1
0
Fork 0
mirror of https://github.com/DanielnetoDotCom/YouPHPTube synced 2025-10-03 09:49:28 +02:00
Oinktube/node_modules/@lezer/common/dist/index.cjs

1835 lines
75 KiB
JavaScript

'use strict';
Object.defineProperty(exports, '__esModule', { value: true });
// FIXME profile adding a per-Tree TreeNode cache, validating it by
// parent pointer
/// The default maximum length of a `TreeBuffer` node.
const DefaultBufferLength = 1024;
let nextPropID = 0;
class Range {
constructor(from, to) {
this.from = from;
this.to = to;
}
}
/// Each [node type](#common.NodeType) or [individual tree](#common.Tree)
/// can have metadata associated with it in props. Instances of this
/// class represent prop names.
class NodeProp {
/// Create a new node prop type.
constructor(config = {}) {
this.id = nextPropID++;
this.perNode = !!config.perNode;
this.deserialize = config.deserialize || (() => {
throw new Error("This node type doesn't define a deserialize function");
});
}
/// This is meant to be used with
/// [`NodeSet.extend`](#common.NodeSet.extend) or
/// [`LRParser.configure`](#lr.ParserConfig.props) to compute
/// prop values for each node type in the set. Takes a [match
/// object](#common.NodeType^match) or function that returns undefined
/// if the node type doesn't get this prop, and the prop's value if
/// it does.
add(match) {
if (this.perNode)
throw new RangeError("Can't add per-node props to node types");
if (typeof match != "function")
match = NodeType.match(match);
return (type) => {
let result = match(type);
return result === undefined ? null : [this, result];
};
}
}
/// Prop that is used to describe matching delimiters. For opening
/// delimiters, this holds an array of node names (written as a
/// space-separated string when declaring this prop in a grammar)
/// for the node types of closing delimiters that match it.
NodeProp.closedBy = new NodeProp({ deserialize: str => str.split(" ") });
/// The inverse of [`closedBy`](#common.NodeProp^closedBy). This is
/// attached to closing delimiters, holding an array of node names
/// of types of matching opening delimiters.
NodeProp.openedBy = new NodeProp({ deserialize: str => str.split(" ") });
/// Used to assign node types to groups (for example, all node
/// types that represent an expression could be tagged with an
/// `"Expression"` group).
NodeProp.group = new NodeProp({ deserialize: str => str.split(" ") });
/// The hash of the [context](#lr.ContextTracker.constructor)
/// that the node was parsed in, if any. Used to limit reuse of
/// contextual nodes.
NodeProp.contextHash = new NodeProp({ perNode: true });
/// The distance beyond the end of the node that the tokenizer
/// looked ahead for any of the tokens inside the node. (The LR
/// parser only stores this when it is larger than 25, for
/// efficiency reasons.)
NodeProp.lookAhead = new NodeProp({ perNode: true });
/// This per-node prop is used to replace a given node, or part of a
/// node, with another tree. This is useful to include trees from
/// different languages in mixed-language parsers.
NodeProp.mounted = new NodeProp({ perNode: true });
/// A mounted tree, which can be [stored](#common.NodeProp^mounted) on
/// a tree node to indicate that parts of its content are
/// represented by another tree.
class MountedTree {
constructor(
/// The inner tree.
tree,
/// If this is null, this tree replaces the entire node (it will
/// be included in the regular iteration instead of its host
/// node). If not, only the given ranges are considered to be
/// covered by this tree. This is used for trees that are mixed in
/// a way that isn't strictly hierarchical. Such mounted trees are
/// only entered by [`resolveInner`](#common.Tree.resolveInner)
/// and [`enter`](#common.SyntaxNode.enter).
overlay,
/// The parser used to create this subtree.
parser) {
this.tree = tree;
this.overlay = overlay;
this.parser = parser;
}
}
const noProps = Object.create(null);
/// Each node in a syntax tree has a node type associated with it.
class NodeType {
/// @internal
constructor(
/// The name of the node type. Not necessarily unique, but if the
/// grammar was written properly, different node types with the
/// same name within a node set should play the same semantic
/// role.
name,
/// @internal
props,
/// The id of this node in its set. Corresponds to the term ids
/// used in the parser.
id,
/// @internal
flags = 0) {
this.name = name;
this.props = props;
this.id = id;
this.flags = flags;
}
/// Define a node type.
static define(spec) {
let props = spec.props && spec.props.length ? Object.create(null) : noProps;
let flags = (spec.top ? 1 /* NodeFlag.Top */ : 0) | (spec.skipped ? 2 /* NodeFlag.Skipped */ : 0) |
(spec.error ? 4 /* NodeFlag.Error */ : 0) | (spec.name == null ? 8 /* NodeFlag.Anonymous */ : 0);
let type = new NodeType(spec.name || "", props, spec.id, flags);
if (spec.props)
for (let src of spec.props) {
if (!Array.isArray(src))
src = src(type);
if (src) {
if (src[0].perNode)
throw new RangeError("Can't store a per-node prop on a node type");
props[src[0].id] = src[1];
}
}
return type;
}
/// Retrieves a node prop for this type. Will return `undefined` if
/// the prop isn't present on this node.
prop(prop) { return this.props[prop.id]; }
/// True when this is the top node of a grammar.
get isTop() { return (this.flags & 1 /* NodeFlag.Top */) > 0; }
/// True when this node is produced by a skip rule.
get isSkipped() { return (this.flags & 2 /* NodeFlag.Skipped */) > 0; }
/// Indicates whether this is an error node.
get isError() { return (this.flags & 4 /* NodeFlag.Error */) > 0; }
/// When true, this node type doesn't correspond to a user-declared
/// named node, for example because it is used to cache repetition.
get isAnonymous() { return (this.flags & 8 /* NodeFlag.Anonymous */) > 0; }
/// Returns true when this node's name or one of its
/// [groups](#common.NodeProp^group) matches the given string.
is(name) {
if (typeof name == 'string') {
if (this.name == name)
return true;
let group = this.prop(NodeProp.group);
return group ? group.indexOf(name) > -1 : false;
}
return this.id == name;
}
/// Create a function from node types to arbitrary values by
/// specifying an object whose property names are node or
/// [group](#common.NodeProp^group) names. Often useful with
/// [`NodeProp.add`](#common.NodeProp.add). You can put multiple
/// names, separated by spaces, in a single property name to map
/// multiple node names to a single value.
static match(map) {
let direct = Object.create(null);
for (let prop in map)
for (let name of prop.split(" "))
direct[name] = map[prop];
return (node) => {
for (let groups = node.prop(NodeProp.group), i = -1; i < (groups ? groups.length : 0); i++) {
let found = direct[i < 0 ? node.name : groups[i]];
if (found)
return found;
}
};
}
}
/// An empty dummy node type to use when no actual type is available.
NodeType.none = new NodeType("", Object.create(null), 0, 8 /* NodeFlag.Anonymous */);
/// A node set holds a collection of node types. It is used to
/// compactly represent trees by storing their type ids, rather than a
/// full pointer to the type object, in a numeric array. Each parser
/// [has](#lr.LRParser.nodeSet) a node set, and [tree
/// buffers](#common.TreeBuffer) can only store collections of nodes
/// from the same set. A set can have a maximum of 2**16 (65536) node
/// types in it, so that the ids fit into 16-bit typed array slots.
class NodeSet {
/// Create a set with the given types. The `id` property of each
/// type should correspond to its position within the array.
constructor(
/// The node types in this set, by id.
types) {
this.types = types;
for (let i = 0; i < types.length; i++)
if (types[i].id != i)
throw new RangeError("Node type ids should correspond to array positions when creating a node set");
}
/// Create a copy of this set with some node properties added. The
/// arguments to this method can be created with
/// [`NodeProp.add`](#common.NodeProp.add).
extend(...props) {
let newTypes = [];
for (let type of this.types) {
let newProps = null;
for (let source of props) {
let add = source(type);
if (add) {
if (!newProps)
newProps = Object.assign({}, type.props);
newProps[add[0].id] = add[1];
}
}
newTypes.push(newProps ? new NodeType(type.name, newProps, type.id, type.flags) : type);
}
return new NodeSet(newTypes);
}
}
const CachedNode = new WeakMap(), CachedInnerNode = new WeakMap();
/// Options that control iteration. Can be combined with the `|`
/// operator to enable multiple ones.
exports.IterMode = void 0;
(function (IterMode) {
/// When enabled, iteration will only visit [`Tree`](#common.Tree)
/// objects, not nodes packed into
/// [`TreeBuffer`](#common.TreeBuffer)s.
