1
0
Fork 0
mirror of https://github.com/DanielnetoDotCom/YouPHPTube synced 2025-10-03 17:59:55 +02:00
Oinktube/node_modules/three/examples/js/shaders/OceanShaders.js
2023-12-11 11:59:56 -03:00

369 lines
12 KiB
JavaScript

// Description: A deep water ocean shader set
// based on an implementation of a Tessendorf Waves
// originally presented by David Li ( www.david.li/waves )
// The general method is to apply shaders to simulation Framebuffers
// and then sample these framebuffers when rendering the ocean mesh
// The set uses 7 shaders:
// -- Simulation shaders
// [1] ocean_sim_vertex -> Vertex shader used to set up a 2x2 simulation plane centered at (0,0)
// [2] ocean_subtransform -> Fragment shader used to subtransform the mesh (generates the displacement map)
// [3] ocean_initial_spectrum -> Fragment shader used to set intitial wave frequency at a texel coordinate
// [4] ocean_phase -> Fragment shader used to set wave phase at a texel coordinate
// [5] ocean_spectrum -> Fragment shader used to set current wave frequency at a texel coordinate
// [6] ocean_normal -> Fragment shader used to set face normals at a texel coordinate
// -- Rendering Shader
// [7] ocean_main -> Vertex and Fragment shader used to create the final render
THREE.OceanShaders = {};
THREE.OceanShaders[ 'ocean_sim_vertex' ] = {
vertexShader: [
'varying vec2 vUV;',
'void main (void) {',
' vUV = position.xy * 0.5 + 0.5;',
' gl_Position = vec4(position, 1.0 );',
'}'
].join( '\n' )
};
THREE.OceanShaders[ 'ocean_subtransform' ] = {
uniforms: {
'u_input': { value: null },
'u_transformSize': { value: 512.0 },
'u_subtransformSize': { value: 250.0 }
},
fragmentShader: [
//GPU FFT using a Stockham formulation
'precision highp float;',
'#include <common>',
'uniform sampler2D u_input;',
'uniform float u_transformSize;',
'uniform float u_subtransformSize;',
'varying vec2 vUV;',
'vec2 multiplyComplex (vec2 a, vec2 b) {',
' return vec2(a[0] * b[0] - a[1] * b[1], a[1] * b[0] + a[0] * b[1]);',
'}',
'void main (void) {',
' #ifdef HORIZONTAL',
' float index = vUV.x * u_transformSize - 0.5;',
' #else',
' float index = vUV.y * u_transformSize - 0.5;',
' #endif',
' float evenIndex = floor(index / u_subtransformSize) * (u_subtransformSize * 0.5) + mod(index, u_subtransformSize * 0.5);',
//transform two complex sequences simultaneously
' #ifdef HORIZONTAL',
' vec4 even = texture2D(u_input, vec2(evenIndex + 0.5, gl_FragCoord.y) / u_transformSize).rgba;',
' vec4 odd = texture2D(u_input, vec2(evenIndex + u_transformSize * 0.5 + 0.5, gl_FragCoord.y) / u_transformSize).rgba;',
' #else',
' vec4 even = texture2D(u_input, vec2(gl_FragCoord.x, evenIndex + 0.5) / u_transformSize).rgba;',
' vec4 odd = texture2D(u_input, vec2(gl_FragCoord.x, evenIndex + u_transformSize * 0.5 + 0.5) / u_transformSize).rgba;',
' #endif',
' float twiddleArgument = -2.0 * PI * (index / u_subtransformSize);',
' vec2 twiddle = vec2(cos(twiddleArgument), sin(twiddleArgument));',
' vec2 outputA = even.xy + multiplyComplex(twiddle, odd.xy);',
' vec2 outputB = even.zw + multiplyComplex(twiddle, odd.zw);',
' gl_FragColor = vec4(outputA, outputB);',
'}'
].join( '\n' )
};
THREE.OceanShaders[ 'ocean_initial_spectrum' ] = {
uniforms: {
'u_wind': { value: new THREE.Vector2( 10.0, 10.0 ) },
'u_resolution': { value: 512.0 },
'u_size': { value: 250.0 }
},
vertexShader: [
'void main (void) {',
' gl_Position = vec4(position, 1.0);',
'}'
].join( '\n' ),
fragmentShader: [
'precision highp float;',
'#include <common>',
'const float G = 9.81;',
'const float KM = 370.0;',
'const float CM = 0.23;',
'uniform vec2 u_wind;',
'uniform float u_resolution;',
'uniform float u_size;',
'float omega (float k) {',
' return sqrt(G * k * (1.0 + pow2(k / KM)));',
'}',
'#if __VERSION__ == 100',
'float tanh (float x) {',
