mirror of
https://github.com/DanielnetoDotCom/YouPHPTube
synced 2025-10-04 10:19:24 +02:00
243 lines
6.6 KiB
JavaScript
243 lines
6.6 KiB
JavaScript
THREE.GeometryUtils = {
|
|
|
|
/**
|
|
* Generates 2D-Coordinates in a very fast way.
|
|
*
|
|
* Based on work by:
|
|
* @link http://www.openprocessing.org/sketch/15493
|
|
*
|
|
* @param center Center of Hilbert curve.
|
|
* @param size Total width of Hilbert curve.
|
|
* @param iterations Number of subdivisions.
|
|
* @param v0 Corner index -X, -Z.
|
|
* @param v1 Corner index -X, +Z.
|
|
* @param v2 Corner index +X, +Z.
|
|
* @param v3 Corner index +X, -Z.
|
|
*/
|
|
hilbert2D: function ( center, size, iterations, v0, v1, v2, v3 ) {
|
|
|
|
// Default Vars
|
|
var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
|
|
size = size !== undefined ? size : 10,
|
|
half = size / 2,
|
|
iterations = iterations !== undefined ? iterations : 1,
|
|
v0 = v0 !== undefined ? v0 : 0,
|
|
v1 = v1 !== undefined ? v1 : 1,
|
|
v2 = v2 !== undefined ? v2 : 2,
|
|
v3 = v3 !== undefined ? v3 : 3
|
|
;
|
|
|
|
var vec_s = [
|
|
new THREE.Vector3( center.x - half, center.y, center.z - half ),
|
|
new THREE.Vector3( center.x - half, center.y, center.z + half ),
|
|
new THREE.Vector3( center.x + half, center.y, center.z + half ),
|
|
new THREE.Vector3( center.x + half, center.y, center.z - half )
|
|
];
|
|
|
|
var vec = [
|
|
vec_s[ v0 ],
|
|
vec_s[ v1 ],
|
|
vec_s[ v2 ],
|
|
vec_s[ v3 ]
|
|
];
|
|
|
|
// Recurse iterations
|
|
if ( 0 <= -- iterations ) {
|
|
|
|
var tmp = [];
|
|
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) );
|
|
|
|
// Return recursive call
|
|
return tmp;
|
|
|
|
}
|
|
|
|
// Return complete Hilbert Curve.
|
|
return vec;
|
|
|
|
},
|
|
|
|
/**
|
|
* Generates 3D-Coordinates in a very fast way.
|
|
*
|
|
* Based on work by:
|
|
* @link http://www.openprocessing.org/visuals/?visualID=15599
|
|
*
|
|
* @param center Center of Hilbert curve.
|
|
* @param size Total width of Hilbert curve.
|
|
* @param iterations Number of subdivisions.
|
|
* @param v0 Corner index -X, +Y, -Z.
|
|
* @param v1 Corner index -X, +Y, +Z.
|
|
* @param v2 Corner index -X, -Y, +Z.
|
|
* @param v3 Corner index -X, -Y, -Z.
|
|
* @param v4 Corner index +X, -Y, -Z.
|
|
* @param v5 Corner index +X, -Y, +Z.
|
|
* @param v6 Corner index +X, +Y, +Z.
|
|
* @param v7 Corner index +X, +Y, -Z.