IterMode[IterMode["ExcludeBuffers"] = 1] = "ExcludeBuffers";
/// Enable this to make iteration include anonymous nodes (such as
/// the nodes that wrap repeated grammar constructs into a balanced
/// tree).
IterMode[IterMode["IncludeAnonymous"] = 2] = "IncludeAnonymous";
/// By default, regular [mounted](#common.NodeProp^mounted) nodes
/// replace their base node in iteration. Enable this to ignore them
/// instead.
IterMode[IterMode["IgnoreMounts"] = 4] = "IgnoreMounts";
/// This option only applies in
/// [`enter`](#common.SyntaxNode.enter)-style methods. It tells the
/// library to not enter mounted overlays if one covers the given
/// position.
IterMode[IterMode["IgnoreOverlays"] = 8] = "IgnoreOverlays";
})(exports.IterMode || (exports.IterMode = {}));
/// A piece of syntax tree. There are two ways to approach these
/// trees: the way they are actually stored in memory, and the
/// convenient way.
///
/// Syntax trees are stored as a tree of `Tree` and `TreeBuffer`
/// objects. By packing detail information into `TreeBuffer` leaf
/// nodes, the representation is made a lot more memory-efficient.
///
/// However, when you want to actually work with tree nodes, this
/// representation is very awkward, so most client code will want to
/// use the [`TreeCursor`](#common.TreeCursor) or
/// [`SyntaxNode`](#common.SyntaxNode) interface instead, which provides
/// a view on some part of this data structure, and can be used to
/// move around to adjacent nodes.
class Tree {
/// Construct a new tree. See also [`Tree.build`](#common.Tree^build).
constructor(
/// The type of the top node.
type,
/// This node's child nodes.
children,
/// The positions (offsets relative to the start of this tree) of
/// the children.
positions,
/// The total length of this tree
length,
/// Per-node [node props](#common.NodeProp) to associate with this node.
props) {
this.type = type;
this.children = children;
this.positions = positions;
this.length = length;
/// @internal
this.props = null;
if (props && props.length) {
this.props = Object.create(null);
for (let [prop, value] of props)
this.props[typeof prop == "number" ? prop : prop.id] = value;
}
}
/// @internal
toString() {
let mounted = this.prop(NodeProp.mounted);
if (mounted && !mounted.overlay)
return mounted.tree.toString();
let children = "";
for (let ch of this.children) {
let str = ch.toString();
if (str) {
if (children)
children += ",";
children += str;
}
}
return !this.type.name ? children :
(/\W/.test(this.type.name) && !this.type.isError ? JSON.stringify(this.type.name) : this.type.name) +
(children.length ? "(" + children + ")" : "");
}
/// Get a [tree cursor](#common.TreeCursor) positioned at the top of
/// the tree. Mode can be used to [control](#common.IterMode) which
/// nodes the cursor visits.
cursor(mode = 0) {
return new TreeCursor(this.topNode, mode);
}
/// Get a [tree cursor](#common.TreeCursor) pointing into this tree
/// at the given position and side (see
/// [`moveTo`](#common.TreeCursor.moveTo).
cursorAt(pos, side = 0, mode = 0) {
let scope = CachedNode.get(this) || this.topNode;
let cursor = new TreeCursor(scope);
cursor.moveTo(pos, side);
CachedNode.set(this, cursor._tree);
return cursor;
}
/// Get a [syntax node](#common.SyntaxNode) object for the top of the
/// tree.
get topNode() {
return new TreeNode(this, 0, 0, null);
}
/// Get the [syntax node](#common.SyntaxNode) at the given position.
/// If `side` is -1, this will move into nodes that end at the
/// position. If 1, it'll move into nodes that start at the
/// position. With 0, it'll only enter nodes that cover the position
/// from both sides.
///
/// Note that this will not enter
/// [overlays](#common.MountedTree.overlay), and you often want
/// [`resolveInner`](#common.Tree.resolveInner) instead.
resolve(pos, side = 0) {
let node = resolveNode(CachedNode.get(this) || this.topNode, pos, side, false);
CachedNode.set(this, node);
return node;
}
/// Like [`resolve`](#common.Tree.resolve), but will enter
/// [overlaid](#common.MountedTree.overlay) nodes, producing a syntax node
/// pointing into the innermost overlaid tree at the given position
/// (with parent links going through all parent structure, including
/// the host trees).
resolveInner(pos, side = 0) {
let node = resolveNode(CachedInnerNode.get(this) || this.topNode, pos, side, true);
CachedInnerNode.set(this, node);
return node;
}
/// Iterate over the tree and its children, calling `enter` for any
/// node that touches the `from`/`to` region (if given) before
/// running over such a node's children, and `leave` (if given) when
/// leaving the node. When `enter` returns `false`, that node will
/// not have its children iterated over (or `leave` called).
iterate(spec) {
let { enter, leave, from = 0, to = this.length } = spec;
for (let c = this.cursor((spec.mode || 0) | exports.IterMode.IncludeAnonymous);;) {
let entered = false;
if (c.from <= to && c.to >= from && (c.type.isAnonymous || enter(c) !== false)) {
if (c.firstChild())
continue;
entered = true;
}
for (;;) {
if (entered && leave && !c.type.isAnonymous)
leave(c);
if (c.nextSibling())
break;
if (!c.parent())
return;
entered = true;
}
}
}
/// Get the value of the given [node prop](#common.NodeProp) for this
/// node. Works with both per-node and per-type props.
prop(prop) {
return !prop.perNode ? this.type.prop(prop) : this.props ? this.props[prop.id] : undefined;
}
/// Returns the node's [per-node props](#common.NodeProp.perNode) in a
/// format that can be passed to the [`Tree`](#common.Tree)
/// constructor.
get propValues() {
let result = [];
if (this.props)
for (let id in this.props)
result.push([+id, this.props[id]]);
return result;
}
/// Balance the direct children of this tree, producing a copy of
/// which may have children grouped into subtrees with type
/// [`NodeType.none`](#common.NodeType^none).
balance(config = {}) {
return this.children.length <= 8 /* Balance.BranchFactor */ ? this :
balanceRange(NodeType.none, this.children, this.positions, 0, this.children.length, 0, this.length, (children, positions, length) => new Tree(this.type, children, positions, length, this.propValues), config.makeTree || ((children, positions, length) => new Tree(NodeType.none, children, positions, length)));
}
/// Build a tree from a postfix-ordered buffer of node information,
/// or a cursor over such a buffer.
static build(data) { return buildTree(data); }
}
/// The empty tree
Tree.empty = new Tree(NodeType.none, [], [], 0);
class FlatBufferCursor {
constructor(buffer, index) {
this.buffer = buffer;
this.index = index;
}
get id() { return this.buffer[this.index - 4]; }
get start() { return this.buffer[this.index - 3]; }
get end() { return this.buffer[this.index - 2]; }
get size() { return this.buffer[this.index - 1]; }
get pos() { return this.index; }
next() { this.index -= 4; }
fork() { return new FlatBufferCursor(this.buffer, this.index); }
}
/// Tree buffers contain (type, start, end, endIndex) quads for each
/// node. In such a buffer, nodes are stored in prefix order (parents
/// before children, with the endIndex of the parent indicating which
/// children belong to it).
class TreeBuffer {
/// Create a tree buffer.
constructor(
/// The buffer's content.
buffer,
/// The total length of the group of nodes in the buffer.
length,
/// The node set used in this buffer.
