.selectedObjects.length; i ++ ) {
var selectedObject = this.selectedObjects[ i ];
selectedObject.traverse( gatherSelectedMeshesCallBack );
}
function VisibilityChangeCallBack( object ) {
if ( object.isMesh || object.isSprite ) {
// only meshes and sprites are supported by OutlinePass
var bFound = false;
for ( var i = 0; i < selectedMeshes.length; i ++ ) {
var selectedObjectId = selectedMeshes[ i ].id;
if ( selectedObjectId === object.id ) {
bFound = true;
break;
}
}
if ( bFound === false ) {
var visibility = object.visible;
if ( bVisible === false || cache.get( object ) === true ) {
object.visible = bVisible;
}
cache.set( object, visibility );
}
} else if ( object.isPoints || object.isLine ) {
// the visibilty of points and lines is always set to false in order to
// not affect the outline computation
if ( bVisible === true ) {
object.visible = cache.get( object ); // restore
} else {
cache.set( object, object.visible );
object.visible = bVisible;
}
}
}
this.renderScene.traverse( VisibilityChangeCallBack );
},
updateTextureMatrix: function () {
this.textureMatrix.set( 0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0 );
this.textureMatrix.multiply( this.renderCamera.projectionMatrix );
this.textureMatrix.multiply( this.renderCamera.matrixWorldInverse );
},
render: function ( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) {
if ( this.selectedObjects.length > 0 ) {
renderer.getClearColor( this._oldClearColor );
this.oldClearAlpha = renderer.getClearAlpha();
var oldAutoClear = renderer.autoClear;
renderer.autoClear = false;
if ( maskActive ) renderer.state.buffers.stencil.setTest( false );
renderer.setClearColor( 0xffffff, 1 );
// Make selected objects invisible
this.changeVisibilityOfSelectedObjects( false );
var currentBackground = this.renderScene.background;
this.renderScene.background = null;
// 1. Draw Non Selected objects in the depth buffer
this.renderScene.overrideMaterial = this.depthMaterial;
renderer.setRenderTarget( this.renderTargetDepthBuffer );
renderer.clear();
renderer.render( this.renderScene, this.renderCamera );
// Make selected objects visible
this.changeVisibilityOfSelectedObjects( true );
this._visibilityCache.clear();
// Update Texture Matrix for Depth compare
this.updateTextureMatrix();
// Make non selected objects invisible, and draw only the selected objects, by comparing the depth buffer of non selected objects
this.changeVisibilityOfNonSelectedObjects( false );
this.renderScene.overrideMaterial = this.prepareMaskMaterial;
this.prepareMaskMaterial.uniforms[ 'cameraNearFar' ].value.set( this.renderCamera.near, this.renderCamera.far );
this.prepareMaskMaterial.uniforms[ 'depthTexture' ].value = this.renderTargetDepthBuffer.texture;
this.prepareMaskMaterial.uniforms[ 'textureMatrix' ].value = this.textureMatrix;
renderer.setRenderTarget( this.renderTargetMaskBuffer );
renderer.clear();
renderer.render( this.renderScene, this.renderCamera );
this.renderScene.overrideMaterial = null;
this.changeVisibilityOfNonSelectedObjects( true );
this._visibilityCache.clear();
this.renderScene.background = currentBackground;
// 2. Downsample to Half resolution
this.fsQuad.material = this.materialCopy;
this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetMaskBuffer.texture;
renderer.setRenderTarget( this.renderTargetMaskDownSampleBuffer );
renderer.clear();
this.fsQuad.render( renderer );
this.tempPulseColor1.copy( this.visibleEdgeColor );
this.tempPulseColor2.copy( this.hiddenEdgeColor );
if ( this.pulsePeriod > 0 ) {
var scalar = ( 1 + 0.25 ) / 2 + Math.cos( performance.now() * 0.01 / this.pulsePeriod ) * ( 1.0 - 0.25 ) / 2;
this.tempPulseColor1.multiplyScalar( scalar );
this.tempPulseColor2.multiplyScalar( scalar );
}
// 3. Apply Edge Detection Pass
this.fsQuad.material = this.edgeDetectionMaterial;
this.edgeDetectionMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskDownSampleBuffer.texture;
this.edgeDetectionMaterial.uniforms[ 'texSize' ].value.set( this.renderTargetMaskDownSampleBuffer.width, this.renderTargetMaskDownSampleBuffer.height );
this.edgeDetectionMaterial.uniforms[ 'visibleEdgeColor' ].value = this.tempPulseColor1;
this.edgeDetectionMaterial.uniforms[ 'hiddenEdgeColor' ].value = this.tempPulseColor2;
renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
renderer.clear();
this.fsQuad.render( renderer );
// 4. Apply Blur on Half res
this.fsQuad.material = this.separableBlurMaterial1;
this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
this.separableBlurMaterial1.uniforms[ 'direction' ].value = THREE.OutlinePass.BlurDirectionX;
this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = this.edgeThickness;
renderer.setRenderTarget( this.renderTargetBlurBuffer1 );
renderer.clear();
this.fsQuad.render( renderer );
this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer1.texture;
this.separableBlurMaterial1.uniforms[ 'direction' ].value = THREE.OutlinePass.BlurDirectionY;
renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
renderer.clear();
this.fsQuad.render( renderer );
// Apply Blur on quarter res
this.fsQuad.material = this.separableBlurMaterial2;
this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
this.separableBlurMaterial2.uniforms[ 'direction' ].value = THREE.OutlinePass.BlurDirectionX;
renderer.setRenderTarget( this.renderTargetBlurBuffer2 );
renderer.clear();
this.fsQuad.render( renderer );
this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer2.texture;
this.separableBlurMaterial2.uniforms[ 'direction' ].value = THREE.OutlinePass.BlurDirectionY;
renderer.setRenderTarget( this.renderTargetEdgeBuffer2 );
renderer.clear();
this.fsQuad.render( renderer );
// Blend it additively over the input texture
this.fsQuad.material = this.overlayMaterial;
this.overlayMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskBuffer.texture;
this.overlayMaterial.uniforms[ 'edgeTexture1' ].value = this.renderTargetEdgeBuffer1.texture;
this.overlayMaterial.uniforms[ 'edgeTexture2' ].value = this.renderTargetEdgeBuffer2.texture;
this.overlayMaterial.uniforms[ 'patternTexture' ].value = this.patternTexture;
this.overlayMaterial.uniforms[ 'edgeStrength' ].value = this.edgeStrength;
this.overlayMaterial.uniforms[ 'edgeGlow' ].value = this.edgeGlow;
this.overlayMaterial.uniforms[ 'usePatternTexture' ].value = this.usePatternTexture;
if ( maskActive ) renderer.state.buffers.stencil.setTest( true );
renderer.setRenderTarget( readBuffer );
this.fsQuad.render( renderer );
renderer.setClearColor( this._oldClearColor, this.oldClearAlpha );
renderer.autoClear = oldAutoClear;
}
if ( this.renderToScreen ) {
this.fsQuad.material = this.materialCopy;
this.copyUniforms[ 'tDiffuse' ].value = readBuffer.texture;
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
}
},
getPrepareMaskMaterial: function () {
return new THREE.ShaderMaterial( {
uniforms: {
'depthTexture': { value: null },
'cameraNearFar': { value: new THREE.Vector2( 0.5, 0.5 ) },
'textureMatrix': { value: null }
},
vertexShader: [
'#include <morphtarget_pars_vertex>',
'#include <skinning_pars_vertex>',
'varying vec4 projTexCoord;',
'varying vec4 vPosition;',
'uniform mat4 textureMatrix;',
'void main() {',
' #include <skinbase_vertex>',
' #include <begin_vertex>',
' #include <morphtarget_vertex>',
' #include <skinning_vertex>',
' #include <project_vertex>',
' vPosition = mvPosition;',
' vec4 worldPosition = modelMatrix * vec4( position, 1.0 );',
' projTexCoord = textureMatrix * worldPosition;',
'}'
].join( '\n' ),
fragmentShader: [
'#include <packing>',
'varying vec4 vPosition;',
'varying vec4 projTexCoord;',
'uniform sampler2D depthTexture;',
'uniform vec2 cameraNearFar;',
'void main() {',
' float depth = unpackRGBAToDepth(texture2DProj( depthTexture, projTexCoord ));',
' float viewZ = - DEPTH_TO_VIEW_Z( depth, cameraNearFar.x, cameraNearFar.y );',
' float depthTest = (-vPosition.z > viewZ) ? 1.0 : 0.0;',
' gl_FragColor = vec4(0.0, depthTest, 1.0, 1.0);',
'}'
].join( '\n' )
} );
},
getEdgeDetectionMaterial: function () {
return new THREE.ShaderMaterial( {
uniforms: {
'maskTexture': { value: null },
'texSize': { value: new THREE.Vector2( 0.5, 0.5 ) },
'visibleEdgeColor': { value: new THREE.Vector3( 1.0, 1.0, 1.0 ) },
'hiddenEdgeColor': { value: new THREE.Vector3( 1.0, 1.0, 1.0 ) },
},
vertexShader:
'varying vec2 vUv;\n\
void main() {\n\
vUv = uv;\n\
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n\
}',
fragmentShader:
'varying vec2 vUv;\
uniform sampler2D maskTexture;\
uniform vec2 texSize;\
uniform vec3 visibleEdgeColor;\
uniform vec3 hiddenEdgeColor;\
\
void main() {\n\
vec2 invSize = 1.0 / texSize;\
vec4 uvOffset = vec4(1.0, 0.0, 0.0, 1.0) * vec4(invSize, invSize);\
vec4 c1 = texture2D( maskTexture, vUv + uvOffset.xy);\
vec4 c2 = texture2D( maskTexture, vUv - uvOffset.xy);\
vec4 c3 = texture2D( maskTexture, vUv + uvOffset.yw);\
vec4 c4 = texture2D( maskTexture, vUv - uvOffset.yw);\
float diff1 = (c1.r - c2.r)*0.5;\
float diff2 = (c3.r - c4.r)*0.5;\
float d = length( vec2(diff1, diff2) );\
float a1 = min(c1.g, c2.g);\
float a2 = min(c3.g, c4.g);\
float visibilityFactor = min(a1, a2);\
vec3 edgeColor = 1.0 - visibilityFactor > 0.001 ? visibleEdgeColor : hiddenEdgeColor;\
gl_FragColor = vec4(edgeColor, 1.0) * vec4(d);\
}'
} );
},
getSeperableBlurMaterial: function ( maxRadius ) {
return new THREE.ShaderMaterial( {
defines: {
'MAX_RADIUS': maxRadius,
},
uniforms: {
'colorTexture': { value: null },
'texSize': { value: new THREE.Vector2( 0.5, 0.5 ) },
'direction': { value: new THREE.Vector2( 0.5, 0.5 ) },
'kernelRadius': { value: 1.0 }
},
vertexShader:
'varying vec2 vUv;\n\
void main() {\n\
vUv = uv;\n\
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n\
}',
fragmentShader:
'#include <common>\
varying vec2 vUv;\
uniform sampler2D colorTexture;\
uniform vec2 texSize;\
uniform vec2 direction;\
uniform float kernelRadius;\
\
float gaussianPdf(in float x, in float sigma) {\
return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;\
}\
void main() {\
vec2 invSize = 1.0 / texSize;\
float weightSum = gaussianPdf(0.0, kernelRadius);\
vec4 diffuseSum = texture2D( colorTexture, vUv) * weightSum;\
vec2 delta = direction * invSize * kernelRadius/float(MAX_RADIUS);\
vec2 uvOffset = delta;\
for( int i = 1; i <= MAX_RADIUS; i ++ ) {\
float w = gaussianPdf(uvOffset.x, kernelRadius);\
vec4 sample1 = texture2D( colorTexture, vUv + uvOffset);\
vec4 sample2 = texture2D( colorTexture, vUv - uvOffset);\
diffuseSum += ((sample1 + sample2) * w);\
weightSum += (2.0 * w);\
uvOffset += delta;\
}\
gl_FragColor = diffuseSum/weightSum;\
}'
} );
},
getOverlayMaterial: function () {
return new THREE.ShaderMaterial( {
uniforms: {
'maskTexture': { value: null },
'edgeTexture1': { value: null },
'edgeTexture2': { value: null },
'patternTexture': { value: null },
'edgeStrength': { value: 1.0 },
'edgeGlow': { value: 1.0 },
'usePatternTexture': { value: 0.0 }
},
vertexShader:
'varying vec2 vUv;\n\
void main() {\n\
vUv = uv;\n\
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n\
}',
fragmentShader:
'varying vec2 vUv;\
uniform sampler2D maskTexture;\
uniform sampler2D edgeTexture1;\
uniform sampler2D edgeTexture2;\
uniform sampler2D patternTexture;\
uniform float edgeStrength;\
uniform float edgeGlow;\
uniform bool usePatternTexture;\
\
void main() {\
vec4 edgeValue1 = texture2D(edgeTexture1, vUv);\
vec4 edgeValue2 = texture2D(edgeTexture2, vUv);\
vec4 maskColor = texture2D(maskTexture, vUv);\
vec4 patternColor = texture2D(patternTexture, 6.0 * vUv);\
float visibilityFactor = 1.0 - maskColor.g > 0.0 ? 1.0 : 0.5;\
vec4 edgeValue = edgeValue1 + edgeValue2 * edgeGlow;\
vec4 finalColor = edgeStrength * maskColor.r * edgeValue;\
if(usePatternTexture)\
finalColor += + visibilityFactor * (1.0 - maskColor.r) * (1.0 - patternColor.r);\
gl_FragColor = finalColor;\
}',
blending: THREE.AdditiveBlending,
depthTest: false,
depthWrite: false,
transparent: true
} );
}
} );
THREE.OutlinePass.BlurDirectionX = new THREE.Vector2( 1.0, 0.0 );
THREE.OutlinePass.BlurDirectionY = new THREE.Vector2( 0.0, 1.0 );