' return (1.0 - exp(-2.0 * x)) / (1.0 + exp(-2.0 * x));',
'}',
'#endif',
'void main (void) {',
' vec2 coordinates = gl_FragCoord.xy - 0.5;',
' float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;',
' float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;',
' vec2 K = (2.0 * PI * vec2(n, m)) / u_size;',
' float k = length(K);',
' float l_wind = length(u_wind);',
' float Omega = 0.84;',
' float kp = G * pow2(Omega / l_wind);',
' float c = omega(k) / k;',
' float cp = omega(kp) / kp;',
' float Lpm = exp(-1.25 * pow2(kp / k));',
' float gamma = 1.7;',
' float sigma = 0.08 * (1.0 + 4.0 * pow(Omega, -3.0));',
' float Gamma = exp(-pow2(sqrt(k / kp) - 1.0) / 2.0 * pow2(sigma));',
' float Jp = pow(gamma, Gamma);',
' float Fp = Lpm * Jp * exp(-Omega / sqrt(10.0) * (sqrt(k / kp) - 1.0));',
' float alphap = 0.006 * sqrt(Omega);',
' float Bl = 0.5 * alphap * cp / c * Fp;',
' float z0 = 0.000037 * pow2(l_wind) / G * pow(l_wind / cp, 0.9);',
' float uStar = 0.41 * l_wind / log(10.0 / z0);',
' float alpham = 0.01 * ((uStar < CM) ? (1.0 + log(uStar / CM)) : (1.0 + 3.0 * log(uStar / CM)));',
' float Fm = exp(-0.25 * pow2(k / KM - 1.0));',
' float Bh = 0.5 * alpham * CM / c * Fm * Lpm;',
' float a0 = log(2.0) / 4.0;',
' float am = 0.13 * uStar / CM;',
' float Delta = tanh(a0 + 4.0 * pow(c / cp, 2.5) + am * pow(CM / c, 2.5));',
' float cosPhi = dot(normalize(u_wind), normalize(K));',
' float S = (1.0 / (2.0 * PI)) * pow(k, -4.0) * (Bl + Bh) * (1.0 + Delta * (2.0 * cosPhi * cosPhi - 1.0));',
' float dk = 2.0 * PI / u_size;',
' float h = sqrt(S / 2.0) * dk;',
' if (K.x == 0.0 && K.y == 0.0) {',
' h = 0.0;', //no DC term
' }',
' gl_FragColor = vec4(h, 0.0, 0.0, 0.0);',
'}'
].join( '\n' )
};
THREE.OceanShaders[ 'ocean_phase' ] = {
uniforms: {
'u_phases': { value: null },
'u_deltaTime': { value: null },
'u_resolution': { value: null },
'u_size': { value: null }
},
fragmentShader: [
'precision highp float;',
'#include <common>',
'const float G = 9.81;',
'const float KM = 370.0;',
'varying vec2 vUV;',
'uniform sampler2D u_phases;',
'uniform float u_deltaTime;',
'uniform float u_resolution;',
'uniform float u_size;',
'float omega (float k) {',
' return sqrt(G * k * (1.0 + k * k / KM * KM));',
'}',
'void main (void) {',
' float deltaTime = 1.0 / 60.0;',
' vec2 coordinates = gl_FragCoord.xy - 0.5;',
' float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;',
' float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;',
' vec2 waveVector = (2.0 * PI * vec2(n, m)) / u_size;',
' float phase = texture2D(u_phases, vUV).r;',
' float deltaPhase = omega(length(waveVector)) * u_deltaTime;',
' phase = mod(phase + deltaPhase, 2.0 * PI);',
' gl_FragColor = vec4(phase, 0.0, 0.0, 0.0);',
'}'
].join( '\n' )
};
THREE.OceanShaders[ 'ocean_spectrum' ] = {
uniforms: {
'u_size': { value: null },
'u_resolution': { value: null },
'u_choppiness': { value: null },
'u_phases': { value: null },
'u_initialSpectrum': { value: null }
},
fragmentShader: [
'precision highp float;',
'#include <common>',
'const float G = 9.81;',
'const float KM = 370.0;',
'varying vec2 vUV;',
'uniform float u_size;',
'uniform float u_resolution;',
'uniform float u_choppiness;',
'uniform sampler2D u_phases;',
'uniform sampler2D u_initialSpectrum;',
'vec2 multiplyComplex (vec2 a, vec2 b) {',
' return vec2(a[0] * b[0] - a[1] * b[1], a[1] * b[0] + a[0] * b[1]);',
'}',
'vec2 multiplyByI (vec2 z) {',
' return vec2(-z[1], z[0]);',
'}',
'float omega (float k) {',
' return sqrt(G * k * (1.0 + k * k / KM * KM));',
'}',
'void main (void) {',
' vec2 coordinates = gl_FragCoord.xy - 0.5;',
' float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;',
' float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;',
' vec2 waveVector = (2.0 * PI * vec2(n, m)) / u_size;',
