mirror of
https://github.com/DanielnetoDotCom/YouPHPTube
synced 2025-10-04 18:29:39 +02:00
This commit is contained in:
parent
f0f62670c5
commit
7e26256cac
4563 changed files with 1246712 additions and 17558 deletions
243
node_modules/three/examples/js/utils/GeometryUtils.js
generated
vendored
Normal file
243
node_modules/three/examples/js/utils/GeometryUtils.js
generated
vendored
Normal file
|
@ -0,0 +1,243 @@
|
|||
THREE.GeometryUtils = {
|
||||
|
||||
/**
|
||||
* Generates 2D-Coordinates in a very fast way.
|
||||
*
|
||||
* Based on work by:
|
||||
* @link http://www.openprocessing.org/sketch/15493
|
||||
*
|
||||
* @param center Center of Hilbert curve.
|
||||
* @param size Total width of Hilbert curve.
|
||||
* @param iterations Number of subdivisions.
|
||||
* @param v0 Corner index -X, -Z.
|
||||
* @param v1 Corner index -X, +Z.
|
||||
* @param v2 Corner index +X, +Z.
|
||||
* @param v3 Corner index +X, -Z.
|
||||
*/
|
||||
hilbert2D: function ( center, size, iterations, v0, v1, v2, v3 ) {
|
||||
|
||||
// Default Vars
|
||||
var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
|
||||
size = size !== undefined ? size : 10,
|
||||
half = size / 2,
|
||||
iterations = iterations !== undefined ? iterations : 1,
|
||||
v0 = v0 !== undefined ? v0 : 0,
|
||||
v1 = v1 !== undefined ? v1 : 1,
|
||||
v2 = v2 !== undefined ? v2 : 2,
|
||||
v3 = v3 !== undefined ? v3 : 3
|
||||
;
|
||||
|
||||
var vec_s = [
|
||||
new THREE.Vector3( center.x - half, center.y, center.z - half ),
|
||||
new THREE.Vector3( center.x - half, center.y, center.z + half ),
|
||||
new THREE.Vector3( center.x + half, center.y, center.z + half ),
|
||||
new THREE.Vector3( center.x + half, center.y, center.z - half )
|
||||
];
|
||||
|
||||
var vec = [
|
||||
vec_s[ v0 ],
|
||||
vec_s[ v1 ],
|
||||
vec_s[ v2 ],
|
||||
vec_s[ v3 ]
|
||||
];
|
||||
|
||||
// Recurse iterations
|
||||
if ( 0 <= -- iterations ) {
|
||||
|
||||
var tmp = [];
|
||||
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) );
|
||||
|
||||
// Return recursive call
|
||||
return tmp;
|
||||
|
||||
}
|
||||
|
||||
// Return complete Hilbert Curve.
|
||||
return vec;
|
||||
|
||||
},
|
||||
|
||||
/**
|
||||
* Generates 3D-Coordinates in a very fast way.
|
||||
*
|
||||
* Based on work by:
|
||||
* @link http://www.openprocessing.org/visuals/?visualID=15599
|
||||
*
|
||||
* @param center Center of Hilbert curve.
|
||||
* @param size Total width of Hilbert curve.
|
||||
* @param iterations Number of subdivisions.
|
||||
* @param v0 Corner index -X, +Y, -Z.
|
||||
* @param v1 Corner index -X, +Y, +Z.
|
||||
* @param v2 Corner index -X, -Y, +Z.
|
||||
* @param v3 Corner index -X, -Y, -Z.
|
||||
* @param v4 Corner index +X, -Y, -Z.
|
||||
* @param v5 Corner index +X, -Y, +Z.
|
||||
* @param v6 Corner index +X, +Y, +Z.
|
||||
* @param v7 Corner index +X, +Y, -Z.