|
|
*/
|
|
hilbert3D: function ( center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7 ) {
|
|
|
|
// Default Vars
|
|
var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
|
|
size = size !== undefined ? size : 10,
|
|
half = size / 2,
|
|
iterations = iterations !== undefined ? iterations : 1,
|
|
v0 = v0 !== undefined ? v0 : 0,
|
|
v1 = v1 !== undefined ? v1 : 1,
|
|
v2 = v2 !== undefined ? v2 : 2,
|
|
v3 = v3 !== undefined ? v3 : 3,
|
|
v4 = v4 !== undefined ? v4 : 4,
|
|
v5 = v5 !== undefined ? v5 : 5,
|
|
v6 = v6 !== undefined ? v6 : 6,
|
|
v7 = v7 !== undefined ? v7 : 7
|
|
;
|
|
|
|
var vec_s = [
|
|
new THREE.Vector3( center.x - half, center.y + half, center.z - half ),
|
|
new THREE.Vector3( center.x - half, center.y + half, center.z + half ),
|
|
new THREE.Vector3( center.x - half, center.y - half, center.z + half ),
|
|
new THREE.Vector3( center.x - half, center.y - half, center.z - half ),
|
|
new THREE.Vector3( center.x + half, center.y - half, center.z - half ),
|
|
new THREE.Vector3( center.x + half, center.y - half, center.z + half ),
|
|
new THREE.Vector3( center.x + half, center.y + half, center.z + half ),
|
|
new THREE.Vector3( center.x + half, center.y + half, center.z - half )
|
|
];
|
|
|
|
var vec = [
|
|
vec_s[ v0 ],
|
|
vec_s[ v1 ],
|
|
vec_s[ v2 ],
|
|
vec_s[ v3 ],
|
|
vec_s[ v4 ],
|
|
vec_s[ v5 ],
|
|
vec_s[ v6 ],
|
|
vec_s[ v7 ]
|
|
];
|
|
|
|
// Recurse iterations
|
|
if ( -- iterations >= 0 ) {
|
|
|
|
var tmp = [];
|
|
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
|
|
Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) );
|
|
|
|
// Return recursive call
|
|
return tmp;
|
|
|
|
}
|
|
|
|
// Return complete Hilbert Curve.
|
|
return vec;
|
|
|
|
},
|
|
|
|
/**
|
|
* Generates a Gosper curve (lying in the XY plane)
|
|
*
|
|
* https://gist.github.com/nitaku/6521802
|
|
*
|
|
* @param size The size of a single gosper island.
|
|
*/
|
|
gosper: function ( size ) {
|
|
|
|
size = ( size !== undefined ) ? size : 1;
|
|
|
|
function fractalize( config ) {
|
|
|
|
var output;
|
|
var input = config.axiom;
|
|
|
|
for ( var i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
|
|
|
|
output = '';
|
|
|
|
for ( var j = 0, jl = input.length; j < jl; j ++ ) {
|
|
|
|
var char = input[ j ];
|
|
|
|
if ( char in config.rules ) {
|
|
|
|
output += config.rules[ char ];
|
|
|
|
} else {
|
|
|
|
output += char;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
input = output;
|
|
|
|
}
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
function toPoints( config ) {
|
|
|
|
var currX = 0, currY = 0;
|
|
var angle = 0;
|
|
var path = [ 0, 0, 0 ];
|
|
var fractal = config.fractal;
|
|
|
|
for ( var i = 0, l = fractal.length; i < l; i ++ ) {
|
|
|
|
var char = fractal[ i ];
|
|
|
|
if ( char === '+' ) {
|
|
|
|
angle += config.angle;
|
|
|
|
} else if ( char === '-' ) {
|
|
|
|
angle -= config.angle;
|
|
|
|
} else if ( char === 'F' ) {
|
|
|
|
currX += config.size * Math.cos( angle );
|
|
currY += - config.size * Math.sin( angle );
|
|
path.push( currX, currY, 0 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
//
|
|
|
|
var gosper = fractalize( {
|
|
axiom: 'A',
|
|
steps: 4,
|
|
rules: {
|
|
A: 'A+BF++BF-FA--FAFA-BF+',
|
|
B: '-FA+BFBF++BF+FA--FA-B'
|
|
}
|
|
} );
|
|
|
|
var points = toPoints( {
|
|
fractal: gosper,
|
|
size: size,
|
|
angle: Math.PI / 3 // 60 degrees
|
|
} );
|
|
|
|
return points;
|
|
|
|
}
|
|
|
|
};
|