set) {
this.buffer = buffer;
this.length = length;
this.set = set;
}
/// @internal
get type() { return NodeType.none; }
/// @internal
toString() {
let result = [];
for (let index = 0; index < this.buffer.length;) {
result.push(this.childString(index));
index = this.buffer[index + 3];
}
return result.join(",");
}
/// @internal
childString(index) {
let id = this.buffer[index], endIndex = this.buffer[index + 3];
let type = this.set.types[id], result = type.name;
if (/\W/.test(result) && !type.isError)
result = JSON.stringify(result);
index += 4;
if (endIndex == index)
return result;
let children = [];
while (index < endIndex) {
children.push(this.childString(index));
index = this.buffer[index + 3];
}
return result + "(" + children.join(",") + ")";
}
/// @internal
findChild(startIndex, endIndex, dir, pos, side) {
let { buffer } = this, pick = -1;
for (let i = startIndex; i != endIndex; i = buffer[i + 3]) {
if (checkSide(side, pos, buffer[i + 1], buffer[i + 2])) {
pick = i;
if (dir > 0)
break;
}
}
return pick;
}
/// @internal
slice(startI, endI, from) {
let b = this.buffer;
let copy = new Uint16Array(endI - startI), len = 0;
for (let i = startI, j = 0; i < endI;) {
copy[j++] = b[i++];
copy[j++] = b[i++] - from;
let to = copy[j++] = b[i++] - from;
copy[j++] = b[i++] - startI;
len = Math.max(len, to);
}
return new TreeBuffer(copy, len, this.set);
}
}
function checkSide(side, pos, from, to) {
switch (side) {
case -2 /* Side.Before */: return from < pos;
case -1 /* Side.AtOrBefore */: return to >= pos && from < pos;
case 0 /* Side.Around */: return from < pos && to > pos;
case 1 /* Side.AtOrAfter */: return from <= pos && to > pos;
case 2 /* Side.After */: return to > pos;
case 4 /* Side.DontCare */: return true;
}
}
function enterUnfinishedNodesBefore(node, pos) {
let scan = node.childBefore(pos);
while (scan) {
let last = scan.lastChild;
if (!last || last.to != scan.to)
break;
if (last.type.isError && last.from == last.to) {
node = scan;
scan = last.prevSibling;
}
else {
scan = last;
}
}
return node;
}
function resolveNode(node, pos, side, overlays) {
var _a;
// Move up to a node that actually holds the position, if possible
while (node.from == node.to ||
(side < 1 ? node.from >= pos : node.from > pos) ||
(side > -1 ? node.to <= pos : node.to < pos)) {
let parent = !overlays && node instanceof TreeNode && node.index < 0 ? null : node.parent;
if (!parent)
return node;
node = parent;
}
let mode = overlays ? 0 : exports.IterMode.IgnoreOverlays;
// Must go up out of overlays when those do not overlap with pos
if (overlays)
for (let scan = node, parent = scan.parent; parent; scan = parent, parent = scan.parent) {
if (scan instanceof TreeNode && scan.index < 0 && ((_a = parent.enter(pos, side, mode)) === null || _a === void 0 ? void 0 : _a.from) != scan.from)
node = parent;
}
for (;;) {
let inner = node.enter(pos, side, mode);
if (!inner)
return node;
node = inner;
}
}
class TreeNode {
constructor(_tree, from,
// Index in parent node, set to -1 if the node is not a direct child of _parent.node (overlay)
index, _parent) {
this._tree = _tree;
this.from = from;
this.index = index;
this._parent = _parent;
}
get type() { return this._tree.type; }
get name() { return this._tree.type.name; }
get to() { return this.from + this._tree.length; }
nextChild(i, dir, pos, side, mode = 0) {
for (let parent = this;;) {
for (let { children, positions } = parent._tree, e = dir > 0 ? children.length : -1; i != e; i += dir) {
let next = children[i], start = positions[i] + parent.from;
if (!checkSide(side, pos, start, start + next.length))
continue;
if (next instanceof TreeBuffer) {
if (mode & exports.IterMode.ExcludeBuffers)
continue;
let index = next.findChild(0, next.buffer.length, dir, pos - start, side);
if (index > -1)
return new BufferNode(new BufferContext(parent, next, i, start), null, index);
}
else if ((mode & exports.IterMode.IncludeAnonymous) || (!next.type.isAnonymous || hasChild(next))) {
let mounted;
if (!(mode & exports.IterMode.IgnoreMounts) &&
next.props && (mounted = next.prop(NodeProp.mounted)) && !mounted.overlay)
return new TreeNode(mounted.tree, start, i, parent);
let inner = new TreeNode(next, start, i, parent);
return (mode & exports.IterMode.IncludeAnonymous) || !inner.type.isAnonymous ? inner
: inner.nextChild(dir < 0 ? next.children.length - 1 : 0, dir, pos, side);
}
}
if ((mode & exports.IterMode.IncludeAnonymous) || !parent.type.isAnonymous)
return null;
if (parent.index >= 0)
i = parent.index + dir;
else
i = dir < 0 ? -1 : parent._parent._tree.children.length;
parent = parent._parent;
if (!parent)
return null;
}
}
get firstChild() { return this.nextChild(0, 1, 0, 4 /* Side.DontCare */); }
get lastChild() { return this.nextChild(this._tree.children.length - 1, -1, 0, 4 /* Side.DontCare */); }
childAfter(pos) { return this.nextChild(0, 1, pos, 2 /* Side.After */); }
childBefore(pos) { return this.nextChild(this._tree.children.length - 1, -1, pos, -2 /* Side.Before */); }
enter(pos, side, mode = 0) {
let mounted;
if (!(mode & exports.IterMode.IgnoreOverlays) && (mounted = this._tree.prop(NodeProp.mounted)) && mounted.overlay) {
let rPos = pos - this.from;
for (let { from, to } of mounted.overlay) {
if ((side > 0 ? from <= rPos : from < rPos) &&
(side < 0 ? to >= rPos : to > rPos))
return new TreeNode(mounted.tree, mounted.overlay[0].from + this.from, -1, this);
}
}
return this.nextChild(0, 1, pos, side, mode);
}
nextSignificantParent() {
let val = this;
while (val.type.isAnonymous && val._parent)
val = val._parent;
return val;
}
get parent() {
return this._parent ? this._parent.nextSignificantParent() : null;
}
get nextSibling() {
return this._parent && this.index >= 0 ? this._parent.nextChild(this.index + 1, 1, 0, 4 /* Side.DontCare */) : null;
}
get prevSibling() {
return this._parent && this.index >= 0 ? this._parent.nextChild(this.index - 1, -1, 0, 4 /* Side.DontCare */) : null;
}
cursor(mode = 0) { return new TreeCursor(this, mode); }
get tree() { return this._tree; }
toTree() { return this._tree; }
resolve(pos, side = 0) {
return resolveNode(this, pos, side, false);
}
resolveInner(pos, side = 0) {
return resolveNode(this, pos, side, true);
}
enterUnfinishedNodesBefore(pos) { return enterUnfinishedNodesBefore(this, pos); }
getChild(type, before = null, after = null) {
let r = getChildren(this, type, before, after);
return r.length ? r[0] : null;
}
getChildren(type, before = null, after = null) {
return getChildren(this, type, before, after);
}
/// @internal
toString() { return this._tree.toString(); }
get node() { return this; }
matchContext(context) { return matchNodeContext(this, context); }
}
function getChildren(node, type, before, after) {
let cur = node.cursor(), result = [];
if (!cur.firstChild())
return result;
if (before != null)
while (!cur.type.is(before))
if (!cur.nextSibling())
return result;
for (;;) {
if (after != null && cur.type.is(after))
return result;
if (cur.type.is(type))
result.push(cur.node);
if (!cur.nextSibling())
return after == null ? result : [];
}
}
function matchNodeContext(node, context, i = context.length - 1) {
for (let p = node.parent; i >= 0; p = p.parent) {
if (!p)
return false;
if (!p.type.isAnonymous) {
if (context[i] && context[i] != p.name)
return false;
i--;
}
}
return true;
}
class BufferContext {
constructor(parent, buffer, index, start) {
this.parent = parent;
this.buffer = buffer;
this.index = index;
this.start = start;
}
}
class BufferNode {
get name() { return this.type.name; }
get from() { return this.context.start + this.context.buffer.buffer[this.index + 1]; }
get to() { return this.context.start + this.context.buffer.buffer[this.index + 2]; }
constructor(context, _parent, index) {
this.context = context;
this._parent = _parent;
this.index = index;
this.type = context.buffer.set.types[context.buffer.buffer[index]];
}
child(dir, pos, side) {
let { buffer } = this.context;
let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.context.start, side);