' float phase = texture2D(u_phases, vUV).r;',
' vec2 phaseVector = vec2(cos(phase), sin(phase));',
' vec2 h0 = texture2D(u_initialSpectrum, vUV).rg;',
' vec2 h0Star = texture2D(u_initialSpectrum, vec2(1.0 - vUV + 1.0 / u_resolution)).rg;',
' h0Star.y *= -1.0;',
' vec2 h = multiplyComplex(h0, phaseVector) + multiplyComplex(h0Star, vec2(phaseVector.x, -phaseVector.y));',
' vec2 hX = -multiplyByI(h * (waveVector.x / length(waveVector))) * u_choppiness;',
' vec2 hZ = -multiplyByI(h * (waveVector.y / length(waveVector))) * u_choppiness;',
//no DC term
' if (waveVector.x == 0.0 && waveVector.y == 0.0) {',
' h = vec2(0.0);',
' hX = vec2(0.0);',
' hZ = vec2(0.0);',
' }',
' gl_FragColor = vec4(hX + multiplyByI(h), hZ);',
'}'
].join( '\n' )
};
THREE.OceanShaders[ 'ocean_normals' ] = {
uniforms: {
'u_displacementMap': { value: null },
'u_resolution': { value: null },
'u_size': { value: null }
},
fragmentShader: [
'precision highp float;',
'varying vec2 vUV;',
'uniform sampler2D u_displacementMap;',
'uniform float u_resolution;',
'uniform float u_size;',
'void main (void) {',
' float texel = 1.0 / u_resolution;',
' float texelSize = u_size / u_resolution;',
' vec3 center = texture2D(u_displacementMap, vUV).rgb;',
' vec3 right = vec3(texelSize, 0.0, 0.0) + texture2D(u_displacementMap, vUV + vec2(texel, 0.0)).rgb - center;',
' vec3 left = vec3(-texelSize, 0.0, 0.0) + texture2D(u_displacementMap, vUV + vec2(-texel, 0.0)).rgb - center;',
' vec3 top = vec3(0.0, 0.0, -texelSize) + texture2D(u_displacementMap, vUV + vec2(0.0, -texel)).rgb - center;',
' vec3 bottom = vec3(0.0, 0.0, texelSize) + texture2D(u_displacementMap, vUV + vec2(0.0, texel)).rgb - center;',
' vec3 topRight = cross(right, top);',
' vec3 topLeft = cross(top, left);',
' vec3 bottomLeft = cross(left, bottom);',
' vec3 bottomRight = cross(bottom, right);',
' gl_FragColor = vec4(normalize(topRight + topLeft + bottomLeft + bottomRight), 1.0);',
'}'
].join( '\n' )
};
THREE.OceanShaders[ 'ocean_main' ] = {
uniforms: {
'u_displacementMap': { value: null },
'u_normalMap': { value: null },
'u_geometrySize': { value: null },
'u_size': { value: null },
'u_projectionMatrix': { value: null },
'u_viewMatrix': { value: null },
'u_cameraPosition': { value: null },
'u_skyColor': { value: null },
'u_oceanColor': { value: null },
'u_sunDirection': { value: null },
'u_exposure': { value: null }
},
vertexShader: [
'precision highp float;',
'varying vec3 vPos;',
'varying vec2 vUV;',
'uniform mat4 u_projectionMatrix;',
'uniform mat4 u_viewMatrix;',
'uniform float u_size;',
'uniform float u_geometrySize;',
'uniform sampler2D u_displacementMap;',
'void main (void) {',
' vec3 newPos = position + texture2D(u_displacementMap, uv).rgb * (u_geometrySize / u_size);',
' vPos = newPos;',
' vUV = uv;',
' gl_Position = u_projectionMatrix * u_viewMatrix * vec4(newPos, 1.0);',
'}'
].join( '\n' ),
fragmentShader: [
'precision highp float;',
'varying vec3 vPos;',
'varying vec2 vUV;',
'uniform sampler2D u_displacementMap;',
'uniform sampler2D u_normalMap;',
'uniform vec3 u_cameraPosition;',
'uniform vec3 u_oceanColor;',
'uniform vec3 u_skyColor;',
'uniform vec3 u_sunDirection;',
'uniform float u_exposure;',
'vec3 hdr (vec3 color, float exposure) {',
' return 1.0 - exp(-color * exposure);',
'}',
'void main (void) {',
' vec3 normal = texture2D(u_normalMap, vUV).rgb;',
' vec3 view = normalize(u_cameraPosition - vPos);',
' float fresnel = 0.02 + 0.98 * pow(1.0 - dot(normal, view), 5.0);',
' vec3 sky = fresnel * u_skyColor;',
' float diffuse = clamp(dot(normal, normalize(u_sunDirection)), 0.0, 1.0);',
' vec3 water = (1.0 - fresnel) * u_oceanColor * u_skyColor * diffuse;',
' vec3 color = sky + water;',
' gl_FragColor = vec4(hdr(color, u_exposure), 1.0);',
'}'
].join( '\n' )
};