View file

@ -0,0 +1,76 @@
THREE.RenderPass = function ( scene, camera, overrideMaterial, clearColor, clearAlpha ) {
THREE.Pass.call( this );
this.scene = scene;
this.camera = camera;
this.overrideMaterial = overrideMaterial;
this.clearColor = clearColor;
this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0;
this.clear = true;
this.clearDepth = false;
this.needsSwap = false;
this._oldClearColor = new THREE.Color();
};
THREE.RenderPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.RenderPass,
render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {
var oldAutoClear = renderer.autoClear;
renderer.autoClear = false;
var oldClearAlpha, oldOverrideMaterial;
if ( this.overrideMaterial !== undefined ) {
oldOverrideMaterial = this.scene.overrideMaterial;
this.scene.overrideMaterial = this.overrideMaterial;
}
if ( this.clearColor ) {
renderer.getClearColor( this._oldClearColor );
oldClearAlpha = renderer.getClearAlpha();
renderer.setClearColor( this.clearColor, this.clearAlpha );
}
if ( this.clearDepth ) {
renderer.clearDepth();
}
renderer.setRenderTarget( this.renderToScreen ? null : readBuffer );
// TODO: Avoid using autoClear properties, see https://github.com/mrdoob/three.js/pull/15571#issuecomment-465669600
if ( this.clear ) renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );
renderer.render( this.scene, this.camera );
if ( this.clearColor ) {
renderer.setClearColor( this._oldClearColor, oldClearAlpha );
}
if ( this.overrideMaterial !== undefined ) {
this.scene.overrideMaterial = oldOverrideMaterial;
}
renderer.autoClear = oldAutoClear;
}
} );