return index < 0 ? null : new BufferNode(this.context, this, index);
}
get firstChild() { return this.child(1, 0, 4 /* Side.DontCare */); }
get lastChild() { return this.child(-1, 0, 4 /* Side.DontCare */); }
childAfter(pos) { return this.child(1, pos, 2 /* Side.After */); }
childBefore(pos) { return this.child(-1, pos, -2 /* Side.Before */); }
enter(pos, side, mode = 0) {
if (mode & exports.IterMode.ExcludeBuffers)
return null;
let { buffer } = this.context;
let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], side > 0 ? 1 : -1, pos - this.context.start, side);
return index < 0 ? null : new BufferNode(this.context, this, index);
}
get parent() {
return this._parent || this.context.parent.nextSignificantParent();
}
externalSibling(dir) {
return this._parent ? null : this.context.parent.nextChild(this.context.index + dir, dir, 0, 4 /* Side.DontCare */);
}
get nextSibling() {
let { buffer } = this.context;
let after = buffer.buffer[this.index + 3];
if (after < (this._parent ? buffer.buffer[this._parent.index + 3] : buffer.buffer.length))
return new BufferNode(this.context, this._parent, after);
return this.externalSibling(1);
}
get prevSibling() {
let { buffer } = this.context;
let parentStart = this._parent ? this._parent.index + 4 : 0;
if (this.index == parentStart)
return this.externalSibling(-1);
return new BufferNode(this.context, this._parent, buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */));
}
cursor(mode = 0) { return new TreeCursor(this, mode); }
get tree() { return null; }
toTree() {
let children = [], positions = [];
let { buffer } = this.context;
let startI = this.index + 4, endI = buffer.buffer[this.index + 3];
if (endI > startI) {
let from = buffer.buffer[this.index + 1];
children.push(buffer.slice(startI, endI, from));
positions.push(0);
}
return new Tree(this.type, children, positions, this.to - this.from);
}
resolve(pos, side = 0) {
return resolveNode(this, pos, side, false);
}
resolveInner(pos, side = 0) {
return resolveNode(this, pos, side, true);
}
enterUnfinishedNodesBefore(pos) { return enterUnfinishedNodesBefore(this, pos); }
/// @internal
toString() { return this.context.buffer.childString(this.index); }
getChild(type, before = null, after = null) {
let r = getChildren(this, type, before, after);
return r.length ? r[0] : null;
}
getChildren(type, before = null, after = null) {
return getChildren(this, type, before, after);
}
get node() { return this; }
matchContext(context) { return matchNodeContext(this, context); }
}
/// A tree cursor object focuses on a given node in a syntax tree, and
/// allows you to move to adjacent nodes.
class TreeCursor {
/// Shorthand for `.type.name`.
get name() { return this.type.name; }
/// @internal
constructor(node,
/// @internal
mode = 0) {
this.mode = mode;
/// @internal
this.buffer = null;
this.stack = [];
/// @internal
this.index = 0;
this.bufferNode = null;
if (node instanceof TreeNode) {
this.yieldNode(node);
}
else {
this._tree = node.context.parent;
this.buffer = node.context;
for (let n = node._parent; n; n = n._parent)
this.stack.unshift(n.index);
this.bufferNode = node;
this.yieldBuf(node.index);
}
}
yieldNode(node) {
if (!node)
return false;
this._tree = node;
this.type = node.type;
this.from = node.from;
this.to = node.to;
return true;
}
yieldBuf(index, type) {
this.index = index;
let { start, buffer } = this.buffer;
this.type = type || buffer.set.types[buffer.buffer[index]];
this.from = start + buffer.buffer[index + 1];
this.to = start + buffer.buffer[index + 2];
return true;
}
yield(node) {
if (!node)
return false;
if (node instanceof TreeNode) {
this.buffer = null;
return this.yieldNode(node);
}
this.buffer = node.context;
return this.yieldBuf(node.index, node.type);
}
/// @internal
toString() {
return this.buffer ? this.buffer.buffer.childString(this.index) : this._tree.toString();
}
/// @internal
enterChild(dir, pos, side) {
if (!this.buffer)
return this.yield(this._tree.nextChild(dir < 0 ? this._tree._tree.children.length - 1 : 0, dir, pos, side, this.mode));
let { buffer } = this.buffer;
let index = buffer.findChild(this.index + 4, buffer.buffer[this.index + 3], dir, pos - this.buffer.start, side);
if (index < 0)
return false;
this.stack.push(this.index);
return this.yieldBuf(index);
}
/// Move the cursor to this node's first child. When this returns
/// false, the node has no child, and the cursor has not been moved.
firstChild() { return this.enterChild(1, 0, 4 /* Side.DontCare */); }
/// Move the cursor to this node's last child.
lastChild() { return this.enterChild(-1, 0, 4 /* Side.DontCare */); }
/// Move the cursor to the first child that ends after `pos`.
childAfter(pos) { return this.enterChild(1, pos, 2 /* Side.After */); }
/// Move to the last child that starts before `pos`.
childBefore(pos) { return this.enterChild(-1, pos, -2 /* Side.Before */); }
/// Move the cursor to the child around `pos`. If side is -1 the
/// child may end at that position, when 1 it may start there. This
/// will also enter [overlaid](#common.MountedTree.overlay)
/// [mounted](#common.NodeProp^mounted) trees unless `overlays` is
/// set to false.
enter(pos, side, mode = this.mode) {
if (!this.buffer)
return this.yield(this._tree.enter(pos, side, mode));
return mode & exports.IterMode.ExcludeBuffers ? false : this.enterChild(1, pos, side);
}
/// Move to the node's parent node, if this isn't the top node.
parent() {
if (!this.buffer)
return this.yieldNode((this.mode & exports.IterMode.IncludeAnonymous) ? this._tree._parent : this._tree.parent);
if (this.stack.length)
return this.yieldBuf(this.stack.pop());
let parent = (this.mode & exports.IterMode.IncludeAnonymous) ? this.buffer.parent : this.buffer.parent.nextSignificantParent();
this.buffer = null;
return this.yieldNode(parent);
}
/// @internal
sibling(dir) {
if (!this.buffer)
return !this._tree._parent ? false
: this.yield(this._tree.index < 0 ? null
: this._tree._parent.nextChild(this._tree.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode));
let { buffer } = this.buffer, d = this.stack.length - 1;
if (dir < 0) {
let parentStart = d < 0 ? 0 : this.stack[d] + 4;
if (this.index != parentStart)
return this.yieldBuf(buffer.findChild(parentStart, this.index, -1, 0, 4 /* Side.DontCare */));
}
else {
let after = buffer.buffer[this.index + 3];
if (after < (d < 0 ? buffer.buffer.length : buffer.buffer[this.stack[d] + 3]))
return this.yieldBuf(after);
}
return d < 0 ? this.yield(this.buffer.parent.nextChild(this.buffer.index + dir, dir, 0, 4 /* Side.DontCare */, this.mode)) : false;
}
/// Move to this node's next sibling, if any.
nextSibling() { return this.sibling(1); }
/// Move to this node's previous sibling, if any.
prevSibling() { return this.sibling(-1); }
atLastNode(dir) {
let index, parent, { buffer } = this;
if (buffer) {
if (dir > 0) {
if (this.index < buffer.buffer.buffer.length)
return false;
}
else {
for (let i = 0; i < this.index; i++)
if (buffer.buffer.buffer[i + 3] < this.index)
return false;
}
({ index, parent } = buffer);
}
else {
({ index, _parent: parent } = this._tree);
}
for (; parent; { index, _parent: parent } = parent) {
if (index > -1)
for (let i = index + dir, e = dir < 0 ? -1 : parent._tree.children.length; i != e; i += dir) {
let child = parent._tree.children[i];
if ((this.mode & exports.IterMode.IncludeAnonymous) ||
child instanceof TreeBuffer ||
!child.type.isAnonymous ||
hasChild(child))
return false;
}
}
return true;
}
move(dir, enter) {
if (enter && this.enterChild(dir, 0, 4 /* Side.DontCare */))
return true;
for (;;) {
if (this.sibling(dir))
return true;
if (this.atLastNode(dir) || !this.parent())
return false;
}
}
/// Move to the next node in a
/// [pre-order](https://en.wikipedia.org/wiki/Tree_traversal#Pre-order,_NLR)
/// traversal, going from a node to its first child or, if the
/// current node is empty or `enter` is false, its next sibling or
/// the next sibling of the first parent node that has one.