|
||||
*/
|
||||
hilbert3D: function ( center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7 ) {
|
||||
|
||||
// Default Vars
|
||||
var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
|
||||
size = size !== undefined ? size : 10,
|
||||
half = size / 2,
|
||||
iterations = iterations !== undefined ? iterations : 1,
|
||||
v0 = v0 !== undefined ? v0 : 0,
|
||||
v1 = v1 !== undefined ? v1 : 1,
|
||||
v2 = v2 !== undefined ? v2 : 2,
|
||||
v3 = v3 !== undefined ? v3 : 3,
|
||||
v4 = v4 !== undefined ? v4 : 4,
|
||||
v5 = v5 !== undefined ? v5 : 5,
|
||||
v6 = v6 !== undefined ? v6 : 6,
|
||||
v7 = v7 !== undefined ? v7 : 7
|
||||
;
|
||||
|
||||
var vec_s = [
|
||||
new THREE.Vector3( center.x - half, center.y + half, center.z - half ),
|
||||
new THREE.Vector3( center.x - half, center.y + half, center.z + half ),
|
||||
new THREE.Vector3( center.x - half, center.y - half, center.z + half ),
|
||||
new THREE.Vector3( center.x - half, center.y - half, center.z - half ),
|
||||
new THREE.Vector3( center.x + half, center.y - half, center.z - half ),
|
||||
new THREE.Vector3( center.x + half, center.y - half, center.z + half ),
|
||||
new THREE.Vector3( center.x + half, center.y + half, center.z + half ),
|
||||
new THREE.Vector3( center.x + half, center.y + half, center.z - half )
|
||||
];
|
||||
|
||||
var vec = [
|
||||
vec_s[ v0 ],
|
||||
vec_s[ v1 ],
|
||||
vec_s[ v2 ],
|
||||
vec_s[ v3 ],
|
||||
vec_s[ v4 ],
|
||||
vec_s[ v5 ],
|
||||
vec_s[ v6 ],
|
||||
vec_s[ v7 ]
|
||||
];
|
||||
|
||||
// Recurse iterations
|
||||
if ( -- iterations >= 0 ) {
|
||||
|
||||
var tmp = [];
|
||||
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
|
||||
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) );
|
||||
|
||||
// Return recursive call
|
||||
return tmp;
|
||||
|
||||
}
|
||||
|
||||
// Return complete Hilbert Curve.
|
||||
return vec;
|
||||
|
||||
},
|
||||
|
||||
/**
|
||||
* Generates a Gosper curve (lying in the XY plane)
|
||||
*
|
||||
* https://gist.github.com/nitaku/6521802
|
||||
*
|
||||
* @param size The size of a single gosper island.
|
||||
*/
|
||||
gosper: function ( size ) {
|
||||
|
||||
size = ( size !== undefined ) ? size : 1;
|
||||
|
||||
function fractalize( config ) {
|
||||
|
||||
var output;
|
||||
var input = config.axiom;
|
||||
|
||||
for ( var i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
|
||||
|
||||
output = '';
|
||||
|
||||
for ( var j = 0, jl = input.length; j < jl; j ++ ) {
|
||||
|
||||
var char = input[ j ];
|
||||
|
||||
if ( char in config.rules ) {
|
||||
|
||||
output += config.rules[ char ];
|
||||
|
||||
} else {
|
||||
|
||||
output += char;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
input = output;
|
||||
|
||||
}
|
||||
|
||||
return output;
|
||||
|
||||
}
|
||||
|
||||
function toPoints( config ) {
|
||||
|
||||
var currX = 0, currY = 0;
|
||||
var angle = 0;
|
||||
var path = [ 0, 0, 0 ];
|
||||
var fractal = config.fractal;
|
||||
|
||||
for ( var i = 0, l = fractal.length; i < l; i ++ ) {
|
||||
|
||||
var char = fractal[ i ];
|
||||
|
||||
if ( char === '+' ) {
|
||||
|
||||
angle += config.angle;
|
||||
|
||||
} else if ( char === '-' ) {
|
||||
|
||||
angle -= config.angle;
|
||||
|
||||
} else if ( char === 'F' ) {
|
||||
|
||||
currX += config.size * Math.cos( angle );
|
||||
currY += - config.size * Math.sin( angle );
|
||||
path.push( currX, currY, 0 );
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return path;
|
||||
|
||||
}
|
||||
|
||||
//
|
||||
|
||||
var gosper = fractalize( {
|
||||
axiom: 'A',
|
||||
steps: 4,
|
||||
rules: {
|
||||
A: 'A+BF++BF-FA--FAFA-BF+',
|
||||
B: '-FA+BFBF++BF+FA--FA-B'
|
||||
}
|
||||
} );
|
||||
|
||||
var points = toPoints( {
|
||||
fractal: gosper,
|
||||
size: size,
|
||||
angle: Math.PI / 3 // 60 degrees
|
||||
} );
|
||||
|
||||
return points;
|
||||
|
||||
}
|
||||
|
||||
};
|
Loading…
Add table
Add a link
Reference in a new issue