View file

@ -0,0 +1,391 @@
/**
* SAO implementation inspired from bhouston previous SAO work
*/
THREE.SAOPass = function ( scene, camera, depthTexture, useNormals, resolution ) {
THREE.Pass.call( this );
this.scene = scene;
this.camera = camera;
this.clear = true;
this.needsSwap = false;
this.supportsDepthTextureExtension = ( depthTexture !== undefined ) ? depthTexture : false;
this.supportsNormalTexture = ( useNormals !== undefined ) ? useNormals : false;
this.originalClearColor = new THREE.Color();
this._oldClearColor = new THREE.Color();
this.oldClearAlpha = 1;
this.params = {
output: 0,
saoBias: 0.5,
saoIntensity: 0.18,
saoScale: 1,
saoKernelRadius: 100,
saoMinResolution: 0,
saoBlur: true,
saoBlurRadius: 8,
saoBlurStdDev: 4,
saoBlurDepthCutoff: 0.01
};
this.resolution = ( resolution !== undefined ) ? new THREE.Vector2( resolution.x, resolution.y ) : new THREE.Vector2( 256, 256 );
this.saoRenderTarget = new THREE.WebGLRenderTarget( this.resolution.x, this.resolution.y, {
minFilter: THREE.LinearFilter,
magFilter: THREE.LinearFilter,
format: THREE.RGBAFormat
} );
this.blurIntermediateRenderTarget = this.saoRenderTarget.clone();
this.beautyRenderTarget = this.saoRenderTarget.clone();
this.normalRenderTarget = new THREE.WebGLRenderTarget( this.resolution.x, this.resolution.y, {
minFilter: THREE.NearestFilter,
magFilter: THREE.NearestFilter,
format: THREE.RGBAFormat
} );
this.depthRenderTarget = this.normalRenderTarget.clone();
if ( this.supportsDepthTextureExtension ) {
var depthTexture = new THREE.DepthTexture();
depthTexture.type = THREE.UnsignedShortType;
depthTexture.minFilter = THREE.NearestFilter;
depthTexture.maxFilter = THREE.NearestFilter;
this.beautyRenderTarget.depthTexture = depthTexture;
this.beautyRenderTarget.depthBuffer = true;
}
this.depthMaterial = new THREE.MeshDepthMaterial();
this.depthMaterial.depthPacking = THREE.RGBADepthPacking;
this.depthMaterial.blending = THREE.NoBlending;
this.normalMaterial = new THREE.MeshNormalMaterial();
this.normalMaterial.blending = THREE.NoBlending;
if ( THREE.SAOShader === undefined ) {
console.error( 'THREE.SAOPass relies on THREE.SAOShader' );
}
this.saoMaterial = new THREE.ShaderMaterial( {
defines: Object.assign( {}, THREE.SAOShader.defines ),
fragmentShader: THREE.SAOShader.fragmentShader,
vertexShader: THREE.SAOShader.vertexShader,
uniforms: THREE.UniformsUtils.clone( THREE.SAOShader.uniforms )
} );
this.saoMaterial.extensions.derivatives = true;
this.saoMaterial.defines[ 'DEPTH_PACKING' ] = this.supportsDepthTextureExtension ? 0 : 1;
this.saoMaterial.defines[ 'NORMAL_TEXTURE' ] = this.supportsNormalTexture ? 1 : 0;
this.saoMaterial.defines[ 'PERSPECTIVE_CAMERA' ] = this.camera.isPerspectiveCamera ? 1 : 0;
this.saoMaterial.uniforms[ 'tDepth' ].value = ( this.supportsDepthTextureExtension ) ? depthTexture : this.depthRenderTarget.texture;
this.saoMaterial.uniforms[ 'tNormal' ].value = this.normalRenderTarget.texture;
this.saoMaterial.uniforms[ 'size' ].value.set( this.resolution.x, this.resolution.y );
this.saoMaterial.uniforms[ 'cameraInverseProjectionMatrix' ].value.copy( this.camera.projectionMatrixInverse );
this.saoMaterial.uniforms[ 'cameraProjectionMatrix' ].value = this.camera.projectionMatrix;
this.saoMaterial.blending = THREE.NoBlending;
if ( THREE.DepthLimitedBlurShader === undefined ) {
console.error( 'THREE.SAOPass relies on THREE.DepthLimitedBlurShader' );
}
this.vBlurMaterial = new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( THREE.DepthLimitedBlurShader.uniforms ),
defines: Object.assign( {}, THREE.DepthLimitedBlurShader.defines ),
vertexShader: THREE.DepthLimitedBlurShader.vertexShader,
fragmentShader: THREE.DepthLimitedBlurShader.fragmentShader
} );
this.vBlurMaterial.defines[ 'DEPTH_PACKING' ] = this.supportsDepthTextureExtension ? 0 : 1;
this.vBlurMaterial.defines[ 'PERSPECTIVE_CAMERA' ] = this.camera.isPerspectiveCamera ? 1 : 0;
this.vBlurMaterial.uniforms[ 'tDiffuse' ].value = this.saoRenderTarget.texture;
this.vBlurMaterial.uniforms[ 'tDepth' ].value = ( this.supportsDepthTextureExtension ) ? depthTexture : this.depthRenderTarget.texture;
this.vBlurMaterial.uniforms[ 'size' ].value.set( this.resolution.x, this.resolution.y );
this.vBlurMaterial.blending = THREE.NoBlending;
this.hBlurMaterial = new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( THREE.DepthLimitedBlurShader.uniforms ),
defines: Object.assign( {}, THREE.DepthLimitedBlurShader.defines ),
vertexShader: THREE.DepthLimitedBlurShader.vertexShader,
fragmentShader: THREE.DepthLimitedBlurShader.fragmentShader
} );
this.hBlurMaterial.defines[ 'DEPTH_PACKING' ] = this.supportsDepthTextureExtension ? 0 : 1;
this.hBlurMaterial.defines[ 'PERSPECTIVE_CAMERA' ] = this.camera.isPerspectiveCamera ? 1 : 0;
this.hBlurMaterial.uniforms[ 'tDiffuse' ].value = this.blurIntermediateRenderTarget.texture;
this.hBlurMaterial.uniforms[ 'tDepth' ].value = ( this.supportsDepthTextureExtension ) ? depthTexture : this.depthRenderTarget.texture;
this.hBlurMaterial.uniforms[ 'size' ].value.set( this.resolution.x, this.resolution.y );
this.hBlurMaterial.blending = THREE.NoBlending;
if ( THREE.CopyShader === undefined ) {
console.error( 'THREE.SAOPass relies on THREE.CopyShader' );
}
this.materialCopy = new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( THREE.CopyShader.uniforms ),
vertexShader: THREE.CopyShader.vertexShader,
fragmentShader: THREE.CopyShader.fragmentShader,
blending: THREE.NoBlending
} );
this.materialCopy.transparent = true;
this.materialCopy.depthTest = false;
this.materialCopy.depthWrite = false;
this.materialCopy.blending = THREE.CustomBlending;
this.materialCopy.blendSrc = THREE.DstColorFactor;
this.materialCopy.blendDst = THREE.ZeroFactor;
this.materialCopy.blendEquation = THREE.AddEquation;
this.materialCopy.blendSrcAlpha = THREE.DstAlphaFactor;
this.materialCopy.blendDstAlpha = THREE.ZeroFactor;
this.materialCopy.blendEquationAlpha = THREE.AddEquation;
if ( THREE.UnpackDepthRGBAShader === undefined ) {
console.error( 'THREE.SAOPass relies on THREE.UnpackDepthRGBAShader' );
}
this.depthCopy = new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( THREE.UnpackDepthRGBAShader.uniforms ),
vertexShader: THREE.UnpackDepthRGBAShader.vertexShader,
fragmentShader: THREE.UnpackDepthRGBAShader.fragmentShader,
blending: THREE.NoBlending
} );
this.fsQuad = new THREE.Pass.FullScreenQuad( null );
};
THREE.SAOPass.OUTPUT = {
'Beauty': 1,
'Default': 0,
'SAO': 2,
'Depth': 3,
'Normal': 4
};
THREE.SAOPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.SAOPass,
render: function ( renderer, writeBuffer, readBuffer/*, deltaTime, maskActive*/ ) {
// Rendering readBuffer first when rendering to screen
if ( this.renderToScreen ) {
this.materialCopy.blending = THREE.NoBlending;
this.materialCopy.uniforms[ 'tDiffuse' ].value = readBuffer.texture;
this.materialCopy.needsUpdate = true;
this.renderPass( renderer, this.materialCopy, null );
}
if ( this.params.output === 1 ) {
return;
}
renderer.getClearColor( this._oldClearColor );
this.oldClearAlpha = renderer.getClearAlpha();
var oldAutoClear = renderer.autoClear;
renderer.autoClear = false;
renderer.setRenderTarget( this.depthRenderTarget );
renderer.clear();
this.saoMaterial.uniforms[ 'bias' ].value = this.params.saoBias;
this.saoMaterial.uniforms[ 'intensity' ].value = this.params.saoIntensity;
this.saoMaterial.uniforms[ 'scale' ].value = this.params.saoScale;
this.saoMaterial.uniforms[ 'kernelRadius' ].value = this.params.saoKernelRadius;
this.saoMaterial.uniforms[ 'minResolution' ].value = this.params.saoMinResolution;
this.saoMaterial.uniforms[ 'cameraNear' ].value = this.camera.near;
this.saoMaterial.uniforms[ 'cameraFar' ].value = this.camera.far;
// this.saoMaterial.uniforms['randomSeed'].value = Math.random();
var depthCutoff = this.params.saoBlurDepthCutoff * ( this.camera.far - this.camera.near );
this.vBlurMaterial.uniforms[ 'depthCutoff' ].value = depthCutoff;
this.hBlurMaterial.uniforms[ 'depthCutoff' ].value = depthCutoff;
this.vBlurMaterial.uniforms[ 'cameraNear' ].value = this.camera.near;
this.vBlurMaterial.uniforms[ 'cameraFar' ].value = this.camera.far;
this.hBlurMaterial.uniforms[ 'cameraNear' ].value = this.camera.near;
this.hBlurMaterial.uniforms[ 'cameraFar' ].value = this.camera.far;
this.params.saoBlurRadius = Math.floor( this.params.saoBlurRadius );
if ( ( this.prevStdDev !== this.params.saoBlurStdDev ) || ( this.prevNumSamples !== this.params.saoBlurRadius ) ) {
THREE.BlurShaderUtils.configure( this.vBlurMaterial, this.params.saoBlurRadius, this.params.saoBlurStdDev, new THREE.Vector2( 0, 1 ) );
THREE.BlurShaderUtils.configure( this.hBlurMaterial, this.params.saoBlurRadius, this.params.saoBlurStdDev, new THREE.Vector2( 1, 0 ) );
this.prevStdDev = this.params.saoBlurStdDev;
this.prevNumSamples = this.params.saoBlurRadius;
}
// Rendering scene to depth texture
renderer.setClearColor( 0x000000 );
renderer.setRenderTarget( this.beautyRenderTarget );
renderer.clear();
renderer.render( this.scene, this.camera );
// Re-render scene if depth texture extension is not supported
if ( ! this.supportsDepthTextureExtension ) {
// Clear rule : far clipping plane in both RGBA and Basic encoding
this.renderOverride( renderer, this.depthMaterial, this.depthRenderTarget, 0x000000, 1.0 );
}
if ( this.supportsNormalTexture ) {
// Clear rule : default normal is facing the camera
this.renderOverride( renderer, this.normalMaterial, this.normalRenderTarget, 0x7777ff, 1.0 );
}
// Rendering SAO texture
this.renderPass( renderer, this.saoMaterial, this.saoRenderTarget, 0xffffff, 1.0 );
// Blurring SAO texture
if ( this.params.saoBlur ) {
this.renderPass( renderer, this.vBlurMaterial, this.blurIntermediateRenderTarget, 0xffffff, 1.0 );
this.renderPass( renderer, this.hBlurMaterial, this.saoRenderTarget, 0xffffff, 1.0 );
}
var outputMaterial = this.materialCopy;
// Setting up SAO rendering
if ( this.params.output === 3 ) {
if ( this.supportsDepthTextureExtension ) {
this.materialCopy.uniforms[ 'tDiffuse' ].value = this.beautyRenderTarget.depthTexture;
this.materialCopy.needsUpdate = true;
} else {
this.depthCopy.uniforms[ 'tDiffuse' ].value = this.depthRenderTarget.texture;
this.depthCopy.needsUpdate = true;
outputMaterial = this.depthCopy;
}
} else if ( this.params.output === 4 ) {
this.materialCopy.uniforms[ 'tDiffuse' ].value = this.normalRenderTarget.texture;
this.materialCopy.needsUpdate = true;
} else {
this.materialCopy.uniforms[ 'tDiffuse' ].value = this.saoRenderTarget.texture;
this.materialCopy.needsUpdate = true;
}
// Blending depends on output, only want a CustomBlending when showing SAO
if ( this.params.output === 0 ) {
outputMaterial.blending = THREE.CustomBlending;
} else {
outputMaterial.blending = THREE.NoBlending;
}
// Rendering SAOPass result on top of previous pass
this.renderPass( renderer, outputMaterial, this.renderToScreen ? null : readBuffer );
renderer.setClearColor( this._oldClearColor, this.oldClearAlpha );
renderer.autoClear = oldAutoClear;
},
renderPass: function ( renderer, passMaterial, renderTarget, clearColor, clearAlpha ) {
// save original state
renderer.getClearColor( this.originalClearColor );
var originalClearAlpha = renderer.getClearAlpha();
var originalAutoClear = renderer.autoClear;
renderer.setRenderTarget( renderTarget );
// setup pass state
renderer.autoClear = false;
if ( ( clearColor !== undefined ) && ( clearColor !== null ) ) {
renderer.setClearColor( clearColor );
renderer.setClearAlpha( clearAlpha || 0.0 );
renderer.clear();
}
this.fsQuad.material = passMaterial;
this.fsQuad.render( renderer );
// restore original state
renderer.autoClear = originalAutoClear;
renderer.setClearColor( this.originalClearColor );
renderer.setClearAlpha( originalClearAlpha );
},
renderOverride: function ( renderer, overrideMaterial, renderTarget, clearColor, clearAlpha ) {
renderer.getClearColor( this.originalClearColor );
var originalClearAlpha = renderer.getClearAlpha();
var originalAutoClear = renderer.autoClear;
renderer.setRenderTarget( renderTarget );
renderer.autoClear = false;
clearColor = overrideMaterial.clearColor || clearColor;
clearAlpha = overrideMaterial.clearAlpha || clearAlpha;
if ( ( clearColor !== undefined ) && ( clearColor !== null ) ) {
renderer.setClearColor( clearColor );
renderer.setClearAlpha( clearAlpha || 0.0 );
renderer.clear();
}
this.scene.overrideMaterial = overrideMaterial;
renderer.render( this.scene, this.camera );
this.scene.overrideMaterial = null;
// restore original state
renderer.autoClear = originalAutoClear;
renderer.setClearColor( this.originalClearColor );
renderer.setClearAlpha( originalClearAlpha );
},
setSize: function ( width, height ) {
this.beautyRenderTarget.setSize( width, height );
this.saoRenderTarget.setSize( width, height );
this.blurIntermediateRenderTarget.setSize( width, height );
this.normalRenderTarget.setSize( width, height );
this.depthRenderTarget.setSize( width, height );
this.saoMaterial.uniforms[ 'size' ].value.set( width, height );
this.saoMaterial.uniforms[ 'cameraInverseProjectionMatrix' ].value.copy( this.camera.projectionMatrixInverse );
this.saoMaterial.uniforms[ 'cameraProjectionMatrix' ].value = this.camera.projectionMatrix;
this.saoMaterial.needsUpdate = true;
this.vBlurMaterial.uniforms[ 'size' ].value.set( width, height );
this.vBlurMaterial.needsUpdate = true;
this.hBlurMaterial.uniforms[ 'size' ].value.set( width, height );
this.hBlurMaterial.needsUpdate = true;
}
} );