next(enter = true) { return this.move(1, enter); }
/// Move to the next node in a last-to-first pre-order traveral. A
/// node is followed by its last child or, if it has none, its
/// previous sibling or the previous sibling of the first parent
/// node that has one.
prev(enter = true) { return this.move(-1, enter); }
/// Move the cursor to the innermost node that covers `pos`. If
/// `side` is -1, it will enter nodes that end at `pos`. If it is 1,
/// it will enter nodes that start at `pos`.
moveTo(pos, side = 0) {
// Move up to a node that actually holds the position, if possible
while (this.from == this.to ||
(side < 1 ? this.from >= pos : this.from > pos) ||
(side > -1 ? this.to <= pos : this.to < pos))
if (!this.parent())
break;
// Then scan down into child nodes as far as possible
while (this.enterChild(1, pos, side)) { }
return this;
}
/// Get a [syntax node](#common.SyntaxNode) at the cursor's current
/// position.
get node() {
if (!this.buffer)
return this._tree;
let cache = this.bufferNode, result = null, depth = 0;
if (cache && cache.context == this.buffer) {
scan: for (let index = this.index, d = this.stack.length; d >= 0;) {
for (let c = cache; c; c = c._parent)
if (c.index == index) {
if (index == this.index)
return c;
result = c;
depth = d + 1;
break scan;
}
index = this.stack[--d];
}
}
for (let i = depth; i < this.stack.length; i++)
result = new BufferNode(this.buffer, result, this.stack[i]);
return this.bufferNode = new BufferNode(this.buffer, result, this.index);
}
/// Get the [tree](#common.Tree) that represents the current node, if
/// any. Will return null when the node is in a [tree
/// buffer](#common.TreeBuffer).
get tree() {
return this.buffer ? null : this._tree._tree;
}
/// Iterate over the current node and all its descendants, calling
/// `enter` when entering a node and `leave`, if given, when leaving
/// one. When `enter` returns `false`, any children of that node are
/// skipped, and `leave` isn't called for it.
iterate(enter, leave) {
for (let depth = 0;;) {
let mustLeave = false;
if (this.type.isAnonymous || enter(this) !== false) {
if (this.firstChild()) {
depth++;
continue;
}
if (!this.type.isAnonymous)
mustLeave = true;
}
for (;;) {
if (mustLeave && leave)
leave(this);
mustLeave = this.type.isAnonymous;
if (this.nextSibling())
break;
if (!depth)
return;
this.parent();
depth--;
mustLeave = true;
}
}
}
/// Test whether the current node matches a given context—a sequence
/// of direct parent node names. Empty strings in the context array
/// are treated as wildcards.
matchContext(context) {
if (!this.buffer)
return matchNodeContext(this.node, context);
let { buffer } = this.buffer, { types } = buffer.set;
for (let i = context.length - 1, d = this.stack.length - 1; i >= 0; d--) {
if (d < 0)
return matchNodeContext(this.node, context, i);
let type = types[buffer.buffer[this.stack[d]]];
if (!type.isAnonymous) {
if (context[i] && context[i] != type.name)
return false;
i--;
}
}
return true;
}
}
function hasChild(tree) {
return tree.children.some(ch => ch instanceof TreeBuffer || !ch.type.isAnonymous || hasChild(ch));
}
function buildTree(data) {
var _a;
let { buffer, nodeSet, maxBufferLength = DefaultBufferLength, reused = [], minRepeatType = nodeSet.types.length } = data;
let cursor = Array.isArray(buffer) ? new FlatBufferCursor(buffer, buffer.length) : buffer;
let types = nodeSet.types;
let contextHash = 0, lookAhead = 0;
function takeNode(parentStart, minPos, children, positions, inRepeat) {
let { id, start, end, size } = cursor;
let lookAheadAtStart = lookAhead;
while (size < 0) {
cursor.next();
if (size == -1 /* SpecialRecord.Reuse */) {
let node = reused[id];
children.push(node);
positions.push(start - parentStart);
return;
}
else if (size == -3 /* SpecialRecord.ContextChange */) { // Context change
contextHash = id;
return;
}
else if (size == -4 /* SpecialRecord.LookAhead */) {
lookAhead = id;
return;
}
else {
throw new RangeError(`Unrecognized record size: ${size}`);
}
}
let type = types[id], node, buffer;
let startPos = start - parentStart;
if (end - start <= maxBufferLength && (buffer = findBufferSize(cursor.pos - minPos, inRepeat))) {
// Small enough for a buffer, and no reused nodes inside
let data = new Uint16Array(buffer.size - buffer.skip);
let endPos = cursor.pos - buffer.size, index = data.length;
while (cursor.pos > endPos)
index = copyToBuffer(buffer.start, data, index);
node = new TreeBuffer(data, end - buffer.start, nodeSet);
startPos = buffer.start - parentStart;
}
else { // Make it a node
let endPos = cursor.pos - size;
cursor.next();
let localChildren = [], localPositions = [];
let localInRepeat = id >= minRepeatType ? id : -1;
let lastGroup = 0, lastEnd = end;
while (cursor.pos > endPos) {
if (localInRepeat >= 0 && cursor.id == localInRepeat && cursor.size >= 0) {
if (cursor.end <= lastEnd - maxBufferLength) {
makeRepeatLeaf(localChildren, localPositions, start, lastGroup, cursor.end, lastEnd, localInRepeat, lookAheadAtStart);
lastGroup = localChildren.length;
lastEnd = cursor.end;
}
cursor.next();
}
else {
takeNode(start, endPos, localChildren, localPositions, localInRepeat);
}
}
if (localInRepeat >= 0 && lastGroup > 0 && lastGroup < localChildren.length)
makeRepeatLeaf(localChildren, localPositions, start, lastGroup, start, lastEnd, localInRepeat, lookAheadAtStart);
localChildren.reverse();
localPositions.reverse();
if (localInRepeat > -1 && lastGroup > 0) {
let make = makeBalanced(type);
node = balanceRange(type, localChildren, localPositions, 0, localChildren.length, 0, end - start, make, make);
}
else {
node = makeTree(type, localChildren, localPositions, end - start, lookAheadAtStart - end);
}
}
children.push(node);
positions.push(startPos);
}
function makeBalanced(type) {
return (children, positions, length) => {
let lookAhead = 0, lastI = children.length - 1, last, lookAheadProp;
if (lastI >= 0 && (last = children[lastI]) instanceof Tree) {
if (!lastI && last.type == type && last.length == length)
return last;
if (lookAheadProp = last.prop(NodeProp.lookAhead))
lookAhead = positions[lastI] + last.length + lookAheadProp;
}
return makeTree(type, children, positions, length, lookAhead);
};
}
function makeRepeatLeaf(children, positions, base, i, from, to, type, lookAhead) {
let localChildren = [], localPositions = [];
while (children.length > i) {
localChildren.push(children.pop());
localPositions.push(positions.pop() + base - from);
}
children.push(makeTree(nodeSet.types[type], localChildren, localPositions, to - from, lookAhead - to));
positions.push(from - base);
}
function makeTree(type, children, positions, length, lookAhead = 0, props) {
if (contextHash) {
let pair = [NodeProp.contextHash, contextHash];
props = props ? [pair].concat(props) : [pair];
}
if (lookAhead > 25) {
let pair = [NodeProp.lookAhead, lookAhead];
props = props ? [pair].concat(props) : [pair];
}
return new Tree(type, children, positions, length, props);
}
function findBufferSize(maxSize, inRepeat) {
// Scan through the buffer to find previous siblings that fit
// together in a TreeBuffer, and don't contain any reused nodes
// (which can't be stored in a buffer).
// If `inRepeat` is > -1, ignore node boundaries of that type for
// nesting, but make sure the end falls either at the start
// (`maxSize`) or before such a node.
let fork = cursor.fork();
let size = 0, start = 0, skip = 0, minStart = fork.end - maxBufferLength;
let result = { size: 0, start: 0, skip: 0 };
scan: for (let minPos = fork.pos - maxSize; fork.pos > minPos;) {
let nodeSize = fork.size;
// Pretend nested repeat nodes of the same type don't exist
if (fork.id == inRepeat && nodeSize >= 0) {
// Except that we store the current state as a valid return
// value.
result.size = size;
result.start = start;
result.skip = skip;
skip += 4;
size += 4;
fork.next();
continue;
}
let startPos = fork.pos - nodeSize;
if (nodeSize < 0 || startPos < minPos || fork.start < minStart)
break;
let localSkipped = fork.id >= minRepeatType ? 4 : 0;
let nodeStart = fork.start;
fork.next();
while (fork.pos > startPos) {
if (fork.size < 0) {
if (fork.size == -3 /* SpecialRecord.ContextChange */)
localSkipped += 4;
else
break scan;
}
else if (fork.id >= minRepeatType) {
localSkipped += 4;
}
fork.next();
}
start = nodeStart;
size += nodeSize;
skip += localSkipped;
}
if (inRepeat < 0 || size == maxSize) {
result.size = size;
result.start = start;
result.skip = skip;
}
return result.size > 4 ? result : undefined;
}
function copyToBuffer(bufferStart, buffer, index) {
let { id, start, end, size } = cursor;
cursor.next();
if (size >= 0 && id < minRepeatType) {
let startIndex = index;
if (size > 4) {
let endPos = cursor.pos - (size - 4);
while (cursor.pos > endPos)
index = copyToBuffer(bufferStart, buffer, index);
}
buffer[--index] = startIndex;
buffer[--index] = end - bufferStart;
buffer[--index] = start - bufferStart;
buffer[--index] = id;
}
else if (size == -3 /* SpecialRecord.ContextChange */) {
contextHash = id;
}
else if (size == -4 /* SpecialRecord.LookAhead */) {
lookAhead = id;
}
return index;
}
let children = [], positions = [];
while (cursor.pos > 0)
takeNode(data.start || 0, data.bufferStart || 0, children, positions, -1);
let length = (_a = data.length) !== null && _a !== void 0 ? _a : (children.length ? positions[0] + children[0].length : 0);
return new Tree(types[data.topID], children.reverse(), positions.reverse(), length);
}
const nodeSizeCache = new WeakMap;
function nodeSize(balanceType, node) {
if (!balanceType.isAnonymous || node instanceof TreeBuffer || node.type != balanceType)
return 1;
let size = nodeSizeCache.get(node);
if (size == null) {
size = 1;
for (let child of node.children) {
if (child.type != balanceType || !(child instanceof Tree)) {
size = 1;
break;
}
size += nodeSize(balanceType, child);
}
nodeSizeCache.set(node, size);
}
return size;
}
function balanceRange(
// The type the balanced tree's inner nodes.
balanceType,
// The direct children and their positions
children, positions,
// The index range in children/positions to use
from, to,
// The start position of the nodes, relative to their parent.
start,
// Length of the outer node
length,
// Function to build the top node of the balanced tree
mkTop,
// Function to build internal nodes for the balanced tree
mkTree) {
let total = 0;
for (let i = from; i < to; i++)
total += nodeSize(balanceType, children[i]);
let maxChild = Math.ceil((total * 1.5) / 8 /* Balance.BranchFactor */);
let localChildren = [], localPositions = [];
function divide(children, positions, from, to, offset) {
for (let i = from; i < to;) {
let groupFrom = i, groupStart = positions[i], groupSize = nodeSize(balanceType, children[i]);
i++;
for (; i < to; i++) {
let nextSize = nodeSize(balanceType, children[i]);
if (groupSize + nextSize >= maxChild)
break;
groupSize += nextSize;
}
if (i == groupFrom + 1) {
if (groupSize > maxChild) {
let only = children[groupFrom]; // Only trees can have a size > 1
divide(only.children, only.positions, 0, only.children.length, positions[groupFrom] + offset);
continue;
}
localChildren.push(children[groupFrom]);
}
else {
let length = positions[i - 1] + children[i - 1].length - groupStart;
localChildren.push(balanceRange(balanceType, children, positions, groupFrom, i, groupStart, length, null, mkTree));
}
localPositions.push(groupStart + offset - start);
}
}
divide(children, positions, from, to, 0);
return (mkTop || mkTree)(localChildren, localPositions, length);
}
/// Provides a way to associate values with pieces of trees. As long
/// as that part of the tree is reused, the associated values can be
/// retrieved from an updated tree.
class NodeWeakMap {
constructor() {
this.map = new WeakMap();
}
setBuffer(buffer, index, value) {
let inner = this.map.get(buffer);
if (!inner)
this.map.set(buffer, inner = new Map);
inner.set(index, value);
}
getBuffer(buffer, index) {
let inner = this.map.get(buffer);
return inner && inner.get(index);
}
/// Set the value for this syntax node.
set(node, value) {
if (node instanceof BufferNode)
this.setBuffer(node.context.buffer, node.index, value);
else if (node instanceof TreeNode)
this.map.set(node.tree, value);
}
/// Retrieve value for this syntax node, if it exists in the map.
get(node) {
return node instanceof BufferNode ? this.getBuffer(node.context.buffer, node.index)
: node instanceof TreeNode ? this.map.get(node.tree) : undefined;
}
/// Set the value for the node that a cursor currently points to.
cursorSet(cursor, value) {
if (cursor.buffer)
this.setBuffer(cursor.buffer.buffer, cursor.index, value);
else
this.map.set(cursor.tree, value);
}
/// Retrieve the value for the node that a cursor currently points
/// to.
cursorGet(cursor) {
return cursor.buffer ? this.getBuffer(cursor.buffer.buffer, cursor.index) : this.map.get(cursor.tree);
}
}
/// Tree fragments are used during [incremental
/// parsing](#common.Parser.startParse) to track parts of old trees
/// that can be reused in a new parse. An array of fragments is used
/// to track regions of an old tree whose nodes might be reused in new
/// parses. Use the static
/// [`applyChanges`](#common.TreeFragment^applyChanges) method to
/// update fragments for document changes.
class TreeFragment {
/// Construct a tree fragment. You'll usually want to use
/// [`addTree`](#common.TreeFragment^addTree) and
/// [`applyChanges`](#common.TreeFragment^applyChanges) instead of
/// calling this directly.
constructor(
/// The start of the unchanged range pointed to by this fragment.
/// This refers to an offset in the _updated_ document (as opposed
/// to the original tree).
from,
/// The end of the unchanged range.
to,
/// The tree that this fragment is based on.
tree,
/// The offset between the fragment's tree and the document that
/// this fragment can be used against. Add this when going from
/// document to tree positions, subtract it to go from tree to
/// document positions.
offset, openStart = false, openEnd = false) {
this.from = from;
this.to = to;
this.tree = tree;
this.offset = offset;
this.open = (openStart ? 1 /* Open.Start */ : 0) | (openEnd ? 2 /* Open.End */ : 0);
}
/// Whether the start of the fragment represents the start of a
/// parse, or the end of a change. (In the second case, it may not
/// be safe to reuse some nodes at the start, depending on the
/// parsing algorithm.)
get openStart() { return (this.open & 1 /* Open.Start */) > 0; }
/// Whether the end of the fragment represents the end of a
/// full-document parse, or the start of a change.
get openEnd() { return (this.open & 2 /* Open.End */) > 0; }
/// Create a set of fragments from a freshly parsed tree, or update
/// an existing set of fragments by replacing the ones that overlap
/// with a tree with content from the new tree. When `partial` is
/// true, the parse is treated as incomplete, and the resulting
/// fragment has [`openEnd`](#common.TreeFragment.openEnd) set to
/// true.
static addTree(tree, fragments = [], partial = false) {
let result = [new TreeFragment(0, tree.length, tree, 0, false, partial)];
for (let f of fragments)
if (f.to > tree.length)
result.push(f);
return result;
}
/// Apply a set of edits to an array of fragments, removing or
/// splitting fragments as necessary to remove edited ranges, and
/// adjusting offsets for fragments that moved.