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,180 @@
/**
*
* Supersample Anti-Aliasing Render Pass
*
* This manual approach to SSAA re-renders the scene ones for each sample with camera jitter and accumulates the results.
*
* References: https://en.wikipedia.org/wiki/Supersampling
*
*/
THREE.SSAARenderPass = function ( scene, camera, clearColor, clearAlpha ) {
THREE.Pass.call( this );
this.scene = scene;
this.camera = camera;
this.sampleLevel = 4; // specified as n, where the number of samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16.
this.unbiased = true;
// as we need to clear the buffer in this pass, clearColor must be set to something, defaults to black.
this.clearColor = ( clearColor !== undefined ) ? clearColor : 0x000000;
this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0;
this._oldClearColor = new THREE.Color();
if ( THREE.CopyShader === undefined ) console.error( 'THREE.SSAARenderPass relies on THREE.CopyShader' );
var copyShader = THREE.CopyShader;
this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
this.copyMaterial = new THREE.ShaderMaterial( {
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
premultipliedAlpha: true,
transparent: true,
blending: THREE.AdditiveBlending,
depthTest: false,
depthWrite: false
} );
this.fsQuad = new THREE.Pass.FullScreenQuad( this.copyMaterial );
};
THREE.SSAARenderPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.SSAARenderPass,
dispose: function () {
if ( this.sampleRenderTarget ) {
this.sampleRenderTarget.dispose();
this.sampleRenderTarget = null;
}
},
setSize: function ( width, height ) {
if ( this.sampleRenderTarget ) this.sampleRenderTarget.setSize( width, height );
},
render: function ( renderer, writeBuffer, readBuffer ) {
if ( ! this.sampleRenderTarget ) {
this.sampleRenderTarget = new THREE.WebGLRenderTarget( readBuffer.width, readBuffer.height, { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat } );
this.sampleRenderTarget.texture.name = 'SSAARenderPass.sample';
}
var jitterOffsets = THREE.SSAARenderPass.JitterVectors[ Math.max( 0, Math.min( this.sampleLevel, 5 ) ) ];
var autoClear = renderer.autoClear;
renderer.autoClear = false;
renderer.getClearColor( this._oldClearColor );
var oldClearAlpha = renderer.getClearAlpha();
var baseSampleWeight = 1.0 / jitterOffsets.length;
var roundingRange = 1 / 32;
this.copyUniforms[ 'tDiffuse' ].value = this.sampleRenderTarget.texture;
var width = readBuffer.width, height = readBuffer.height;
// render the scene multiple times, each slightly jitter offset from the last and accumulate the results.
for ( var i = 0; i < jitterOffsets.length; i ++ ) {
var jitterOffset = jitterOffsets[ i ];
if ( this.camera.setViewOffset ) {
this.camera.setViewOffset( width, height,
jitterOffset[ 0 ] * 0.0625, jitterOffset[ 1 ] * 0.0625, // 0.0625 = 1 / 16
width, height );
}
var sampleWeight = baseSampleWeight;
if ( this.unbiased ) {
// the theory is that equal weights for each sample lead to an accumulation of rounding errors.
// The following equation varies the sampleWeight per sample so that it is uniformly distributed
// across a range of values whose rounding errors cancel each other out.
var uniformCenteredDistribution = ( - 0.5 + ( i + 0.5 ) / jitterOffsets.length );
sampleWeight += roundingRange * uniformCenteredDistribution;
}
this.copyUniforms[ 'opacity' ].value = sampleWeight;
renderer.setClearColor( this.clearColor, this.clearAlpha );
renderer.setRenderTarget( this.sampleRenderTarget );
renderer.clear();
renderer.render( this.scene, this.camera );
renderer.setRenderTarget( this.renderToScreen ? null : writeBuffer );
if ( i === 0 ) {
renderer.setClearColor( 0x000000, 0.0 );
renderer.clear();
}
this.fsQuad.render( renderer );
}
if ( this.camera.clearViewOffset ) this.camera.clearViewOffset();
renderer.autoClear = autoClear;
renderer.setClearColor( this._oldClearColor, oldClearAlpha );
}
} );
// These jitter vectors are specified in integers because it is easier.
// I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5)
// before being used, thus these integers need to be scaled by 1/16.
//
// Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
THREE.SSAARenderPass.JitterVectors = [
[
[ 0, 0 ]
],
[
[ 4, 4 ], [ - 4, - 4 ]
],
[
[ - 2, - 6 ], [ 6, - 2 ], [ - 6, 2 ], [ 2, 6 ]
],
[
[ 1, - 3 ], [ - 1, 3 ], [ 5, 1 ], [ - 3, - 5 ],
[ - 5, 5 ], [ - 7, - 1 ], [ 3, 7 ], [ 7, - 7 ]
],
[
[ 1, 1 ], [ - 1, - 3 ], [ - 3, 2 ], [ 4, - 1 ],
[ - 5, - 2 ], [ 2, 5 ], [ 5, 3 ], [ 3, - 5 ],
[ - 2, 6 ], [ 0, - 7 ], [ - 4, - 6 ], [ - 6, 4 ],
[ - 8, 0 ], [ 7, - 4 ], [ 6, 7 ], [ - 7, - 8 ]
],
[
[ - 4, - 7 ], [ - 7, - 5 ], [ - 3, - 5 ], [ - 5, - 4 ],
[ - 1, - 4 ], [ - 2, - 2 ], [ - 6, - 1 ], [ - 4, 0 ],
[ - 7, 1 ], [ - 1, 2 ], [ - 6, 3 ], [ - 3, 3 ],
[ - 7, 6 ], [ - 3, 6 ], [ - 5, 7 ], [ - 1, 7 ],
[ 5, - 7 ], [ 1, - 6 ], [ 6, - 5 ], [ 4, - 4 ],
[ 2, - 3 ], [ 7, - 2 ], [ 1, - 1 ], [ 4, - 1 ],
[ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ],
[ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ]
]
];

View file

@ -0,0 +1,433 @@
THREE.SSAOPass = function ( scene, camera, width, height ) {
THREE.Pass.call( this );
this.width = ( width !== undefined ) ? width : 512;
this.height = ( height !== undefined ) ? height : 512;
this.clear = true;
this.camera = camera;
this.scene = scene;
this.kernelRadius = 8;
this.kernelSize = 32;
this.kernel = [];
this.noiseTexture = null;
this.output = 0;
this.minDistance = 0.005;
this.maxDistance = 0.1;
this._visibilityCache = new Map();
//
this.generateSampleKernel();
this.generateRandomKernelRotations();
// beauty render target
var depthTexture = new THREE.DepthTexture();
depthTexture.type = THREE.UnsignedShortType;
depthTexture.minFilter = THREE.NearestFilter;
depthTexture.maxFilter = THREE.NearestFilter;
this.beautyRenderTarget = new THREE.WebGLRenderTarget( this.width, this.height, {
minFilter: THREE.LinearFilter,
magFilter: THREE.LinearFilter,
format: THREE.RGBAFormat
} );
// normal render target with depth buffer
this.normalRenderTarget = new THREE.WebGLRenderTarget( this.width, this.height, {
minFilter: THREE.NearestFilter,
magFilter: THREE.NearestFilter,
format: THREE.RGBAFormat,
depthTexture: depthTexture
} );
// ssao render target
this.ssaoRenderTarget = new THREE.WebGLRenderTarget( this.width, this.height, {
minFilter: THREE.LinearFilter,
magFilter: THREE.LinearFilter,
format: THREE.RGBAFormat
} );
this.blurRenderTarget = this.ssaoRenderTarget.clone();
// ssao material
if ( THREE.SSAOShader === undefined ) {
console.error( 'THREE.SSAOPass: The pass relies on THREE.SSAOShader.' );
}
this.ssaoMaterial = new THREE.ShaderMaterial( {
defines: Object.assign( {}, THREE.SSAOShader.defines ),
uniforms: THREE.UniformsUtils.clone( THREE.SSAOShader.uniforms ),
vertexShader: THREE.SSAOShader.vertexShader,
fragmentShader: THREE.SSAOShader.fragmentShader,
blending: THREE.NoBlending
} );
this.ssaoMaterial.uniforms[ 'tDiffuse' ].value = this.beautyRenderTarget.texture;
this.ssaoMaterial.uniforms[ 'tNormal' ].value = this.normalRenderTarget.texture;
this.ssaoMaterial.uniforms[ 'tDepth' ].value = this.normalRenderTarget.depthTexture;
this.ssaoMaterial.uniforms[ 'tNoise' ].value = this.noiseTexture;
this.ssaoMaterial.uniforms[ 'kernel' ].value = this.kernel;
this.ssaoMaterial.uniforms[ 'cameraNear' ].value = this.camera.near;
this.ssaoMaterial.uniforms[ 'cameraFar' ].value = this.camera.far;
this.ssaoMaterial.uniforms[ 'resolution' ].value.set( this.width, this.height );
this.ssaoMaterial.uniforms[ 'cameraProjectionMatrix' ].value.copy( this.camera.projectionMatrix );
this.ssaoMaterial.uniforms[ 'cameraInverseProjectionMatrix' ].value.copy( this.camera.projectionMatrixInverse );
// normal material
this.normalMaterial = new THREE.MeshNormalMaterial();
this.normalMaterial.blending = THREE.NoBlending;
// blur material
this.blurMaterial = new THREE.ShaderMaterial( {
defines: Object.assign( {}, THREE.SSAOBlurShader.defines ),
uniforms: THREE.UniformsUtils.clone( THREE.SSAOBlurShader.uniforms ),
vertexShader: THREE.SSAOBlurShader.vertexShader,
fragmentShader: THREE.SSAOBlurShader.fragmentShader
} );
this.blurMaterial.uniforms[ 'tDiffuse' ].value = this.ssaoRenderTarget.texture;
this.blurMaterial.uniforms[ 'resolution' ].value.set( this.width, this.height );
// material for rendering the depth
this.depthRenderMaterial = new THREE.ShaderMaterial( {
defines: Object.assign( {}, THREE.SSAODepthShader.defines ),
uniforms: THREE.UniformsUtils.clone( THREE.SSAODepthShader.uniforms ),
vertexShader: THREE.SSAODepthShader.vertexShader,
fragmentShader: THREE.SSAODepthShader.fragmentShader,
blending: THREE.NoBlending
} );
this.depthRenderMaterial.uniforms[ 'tDepth' ].value = this.normalRenderTarget.depthTexture;
this.depthRenderMaterial.uniforms[ 'cameraNear' ].value = this.camera.near;
this.depthRenderMaterial.uniforms[ 'cameraFar' ].value = this.camera.far;
// material for rendering the content of a render target
this.copyMaterial = new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( THREE.CopyShader.uniforms ),
vertexShader: THREE.CopyShader.vertexShader,
fragmentShader: THREE.CopyShader.fragmentShader,
transparent: true,
depthTest: false,
depthWrite: false,
blendSrc: THREE.DstColorFactor,
blendDst: THREE.ZeroFactor,
blendEquation: THREE.AddEquation,
blendSrcAlpha: THREE.DstAlphaFactor,
blendDstAlpha: THREE.ZeroFactor,
blendEquationAlpha: THREE.AddEquation
} );
this.fsQuad = new THREE.Pass.FullScreenQuad( null );
this.originalClearColor = new THREE.Color();
};
THREE.SSAOPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.SSAOPass,
dispose: function () {
// dispose render targets
this.beautyRenderTarget.dispose();
this.normalRenderTarget.dispose();
this.ssaoRenderTarget.dispose();
this.blurRenderTarget.dispose();
// dispose materials
this.normalMaterial.dispose();
this.blurMaterial.dispose();
this.copyMaterial.dispose();
this.depthRenderMaterial.dispose();
// dipsose full screen quad
this.fsQuad.dispose();
},
render: function ( renderer, writeBuffer /*, readBuffer, deltaTime, maskActive */ ) {
// render beauty
renderer.setRenderTarget( this.beautyRenderTarget );
renderer.clear();
renderer.render( this.scene, this.camera );
// render normals and depth (honor only meshes, points and lines do not contribute to SSAO)
this.overrideVisibility();
this.renderOverride( renderer, this.normalMaterial, this.normalRenderTarget, 0x7777ff, 1.0 );
this.restoreVisibility();
// render SSAO
this.ssaoMaterial.uniforms[ 'kernelRadius' ].value = this.kernelRadius;
this.ssaoMaterial.uniforms[ 'minDistance' ].value = this.minDistance;
this.ssaoMaterial.uniforms[ 'maxDistance' ].value = this.maxDistance;
this.renderPass( renderer, this.ssaoMaterial, this.ssaoRenderTarget );
// render blur
this.renderPass( renderer, this.blurMaterial, this.blurRenderTarget );
// output result to screen
switch ( this.output ) {
case THREE.SSAOPass.OUTPUT.SSAO:
this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.ssaoRenderTarget.texture;
this.copyMaterial.blending = THREE.NoBlending;
this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer );
break;
case THREE.SSAOPass.OUTPUT.Blur:
this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.blurRenderTarget.texture;
this.copyMaterial.blending = THREE.NoBlending;
this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer );
break;
case THREE.SSAOPass.OUTPUT.Beauty:
this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.beautyRenderTarget.texture;
this.copyMaterial.blending = THREE.NoBlending;
this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer );
break;
case THREE.SSAOPass.OUTPUT.Depth:
this.renderPass( renderer, this.depthRenderMaterial, this.renderToScreen ? null : writeBuffer );
break;
case THREE.SSAOPass.OUTPUT.Normal:
this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.normalRenderTarget.texture;
this.copyMaterial.blending = THREE.NoBlending;
this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer );
break;
case THREE.SSAOPass.OUTPUT.Default:
this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.beautyRenderTarget.texture;
this.copyMaterial.blending = THREE.NoBlending;
this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer );
this.copyMaterial.uniforms[ 'tDiffuse' ].value = this.blurRenderTarget.texture;
this.copyMaterial.blending = THREE.CustomBlending;
this.renderPass( renderer, this.copyMaterial, this.renderToScreen ? null : writeBuffer );
break;
default:
console.warn( 'THREE.SSAOPass: Unknown output type.' );
}
},
renderPass: function ( renderer, passMaterial, renderTarget, clearColor, clearAlpha ) {
// save original state
renderer.getClearColor( this.originalClearColor );
var originalClearAlpha = renderer.getClearAlpha();
var originalAutoClear = renderer.autoClear;
renderer.setRenderTarget( renderTarget );
// setup pass state
renderer.autoClear = false;
if ( ( clearColor !== undefined ) && ( clearColor !== null ) ) {
renderer.setClearColor( clearColor );
renderer.setClearAlpha( clearAlpha || 0.0 );
renderer.clear();
}
this.fsQuad.material = passMaterial;
this.fsQuad.render( renderer );
// restore original state
renderer.autoClear = originalAutoClear;
renderer.setClearColor( this.originalClearColor );
renderer.setClearAlpha( originalClearAlpha );
},
renderOverride: function ( renderer, overrideMaterial, renderTarget, clearColor, clearAlpha ) {
renderer.getClearColor( this.originalClearColor );
var originalClearAlpha = renderer.getClearAlpha();
var originalAutoClear = renderer.autoClear;
renderer.setRenderTarget( renderTarget );
renderer.autoClear = false;
clearColor = overrideMaterial.clearColor || clearColor;
clearAlpha = overrideMaterial.clearAlpha || clearAlpha;
if ( ( clearColor !== undefined ) && ( clearColor !== null ) ) {
renderer.setClearColor( clearColor );
renderer.setClearAlpha( clearAlpha || 0.0 );
renderer.clear();
}
this.scene.overrideMaterial = overrideMaterial;
renderer.render( this.scene, this.camera );
this.scene.overrideMaterial = null;
// restore original state
renderer.autoClear = originalAutoClear;
renderer.setClearColor( this.originalClearColor );
renderer.setClearAlpha( originalClearAlpha );
},
setSize: function ( width, height ) {
this.width = width;
this.height = height;
this.beautyRenderTarget.setSize( width, height );
this.ssaoRenderTarget.setSize( width, height );
this.normalRenderTarget.setSize( width, height );
this.blurRenderTarget.setSize( width, height );
this.ssaoMaterial.uniforms[ 'resolution' ].value.set( width, height );
this.ssaoMaterial.uniforms[ 'cameraProjectionMatrix' ].value.copy( this.camera.projectionMatrix );
this.ssaoMaterial.uniforms[ 'cameraInverseProjectionMatrix' ].value.copy( this.camera.projectionMatrixInverse );
this.blurMaterial.uniforms[ 'resolution' ].value.set( width, height );
},
generateSampleKernel: function () {
var kernelSize = this.kernelSize;
var kernel = this.kernel;
for ( var i = 0; i < kernelSize; i ++ ) {
var sample = new THREE.Vector3();
sample.x = ( Math.random() * 2 ) - 1;
sample.y = ( Math.random() * 2 ) - 1;
sample.z = Math.random();
sample.normalize();
var scale = i / kernelSize;
scale = THREE.MathUtils.lerp( 0.1, 1, scale * scale );
sample.multiplyScalar( scale );
kernel.push( sample );
}
},
generateRandomKernelRotations: function () {
var width = 4, height = 4;
if ( THREE.SimplexNoise === undefined ) {
console.error( 'THREE.SSAOPass: The pass relies on THREE.SimplexNoise.' );
}
var simplex = new THREE.SimplexNoise();
var size = width * height;
var data = new Float32Array( size * 4 );
for ( var i = 0; i < size; i ++ ) {
var stride = i * 4;
var x = ( Math.random() * 2 ) - 1;
var y = ( Math.random() * 2 ) - 1;
var z = 0;
var noise = simplex.noise3d( x, y, z );
data[ stride ] = noise;
data[ stride + 1 ] = noise;
data[ stride + 2 ] = noise;
data[ stride + 3 ] = 1;
}
this.noiseTexture = new THREE.DataTexture( data, width, height, THREE.RGBAFormat, THREE.FloatType );
this.noiseTexture.wrapS = THREE.RepeatWrapping;
this.noiseTexture.wrapT = THREE.RepeatWrapping;
},
overrideVisibility: function () {
var scene = this.scene;
var cache = this._visibilityCache;
scene.traverse( function ( object ) {
cache.set( object, object.visible );
if ( object.isPoints || object.isLine ) object.visible = false;
} );
},
restoreVisibility: function () {
var scene = this.scene;
var cache = this._visibilityCache;
scene.traverse( function ( object ) {
var visible = cache.get( object );
object.visible = visible;
} );
cache.clear();
}
} );
THREE.SSAOPass.OUTPUT = {
'Default': 0,
'SSAO': 1,
'Blur': 2,
'Beauty': 3,
'Depth': 4,
'Normal': 5
};