static applyChanges(fragments, changes, minGap = 128) {
if (!changes.length)
return fragments;
let result = [];
let fI = 1, nextF = fragments.length ? fragments[0] : null;
for (let cI = 0, pos = 0, off = 0;; cI++) {
let nextC = cI < changes.length ? changes[cI] : null;
let nextPos = nextC ? nextC.fromA : 1e9;
if (nextPos - pos >= minGap)
while (nextF && nextF.from < nextPos) {
let cut = nextF;
if (pos >= cut.from || nextPos <= cut.to || off) {
let fFrom = Math.max(cut.from, pos) - off, fTo = Math.min(cut.to, nextPos) - off;
cut = fFrom >= fTo ? null : new TreeFragment(fFrom, fTo, cut.tree, cut.offset + off, cI > 0, !!nextC);
}
if (cut)
result.push(cut);
if (nextF.to > nextPos)
break;
nextF = fI < fragments.length ? fragments[fI++] : null;
}
if (!nextC)
break;
pos = nextC.toA;
off = nextC.toA - nextC.toB;
}
return result;
}
}
/// A superclass that parsers should extend.
class Parser {
/// Start a parse, returning a [partial parse](#common.PartialParse)
/// object. [`fragments`](#common.TreeFragment) can be passed in to
/// make the parse incremental.
///
/// By default, the entire input is parsed. You can pass `ranges`,
/// which should be a sorted array of non-empty, non-overlapping
/// ranges, to parse only those ranges. The tree returned in that
/// case will start at `ranges[0].from`.
startParse(input, fragments, ranges) {
if (typeof input == "string")
input = new StringInput(input);
ranges = !ranges ? [new Range(0, input.length)] : ranges.length ? ranges.map(r => new Range(r.from, r.to)) : [new Range(0, 0)];
return this.createParse(input, fragments || [], ranges);
}
/// Run a full parse, returning the resulting tree.
parse(input, fragments, ranges) {
let parse = this.startParse(input, fragments, ranges);
for (;;) {
let done = parse.advance();
if (done)
return done;
}
}
}
class StringInput {
constructor(string) {
this.string = string;
}
get length() { return this.string.length; }
chunk(from) { return this.string.slice(from); }
get lineChunks() { return false; }
read(from, to) { return this.string.slice(from, to); }
}
/// Create a parse wrapper that, after the inner parse completes,
/// scans its tree for mixed language regions with the `nest`
/// function, runs the resulting [inner parses](#common.NestedParse),
/// and then [mounts](#common.NodeProp^mounted) their results onto the
/// tree.
function parseMixed(nest) {
return (parse, input, fragments, ranges) => new MixedParse(parse, nest, input, fragments, ranges);
}
class InnerParse {
constructor(parser, parse, overlay, target, ranges) {
this.parser = parser;
this.parse = parse;
this.overlay = overlay;
this.target = target;
this.ranges = ranges;
}
}
class ActiveOverlay {
constructor(parser, predicate, mounts, index, start, target, prev) {
this.parser = parser;
this.predicate = predicate;
this.mounts = mounts;
this.index = index;
this.start = start;
this.target = target;
this.prev = prev;
this.depth = 0;
this.ranges = [];
}
}
const stoppedInner = new NodeProp({ perNode: true });
class MixedParse {
constructor(base, nest, input, fragments, ranges) {
this.nest = nest;
this.input = input;
this.fragments = fragments;
this.ranges = ranges;
this.inner = [];
this.innerDone = 0;
this.baseTree = null;
this.stoppedAt = null;
this.baseParse = base;
}
advance() {
if (this.baseParse) {
let done = this.baseParse.advance();
if (!done)
return null;
this.baseParse = null;
this.baseTree = done;
this.startInner();
if (this.stoppedAt != null)
for (let inner of this.inner)
inner.parse.stopAt(this.stoppedAt);
}
if (this.innerDone == this.inner.length) {
let result = this.baseTree;
if (this.stoppedAt != null)
result = new Tree(result.type, result.children, result.positions, result.length, result.propValues.concat([[stoppedInner, this.stoppedAt]]));
return result;
}
let inner = this.inner[this.innerDone], done = inner.parse.advance();
if (done) {
this.innerDone++;
// This is a somewhat dodgy but super helpful hack where we
// patch up nodes created by the inner parse (and thus
// presumably not aliased anywhere else) to hold the information
// about the inner parse.
let props = Object.assign(Object.create(null), inner.target.props);
props[NodeProp.mounted.id] = new MountedTree(done, inner.overlay, inner.parser);
inner.target.props = props;
}
return null;
}
get parsedPos() {
if (this.baseParse)
return 0;
let pos = this.input.length;
for (let i = this.innerDone; i < this.inner.length; i++) {
if (this.inner[i].ranges[0].from < pos)
pos = Math.min(pos, this.inner[i].parse.parsedPos);
}
return pos;
}
stopAt(pos) {
this.stoppedAt = pos;
if (this.baseParse)
this.baseParse.stopAt(pos);
else
for (let i = this.innerDone; i < this.inner.length; i++)
this.inner[i].parse.stopAt(pos);
}
startInner() {
let fragmentCursor = new FragmentCursor(this.fragments);
let overlay = null;
let covered = null;
let cursor = new TreeCursor(new TreeNode(this.baseTree, this.ranges[0].from, 0, null), exports.IterMode.IncludeAnonymous | exports.IterMode.IgnoreMounts);
scan: for (let nest, isCovered; this.stoppedAt == null || cursor.from < this.stoppedAt;) {
let enter = true, range;
if (fragmentCursor.hasNode(cursor)) {
if (overlay) {
let match = overlay.mounts.find(m => m.frag.from <= cursor.from && m.frag.to >= cursor.to && m.mount.overlay);
if (match)
for (let r of match.mount.overlay) {
let from = r.from + match.pos, to = r.to + match.pos;
if (from >= cursor.from && to <= cursor.to && !overlay.ranges.some(r => r.from < to && r.to > from))
overlay.ranges.push({ from, to });
}
}
enter = false;
}
else if (covered && (isCovered = checkCover(covered.ranges, cursor.from, cursor.to))) {
enter = isCovered != 2 /* Cover.Full */;
}
else if (!cursor.type.isAnonymous && cursor.from < cursor.to && (nest = this.nest(cursor, this.input))) {
if (!cursor.tree)
materialize(cursor);
let oldMounts = fragmentCursor.findMounts(cursor.from, nest.parser);
if (typeof nest.overlay == "function") {
overlay = new ActiveOverlay(nest.parser, nest.overlay, oldMounts, this.inner.length, cursor.from, cursor.tree, overlay);
}
else {
let ranges = punchRanges(this.ranges, nest.overlay || [new Range(cursor.from, cursor.to)]);
if (ranges.length)
this.inner.push(new InnerParse(nest.parser, nest.parser.startParse(this.input, enterFragments(oldMounts, ranges), ranges), nest.overlay ? nest.overlay.map(r => new Range(r.from - cursor.from, r.to - cursor.from)) : null, cursor.tree, ranges));
if (!nest.overlay)
enter = false;
else if (ranges.length)
covered = { ranges, depth: 0, prev: covered };
}
}
else if (overlay && (range = overlay.predicate(cursor))) {
if (range === true)
range = new Range(cursor.from, cursor.to);
if (range.from < range.to)
overlay.ranges.push(range);
}
if (enter && cursor.firstChild()) {
if (overlay)
overlay.depth++;
if (covered)
covered.depth++;
}
else {
for (;;) {
if (cursor.nextSibling())
break;
if (!cursor.parent())
break scan;
if (overlay && !--overlay.depth) {
let ranges = punchRanges(this.ranges, overlay.ranges);
if (ranges.length)
this.inner.splice(overlay.index, 0, new InnerParse(overlay.parser, overlay.parser.startParse(this.input, enterFragments(overlay.mounts, ranges), ranges), overlay.ranges.map(r => new Range(r.from - overlay.start, r.to - overlay.start)), overlay.target, ranges));
overlay = overlay.prev;
}
if (covered && !--covered.depth)
covered = covered.prev;
}
}
}
}
}
function checkCover(covered, from, to) {
for (let range of covered) {
if (range.from >= to)
break;
if (range.to > from)
return range.from <= from && range.to >= to ? 2 /* Cover.Full */ : 1 /* Cover.Partial */;
}
return 0 /* Cover.None */;
}
// Take a piece of buffer and convert it into a stand-alone
// TreeBuffer.