View file

@ -0,0 +1,55 @@
THREE.SavePass = function ( renderTarget ) {
THREE.Pass.call( this );
if ( THREE.CopyShader === undefined )
console.error( 'THREE.SavePass relies on THREE.CopyShader' );
var shader = THREE.CopyShader;
this.textureID = 'tDiffuse';
this.uniforms = THREE.UniformsUtils.clone( shader.uniforms );
this.material = new THREE.ShaderMaterial( {
uniforms: this.uniforms,
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader
} );
this.renderTarget = renderTarget;
if ( this.renderTarget === undefined ) {
this.renderTarget = new THREE.WebGLRenderTarget( window.innerWidth, window.innerHeight, { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBFormat } );
this.renderTarget.texture.name = 'SavePass.rt';
}
this.needsSwap = false;
this.fsQuad = new THREE.Pass.FullScreenQuad( this.material );
};
THREE.SavePass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.SavePass,
render: function ( renderer, writeBuffer, readBuffer ) {
if ( this.uniforms[ this.textureID ] ) {
this.uniforms[ this.textureID ].value = readBuffer.texture;
}
renderer.setRenderTarget( this.renderTarget );
if ( this.clear ) renderer.clear();
this.fsQuad.render( renderer );
}
} );

View file

@ -0,0 +1,62 @@
THREE.ShaderPass = function ( shader, textureID ) {
THREE.Pass.call( this );
this.textureID = ( textureID !== undefined ) ? textureID : 'tDiffuse';
if ( shader instanceof THREE.ShaderMaterial ) {
this.uniforms = shader.uniforms;
this.material = shader;
} else if ( shader ) {
this.uniforms = THREE.UniformsUtils.clone( shader.uniforms );
this.material = new THREE.ShaderMaterial( {
defines: Object.assign( {}, shader.defines ),
uniforms: this.uniforms,
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader
} );
}
this.fsQuad = new THREE.Pass.FullScreenQuad( this.material );
};
THREE.ShaderPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.ShaderPass,
render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {
if ( this.uniforms[ this.textureID ] ) {
this.uniforms[ this.textureID ].value = readBuffer.texture;
}
this.fsQuad.material = this.material;
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( writeBuffer );
// TODO: Avoid using autoClear properties, see https://github.com/mrdoob/three.js/pull/15571#issuecomment-465669600
if ( this.clear ) renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );
this.fsQuad.render( renderer );
}
}
} );

View file

@ -0,0 +1,138 @@
/**
*
* Temporal Anti-Aliasing Render Pass
*
* When there is no motion in the scene, the TAA render pass accumulates jittered camera samples across frames to create a high quality anti-aliased result.
*
* References:
*
* TODO: Add support for motion vector pas so that accumulation of samples across frames can occur on dynamics scenes.
*
*/
THREE.TAARenderPass = function ( scene, camera, clearColor, clearAlpha ) {
if ( THREE.SSAARenderPass === undefined ) {
console.error( 'THREE.TAARenderPass relies on THREE.SSAARenderPass' );
}
THREE.SSAARenderPass.call( this, scene, camera, clearColor, clearAlpha );
this.sampleLevel = 0;
this.accumulate = false;
};
THREE.TAARenderPass.JitterVectors = THREE.SSAARenderPass.JitterVectors;
THREE.TAARenderPass.prototype = Object.assign( Object.create( THREE.SSAARenderPass.prototype ), {
constructor: THREE.TAARenderPass,
render: function ( renderer, writeBuffer, readBuffer, deltaTime ) {
if ( ! this.accumulate ) {
THREE.SSAARenderPass.prototype.render.call( this, renderer, writeBuffer, readBuffer, deltaTime );
this.accumulateIndex = - 1;
return;
}
var jitterOffsets = THREE.TAARenderPass.JitterVectors[ 5 ];
if ( ! this.sampleRenderTarget ) {
this.sampleRenderTarget = new THREE.WebGLRenderTarget( readBuffer.width, readBuffer.height, this.params );
this.sampleRenderTarget.texture.name = 'TAARenderPass.sample';
}
if ( ! this.holdRenderTarget ) {
this.holdRenderTarget = new THREE.WebGLRenderTarget( readBuffer.width, readBuffer.height, this.params );
this.holdRenderTarget.texture.name = 'TAARenderPass.hold';
}
if ( this.accumulate && this.accumulateIndex === - 1 ) {
THREE.SSAARenderPass.prototype.render.call( this, renderer, this.holdRenderTarget, readBuffer, deltaTime );
this.accumulateIndex = 0;
}
var autoClear = renderer.autoClear;
renderer.autoClear = false;
var sampleWeight = 1.0 / ( jitterOffsets.length );
if ( this.accumulateIndex >= 0 && this.accumulateIndex < jitterOffsets.length ) {
this.copyUniforms[ 'opacity' ].value = sampleWeight;
this.copyUniforms[ 'tDiffuse' ].value = writeBuffer.texture;
// render the scene multiple times, each slightly jitter offset from the last and accumulate the results.
var numSamplesPerFrame = Math.pow( 2, this.sampleLevel );
for ( var i = 0; i < numSamplesPerFrame; i ++ ) {
var j = this.accumulateIndex;
var jitterOffset = jitterOffsets[ j ];
if ( this.camera.setViewOffset ) {
this.camera.setViewOffset( readBuffer.width, readBuffer.height,
jitterOffset[ 0 ] * 0.0625, jitterOffset[ 1 ] * 0.0625, // 0.0625 = 1 / 16
readBuffer.width, readBuffer.height );
}
renderer.setRenderTarget( writeBuffer );
renderer.clear();
renderer.render( this.scene, this.camera );
renderer.setRenderTarget( this.sampleRenderTarget );
if ( this.accumulateIndex === 0 ) renderer.clear();
this.fsQuad.render( renderer );
this.accumulateIndex ++;
if ( this.accumulateIndex >= jitterOffsets.length ) break;
}
if ( this.camera.clearViewOffset ) this.camera.clearViewOffset();
}
var accumulationWeight = this.accumulateIndex * sampleWeight;
if ( accumulationWeight > 0 ) {
this.copyUniforms[ 'opacity' ].value = 1.0;
this.copyUniforms[ 'tDiffuse' ].value = this.sampleRenderTarget.texture;
renderer.setRenderTarget( writeBuffer );
renderer.clear();
this.fsQuad.render( renderer );
}
if ( accumulationWeight < 1.0 ) {
this.copyUniforms[ 'opacity' ].value = 1.0 - accumulationWeight;
this.copyUniforms[ 'tDiffuse' ].value = this.holdRenderTarget.texture;
renderer.setRenderTarget( writeBuffer );
if ( accumulationWeight === 0 ) renderer.clear();
this.fsQuad.render( renderer );
}
renderer.autoClear = autoClear;
}
} );

View file

@ -0,0 +1,54 @@
THREE.TexturePass = function ( map, opacity ) {
THREE.Pass.call( this );
if ( THREE.CopyShader === undefined )
console.error( 'THREE.TexturePass relies on THREE.CopyShader' );
var shader = THREE.CopyShader;
this.map = map;
this.opacity = ( opacity !== undefined ) ? opacity : 1.0;
this.uniforms = THREE.UniformsUtils.clone( shader.uniforms );
this.material = new THREE.ShaderMaterial( {
uniforms: this.uniforms,
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
depthTest: false,
depthWrite: false
} );
this.needsSwap = false;
this.fsQuad = new THREE.Pass.FullScreenQuad( null );
};
THREE.TexturePass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.TexturePass,
render: function ( renderer, writeBuffer, readBuffer /*, deltaTime, maskActive */ ) {
var oldAutoClear = renderer.autoClear;
renderer.autoClear = false;
this.fsQuad.material = this.material;
this.uniforms[ 'opacity' ].value = this.opacity;
this.uniforms[ 'tDiffuse' ].value = this.map;
this.material.transparent = ( this.opacity < 1.0 );
renderer.setRenderTarget( this.renderToScreen ? null : readBuffer );
if ( this.clear ) renderer.clear();
this.fsQuad.render( renderer );
renderer.autoClear = oldAutoClear;
}
} );