function sliceBuf(buf, startI, endI, nodes, positions, off) {
if (startI < endI) {
let from = buf.buffer[startI + 1];
nodes.push(buf.slice(startI, endI, from));
positions.push(from - off);
}
}
// This function takes a node that's in a buffer, and converts it, and
// its parent buffer nodes, into a Tree. This is again acting on the
// assumption that the trees and buffers have been constructed by the
// parse that was ran via the mix parser, and thus aren't shared with
// any other code, making violations of the immutability safe.
function materialize(cursor) {
let { node } = cursor, depth = 0;
// Scan up to the nearest tree
do {
cursor.parent();
depth++;
} while (!cursor.tree);
// Find the index of the buffer in that tree
let i = 0, base = cursor.tree, off = 0;
for (;; i++) {
off = base.positions[i] + cursor.from;
if (off <= node.from && off + base.children[i].length >= node.to)
break;
}
let buf = base.children[i], b = buf.buffer;
// Split a level in the buffer, putting the nodes before and after
// the child that contains `node` into new buffers.
function split(startI, endI, type, innerOffset, length) {
let i = startI;
while (b[i + 2] + off <= node.from)
i = b[i + 3];
let children = [], positions = [];
sliceBuf(buf, startI, i, children, positions, innerOffset);
let from = b[i + 1], to = b[i + 2];
let isTarget = from + off == node.from && to + off == node.to && b[i] == node.type.id;
children.push(isTarget ? node.toTree() : split(i + 4, b[i + 3], buf.set.types[b[i]], from, to - from));
positions.push(from - innerOffset);
sliceBuf(buf, b[i + 3], endI, children, positions, innerOffset);
return new Tree(type, children, positions, length);
}
base.children[i] = split(0, b.length, NodeType.none, 0, buf.length);
// Move the cursor back to the target node
for (let d = 0; d <= depth; d++)
cursor.childAfter(node.from);
}
class StructureCursor {
constructor(root, offset) {
this.offset = offset;
this.done = false;
this.cursor = root.cursor(exports.IterMode.IncludeAnonymous | exports.IterMode.IgnoreMounts);
}
// Move to the first node (in pre-order) that starts at or after `pos`.
moveTo(pos) {
let { cursor } = this, p = pos - this.offset;
while (!this.done && cursor.from < p) {
if (cursor.to >= pos && cursor.enter(p, 1, exports.IterMode.IgnoreOverlays | exports.IterMode.ExcludeBuffers)) ;
else if (!cursor.next(false))
this.done = true;
}
}
hasNode(cursor) {
this.moveTo(cursor.from);
if (!this.done && this.cursor.from + this.offset == cursor.from && this.cursor.tree) {
for (let tree = this.cursor.tree;;) {
if (tree == cursor.tree)
return true;
if (tree.children.length && tree.positions[0] == 0 && tree.children[0] instanceof Tree)
tree = tree.children[0];
else
break;
}
}
return false;
}
}
class FragmentCursor {
constructor(fragments) {
var _a;
this.fragments = fragments;
this.curTo = 0;
this.fragI = 0;
if (fragments.length) {
let first = this.curFrag = fragments[0];
this.curTo = (_a = first.tree.prop(stoppedInner)) !== null && _a !== void 0 ? _a : first.to;
this.inner = new StructureCursor(first.tree, -first.offset);
}
else {
this.curFrag = this.inner = null;
}
}
hasNode(node) {
while (this.curFrag && node.from >= this.curTo)
this.nextFrag();
return this.curFrag && this.curFrag.from <= node.from && this.curTo >= node.to && this.inner.hasNode(node);
}
nextFrag() {
var _a;
this.fragI++;
if (this.fragI == this.fragments.length) {
this.curFrag = this.inner = null;
}
else {
let frag = this.curFrag = this.fragments[this.fragI];
this.curTo = (_a = frag.tree.prop(stoppedInner)) !== null && _a !== void 0 ? _a : frag.to;
this.inner = new StructureCursor(frag.tree, -frag.offset);
}
}
findMounts(pos, parser) {
var _a;
let result = [];
if (this.inner) {
this.inner.cursor.moveTo(pos, 1);
for (let pos = this.inner.cursor.node; pos; pos = pos.parent) {
let mount = (_a = pos.tree) === null || _a === void 0 ? void 0 : _a.prop(NodeProp.mounted);
if (mount && mount.parser == parser) {
for (let i = this.fragI; i < this.fragments.length; i++) {
let frag = this.fragments[i];
if (frag.from >= pos.to)
break;
if (frag.tree == this.curFrag.tree)
result.push({
frag,
pos: pos.from - frag.offset,
mount
});
}
}
}
}
return result;
}
}
function punchRanges(outer, ranges) {
let copy = null, current = ranges;
for (let i = 1, j = 0; i < outer.length; i++) {
let gapFrom = outer[i - 1].to, gapTo = outer[i].from;
for (; j < current.length; j++) {
let r = current[j];
if (r.from >= gapTo)
break;
if (r.to <= gapFrom)
continue;
if (!copy)
current = copy = ranges.slice();
if (r.from < gapFrom) {
copy[j] = new Range(r.from, gapFrom);
if (r.to > gapTo)
copy.splice(j + 1, 0, new Range(gapTo, r.to));
}
else if (r.to > gapTo) {
copy[j--] = new Range(gapTo, r.to);
}
else {
copy.splice(j--, 1);
}
}
}
return current;
}
function findCoverChanges(a, b, from, to) {
let iA = 0, iB = 0, inA = false, inB = false, pos = -1e9;
let result = [];
for (;;) {
let nextA = iA == a.length ? 1e9 : inA ? a[iA].to : a[iA].from;
let nextB = iB == b.length ? 1e9 : inB ? b[iB].to : b[iB].from;
if (inA != inB) {
let start = Math.max(pos, from), end = Math.min(nextA, nextB, to);
if (start < end)
result.push(new Range(start, end));
}
pos = Math.min(nextA, nextB);
if (pos == 1e9)
break;
if (nextA == pos) {
if (!inA)
inA = true;
else {
inA = false;
iA++;
}
}
if (nextB == pos) {
if (!inB)
inB = true;
else {
inB = false;
iB++;
}
}
}
return result;
}
// Given a number of fragments for the outer tree, and a set of ranges
// to parse, find fragments for inner trees mounted around those
// ranges, if any.
function enterFragments(mounts, ranges) {
let result = [];
for (let { pos, mount, frag } of mounts) {
let startPos = pos + (mount.overlay ? mount.overlay[0].from : 0), endPos = startPos + mount.tree.length;
let from = Math.max(frag.from, startPos), to = Math.min(frag.to, endPos);
if (mount.overlay) {
let overlay = mount.overlay.map(r => new Range(r.from + pos, r.to + pos));
let changes = findCoverChanges(ranges, overlay, from, to);
for (let i = 0, pos = from;; i++) {
let last = i == changes.length, end = last ? to : changes[i].from;
if (end > pos)
result.push(new TreeFragment(pos, end, mount.tree, -startPos, frag.from >= pos || frag.openStart, frag.to <= end || frag.openEnd));
if (last)
break;
pos = changes[i].to;
}
}
else {
result.push(new TreeFragment(from, to, mount.tree, -startPos, frag.from >= startPos || frag.openStart, frag.to <= endPos || frag.openEnd));
}
}
return result;
}
exports.DefaultBufferLength = DefaultBufferLength;
exports.MountedTree = MountedTree;
exports.NodeProp = NodeProp;
exports.NodeSet = NodeSet;
exports.NodeType = NodeType;
exports.NodeWeakMap = NodeWeakMap;
exports.Parser = Parser;
exports.Tree = Tree;
exports.TreeBuffer = TreeBuffer;
exports.TreeCursor = TreeCursor;
exports.TreeFragment = TreeFragment;
exports.parseMixed = parseMixed;