View file

@ -0,0 +1,393 @@
/**
* UnrealBloomPass is inspired by the bloom pass of Unreal Engine. It creates a
* mip map chain of bloom textures and blurs them with different radii. Because
* of the weighted combination of mips, and because larger blurs are done on
* higher mips, this effect provides good quality and performance.
*
* Reference:
* - https://docs.unrealengine.com/latest/INT/Engine/Rendering/PostProcessEffects/Bloom/
*/
THREE.UnrealBloomPass = function ( resolution, strength, radius, threshold ) {
THREE.Pass.call( this );
this.strength = ( strength !== undefined ) ? strength : 1;
this.radius = radius;
this.threshold = threshold;
this.resolution = ( resolution !== undefined ) ? new THREE.Vector2( resolution.x, resolution.y ) : new THREE.Vector2( 256, 256 );
// create color only once here, reuse it later inside the render function
this.clearColor = new THREE.Color( 0, 0, 0 );
// render targets
var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat };
this.renderTargetsHorizontal = [];
this.renderTargetsVertical = [];
this.nMips = 5;
var resx = Math.round( this.resolution.x / 2 );
var resy = Math.round( this.resolution.y / 2 );
this.renderTargetBright = new THREE.WebGLRenderTarget( resx, resy, pars );
this.renderTargetBright.texture.name = 'UnrealBloomPass.bright';
this.renderTargetBright.texture.generateMipmaps = false;
for ( var i = 0; i < this.nMips; i ++ ) {
var renderTargetHorizonal = new THREE.WebGLRenderTarget( resx, resy, pars );
renderTargetHorizonal.texture.name = 'UnrealBloomPass.h' + i;
renderTargetHorizonal.texture.generateMipmaps = false;
this.renderTargetsHorizontal.push( renderTargetHorizonal );
var renderTargetVertical = new THREE.WebGLRenderTarget( resx, resy, pars );
renderTargetVertical.texture.name = 'UnrealBloomPass.v' + i;
renderTargetVertical.texture.generateMipmaps = false;
this.renderTargetsVertical.push( renderTargetVertical );
resx = Math.round( resx / 2 );
resy = Math.round( resy / 2 );
}
// luminosity high pass material
if ( THREE.LuminosityHighPassShader === undefined )
console.error( 'THREE.UnrealBloomPass relies on THREE.LuminosityHighPassShader' );
var highPassShader = THREE.LuminosityHighPassShader;
this.highPassUniforms = THREE.UniformsUtils.clone( highPassShader.uniforms );
this.highPassUniforms[ 'luminosityThreshold' ].value = threshold;
this.highPassUniforms[ 'smoothWidth' ].value = 0.01;
this.materialHighPassFilter = new THREE.ShaderMaterial( {
uniforms: this.highPassUniforms,
vertexShader: highPassShader.vertexShader,
fragmentShader: highPassShader.fragmentShader,
defines: {}
} );
// Gaussian Blur Materials
this.separableBlurMaterials = [];
var kernelSizeArray = [ 3, 5, 7, 9, 11 ];
var resx = Math.round( this.resolution.x / 2 );
var resy = Math.round( this.resolution.y / 2 );
for ( var i = 0; i < this.nMips; i ++ ) {
this.separableBlurMaterials.push( this.getSeperableBlurMaterial( kernelSizeArray[ i ] ) );
this.separableBlurMaterials[ i ].uniforms[ 'texSize' ].value = new THREE.Vector2( resx, resy );
resx = Math.round( resx / 2 );
resy = Math.round( resy / 2 );
}
// Composite material
this.compositeMaterial = this.getCompositeMaterial( this.nMips );
this.compositeMaterial.uniforms[ 'blurTexture1' ].value = this.renderTargetsVertical[ 0 ].texture;
this.compositeMaterial.uniforms[ 'blurTexture2' ].value = this.renderTargetsVertical[ 1 ].texture;
this.compositeMaterial.uniforms[ 'blurTexture3' ].value = this.renderTargetsVertical[ 2 ].texture;
this.compositeMaterial.uniforms[ 'blurTexture4' ].value = this.renderTargetsVertical[ 3 ].texture;
this.compositeMaterial.uniforms[ 'blurTexture5' ].value = this.renderTargetsVertical[ 4 ].texture;
this.compositeMaterial.uniforms[ 'bloomStrength' ].value = strength;
this.compositeMaterial.uniforms[ 'bloomRadius' ].value = 0.1;
this.compositeMaterial.needsUpdate = true;
var bloomFactors = [ 1.0, 0.8, 0.6, 0.4, 0.2 ];
this.compositeMaterial.uniforms[ 'bloomFactors' ].value = bloomFactors;
this.bloomTintColors = [ new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ),
new THREE.Vector3( 1, 1, 1 ), new THREE.Vector3( 1, 1, 1 ) ];
this.compositeMaterial.uniforms[ 'bloomTintColors' ].value = this.bloomTintColors;
// copy material
if ( THREE.CopyShader === undefined ) {
console.error( 'THREE.UnrealBloomPass relies on THREE.CopyShader' );
}
var copyShader = THREE.CopyShader;
this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
this.copyUniforms[ 'opacity' ].value = 1.0;
this.materialCopy = new THREE.ShaderMaterial( {
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
blending: THREE.AdditiveBlending,
depthTest: false,
depthWrite: false,
transparent: true
} );
this.enabled = true;
this.needsSwap = false;
this._oldClearColor = new THREE.Color();
this.oldClearAlpha = 1;
this.basic = new THREE.MeshBasicMaterial();
this.fsQuad = new THREE.Pass.FullScreenQuad( null );
};
THREE.UnrealBloomPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ), {
constructor: THREE.UnrealBloomPass,
dispose: function () {
for ( var i = 0; i < this.renderTargetsHorizontal.length; i ++ ) {
this.renderTargetsHorizontal[ i ].dispose();
}
for ( var i = 0; i < this.renderTargetsVertical.length; i ++ ) {
this.renderTargetsVertical[ i ].dispose();
}
this.renderTargetBright.dispose();
},
setSize: function ( width, height ) {
var resx = Math.round( width / 2 );
var resy = Math.round( height / 2 );
this.renderTargetBright.setSize( resx, resy );
for ( var i = 0; i < this.nMips; i ++ ) {
this.renderTargetsHorizontal[ i ].setSize( resx, resy );
this.renderTargetsVertical[ i ].setSize( resx, resy );
this.separableBlurMaterials[ i ].uniforms[ 'texSize' ].value = new THREE.Vector2( resx, resy );
resx = Math.round( resx / 2 );
resy = Math.round( resy / 2 );
}
},
render: function ( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) {
renderer.getClearColor( this._oldClearColor );
this.oldClearAlpha = renderer.getClearAlpha();
var oldAutoClear = renderer.autoClear;
renderer.autoClear = false;
renderer.setClearColor( this.clearColor, 0 );
if ( maskActive ) renderer.state.buffers.stencil.setTest( false );
// Render input to screen
if ( this.renderToScreen ) {
this.fsQuad.material = this.basic;
this.basic.map = readBuffer.texture;
renderer.setRenderTarget( null );
renderer.clear();
this.fsQuad.render( renderer );
}
// 1. Extract Bright Areas
this.highPassUniforms[ 'tDiffuse' ].value = readBuffer.texture;
this.highPassUniforms[ 'luminosityThreshold' ].value = this.threshold;
this.fsQuad.material = this.materialHighPassFilter;
renderer.setRenderTarget( this.renderTargetBright );
renderer.clear();
this.fsQuad.render( renderer );
// 2. Blur All the mips progressively
var inputRenderTarget = this.renderTargetBright;
for ( var i = 0; i < this.nMips; i ++ ) {
this.fsQuad.material = this.separableBlurMaterials[ i ];
this.separableBlurMaterials[ i ].uniforms[ 'colorTexture' ].value = inputRenderTarget.texture;
this.separableBlurMaterials[ i ].uniforms[ 'direction' ].value = THREE.UnrealBloomPass.BlurDirectionX;
renderer.setRenderTarget( this.renderTargetsHorizontal[ i ] );
renderer.clear();
this.fsQuad.render( renderer );
this.separableBlurMaterials[ i ].uniforms[ 'colorTexture' ].value = this.renderTargetsHorizontal[ i ].texture;
this.separableBlurMaterials[ i ].uniforms[ 'direction' ].value = THREE.UnrealBloomPass.BlurDirectionY;
renderer.setRenderTarget( this.renderTargetsVertical[ i ] );
renderer.clear();
this.fsQuad.render( renderer );
inputRenderTarget = this.renderTargetsVertical[ i ];
}
// Composite All the mips
this.fsQuad.material = this.compositeMaterial;
this.compositeMaterial.uniforms[ 'bloomStrength' ].value = this.strength;
this.compositeMaterial.uniforms[ 'bloomRadius' ].value = this.radius;
this.compositeMaterial.uniforms[ 'bloomTintColors' ].value = this.bloomTintColors;
renderer.setRenderTarget( this.renderTargetsHorizontal[ 0 ] );
renderer.clear();
this.fsQuad.render( renderer );
// Blend it additively over the input texture
this.fsQuad.material = this.materialCopy;
this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetsHorizontal[ 0 ].texture;
if ( maskActive ) renderer.state.buffers.stencil.setTest( true );
if ( this.renderToScreen ) {
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
} else {
renderer.setRenderTarget( readBuffer );
this.fsQuad.render( renderer );
}
// Restore renderer settings
renderer.setClearColor( this._oldClearColor, this.oldClearAlpha );
renderer.autoClear = oldAutoClear;
},
getSeperableBlurMaterial: function ( kernelRadius ) {
return new THREE.ShaderMaterial( {
defines: {
'KERNEL_RADIUS': kernelRadius,
'SIGMA': kernelRadius
},
uniforms: {
'colorTexture': { value: null },
'texSize': { value: new THREE.Vector2( 0.5, 0.5 ) },
'direction': { value: new THREE.Vector2( 0.5, 0.5 ) }
},
vertexShader:
'varying vec2 vUv;\n\
void main() {\n\
vUv = uv;\n\
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n\
}',
fragmentShader:
'#include <common>\
varying vec2 vUv;\n\
uniform sampler2D colorTexture;\n\
uniform vec2 texSize;\
uniform vec2 direction;\
\
float gaussianPdf(in float x, in float sigma) {\
return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;\
}\
void main() {\n\
vec2 invSize = 1.0 / texSize;\
float fSigma = float(SIGMA);\
float weightSum = gaussianPdf(0.0, fSigma);\
vec3 diffuseSum = texture2D( colorTexture, vUv).rgb * weightSum;\
for( int i = 1; i < KERNEL_RADIUS; i ++ ) {\
float x = float(i);\
float w = gaussianPdf(x, fSigma);\
vec2 uvOffset = direction * invSize * x;\
vec3 sample1 = texture2D( colorTexture, vUv + uvOffset).rgb;\
vec3 sample2 = texture2D( colorTexture, vUv - uvOffset).rgb;\
diffuseSum += (sample1 + sample2) * w;\
weightSum += 2.0 * w;\
}\
gl_FragColor = vec4(diffuseSum/weightSum, 1.0);\n\
}'
} );
},
getCompositeMaterial: function ( nMips ) {
return new THREE.ShaderMaterial( {
defines: {
'NUM_MIPS': nMips
},
uniforms: {
'blurTexture1': { value: null },
'blurTexture2': { value: null },
'blurTexture3': { value: null },
'blurTexture4': { value: null },
'blurTexture5': { value: null },
'dirtTexture': { value: null },
'bloomStrength': { value: 1.0 },
'bloomFactors': { value: null },
'bloomTintColors': { value: null },
'bloomRadius': { value: 0.0 }
},
vertexShader:
'varying vec2 vUv;\n\
void main() {\n\
vUv = uv;\n\
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n\
}',
fragmentShader:
'varying vec2 vUv;\
uniform sampler2D blurTexture1;\
uniform sampler2D blurTexture2;\
uniform sampler2D blurTexture3;\
uniform sampler2D blurTexture4;\
uniform sampler2D blurTexture5;\
uniform sampler2D dirtTexture;\
uniform float bloomStrength;\
uniform float bloomRadius;\
uniform float bloomFactors[NUM_MIPS];\
uniform vec3 bloomTintColors[NUM_MIPS];\
\
float lerpBloomFactor(const in float factor) { \
float mirrorFactor = 1.2 - factor;\
return mix(factor, mirrorFactor, bloomRadius);\
}\
\
void main() {\
gl_FragColor = bloomStrength * ( lerpBloomFactor(bloomFactors[0]) * vec4(bloomTintColors[0], 1.0) * texture2D(blurTexture1, vUv) + \
lerpBloomFactor(bloomFactors[1]) * vec4(bloomTintColors[1], 1.0) * texture2D(blurTexture2, vUv) + \
lerpBloomFactor(bloomFactors[2]) * vec4(bloomTintColors[2], 1.0) * texture2D(blurTexture3, vUv) + \
lerpBloomFactor(bloomFactors[3]) * vec4(bloomTintColors[3], 1.0) * texture2D(blurTexture4, vUv) + \
lerpBloomFactor(bloomFactors[4]) * vec4(bloomTintColors[4], 1.0) * texture2D(blurTexture5, vUv) );\
}'
} );
}
} );
THREE.UnrealBloomPass.BlurDirectionX = new THREE.Vector2( 1.0, 0.0 );
THREE.UnrealBloomPass.BlurDirectionY = new THREE.Vector2( 0.0, 1.0 );