1
0
Fork 0
mirror of https://github.com/DanielnetoDotCom/YouPHPTube synced 2025-10-03 17:59:55 +02:00
Oinktube/node_modules/three/examples/js/shaders/VolumeShader.js
2023-12-11 11:59:56 -03:00

278 lines
9.8 KiB
JavaScript

/**
* Shaders to render 3D volumes using raycasting.
* The applied techniques are based on similar implementations in the Visvis and Vispy projects.
* This is not the only approach, therefore it's marked 1.
*/
THREE.VolumeRenderShader1 = {
uniforms: {
'u_size': { value: new THREE.Vector3( 1, 1, 1 ) },
'u_renderstyle': { value: 0 },
'u_renderthreshold': { value: 0.5 },
'u_clim': { value: new THREE.Vector2( 1, 1 ) },
'u_data': { value: null },
'u_cmdata': { value: null }
},
vertexShader: [
' varying vec4 v_nearpos;',
' varying vec4 v_farpos;',
' varying vec3 v_position;',
' void main() {',
// Prepare transforms to map to "camera view". See also:
// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
' mat4 viewtransformf = modelViewMatrix;',
' mat4 viewtransformi = inverse(modelViewMatrix);',
// Project local vertex coordinate to camera position. Then do a step
// backward (in cam coords) to the near clipping plane, and project back. Do
// the same for the far clipping plane. This gives us all the information we
// need to calculate the ray and truncate it to the viewing cone.
' vec4 position4 = vec4(position, 1.0);',
' vec4 pos_in_cam = viewtransformf * position4;',
// Intersection of ray and near clipping plane (z = -1 in clip coords)
' pos_in_cam.z = -pos_in_cam.w;',
' v_nearpos = viewtransformi * pos_in_cam;',
// Intersection of ray and far clipping plane (z = +1 in clip coords)
' pos_in_cam.z = pos_in_cam.w;',
' v_farpos = viewtransformi * pos_in_cam;',
// Set varyings and output pos
' v_position = position;',
' gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;',
' }',
].join( '\n' ),
fragmentShader: [
' precision highp float;',
' precision mediump sampler3D;',
' uniform vec3 u_size;',
' uniform int u_renderstyle;',
' uniform float u_renderthreshold;',
' uniform vec2 u_clim;',
' uniform sampler3D u_data;',
' uniform sampler2D u_cmdata;',
' varying vec3 v_position;',
' varying vec4 v_nearpos;',
' varying vec4 v_farpos;',
// The maximum distance through our rendering volume is sqrt(3).
' const int MAX_STEPS = 887; // 887 for 512^3, 1774 for 1024^3',
' const int REFINEMENT_STEPS = 4;',
' const float relative_step_size = 1.0;',
' const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);',
' const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);',
' const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);',
' const float shininess = 40.0;',
' void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
' void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
' float sample1(vec3 texcoords);',
' vec4 apply_colormap(float val);',
' vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);',
' void main() {',
// Normalize clipping plane info
' vec3 farpos = v_farpos.xyz / v_farpos.w;',
' vec3 nearpos = v_nearpos.xyz / v_nearpos.w;',
// Calculate unit vector pointing in the view direction through this fragment.
' vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);',
// Compute the (negative) distance to the front surface or near clipping plane.
// v_position is the back face of the cuboid, so the initial distance calculated in the dot
// product below is the distance from near clip plane to the back of the cuboid
' float distance = dot(nearpos - v_position, view_ray);',
' distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,',
' (u_size.x - 0.5 - v_position.x) / view_ray.x));',
' distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,',
' (u_size.y - 0.5 - v_position.y) / view_ray.y));',
' distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,',
' (u_size.z - 0.5 - v_position.z) / view_ray.z));',
// Now we have the starting position on the front surface
' vec3 front = v_position + view_ray * distance;',
// Decide how many steps to take
' int nsteps = int(-distance / relative_step_size + 0.5);',
' if ( nsteps < 1 )',
' discard;',
// Get starting location and step vector in texture coordinates
' vec3 step = ((v_position - front) / u_size) / float(nsteps);',
' vec3 start_loc = front / u_size;',
// For testing: show the number of steps. This helps to establish
// whether the rays are correctly oriented
//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
//'return;',
' if (u_renderstyle == 0)',
' cast_mip(start_loc, step, nsteps, view_ray);',
' else if (u_renderstyle == 1)',
' cast_iso(start_loc, step, nsteps, view_ray);',
' if (gl_FragColor.a < 0.05)',
' discard;',
' }',
' float sample1(vec3 texcoords) {',
' /* Sample float value from a 3D texture. Assumes intensity data. */',
' return texture(u_data, texcoords.xyz).r;',
' }',
' vec4 apply_colormap(float val) {',
' val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);',
' return texture2D(u_cmdata, vec2(val, 0.5));',
' }',
' void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
' float max_val = -1e6;',
' int max_i = 100;',
' vec3 loc = start_loc;',
// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
// non-constant expression. So we use a hard-coded max, and an additional condition
// inside the loop.
' for (int iter=0; iter<MAX_STEPS; iter++) {',
' if (iter >= nsteps)',
' break;',
// Sample from the 3D texture
' float val = sample1(loc);',
// Apply MIP operation
' if (val > max_val) {',
' max_val = val;',
' max_i = iter;',
' }',
// Advance location deeper into the volume
' loc += step;',
' }',
// Refine location, gives crispier images
' vec3 iloc = start_loc + step * (float(max_i) - 0.5);',
' vec3 istep = step / float(REFINEMENT_STEPS);',
' for (int i=0; i<REFINEMENT_STEPS; i++) {',
' max_val = max(max_val, sample1(iloc));',
' iloc += istep;',
' }',
// Resolve final color
' gl_FragColor = apply_colormap(max_val);',
' }',
' void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
' gl_FragColor = vec4(0.0); // init transparent',
' vec4 color3 = vec4(0.0); // final color',
' vec3 dstep = 1.5 / u_size; // step to sample derivative',
' vec3 loc = start_loc;',
' float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);',
// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
// non-constant expression. So we use a hard-coded max, and an additional condition
// inside the loop.
' for (int iter=0; iter<MAX_STEPS; iter++) {',
' if (iter >= nsteps)',
' break;',
// Sample from the 3D texture
' float val = sample1(loc);',
' if (val > low_threshold) {',
// Take the last interval in smaller steps
' vec3 iloc = loc - 0.5 * step;',
' vec3 istep = step / float(REFINEMENT_STEPS);',
' for (int i=0; i<REFINEMENT_STEPS; i++) {',
' val = sample1(iloc);',
' if (val > u_renderthreshold) {',
' gl_FragColor = add_lighting(val, iloc, dstep, view_ray);',
' return;',
' }',
' iloc += istep;',
' }',
' }',
// Advance location deeper into the volume
' loc += step;',
' }',
' }',
' vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)',
' {',
// Calculate color by incorporating lighting
// View direction
' vec3 V = normalize(view_ray);',
// calculate normal vector from gradient
' vec3 N;',
' float val1, val2;',
' val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));',
' val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));',
' N[0] = val1 - val2;',
' val = max(max(val1, val2), val);',
' val1 = sample1(loc + vec3(0.0, -step[1], 0.0));',
' val2 = sample1(loc + vec3(0.0, +step[1], 0.0));',
' N[1] = val1 - val2;',
' val = max(max(val1, val2), val);',
' val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));',
' val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));',
' N[2] = val1 - val2;',
' val = max(max(val1, val2), val);',
' float gm = length(N); // gradient magnitude',
' N = normalize(N);',
// Flip normal so it points towards viewer
' float Nselect = float(dot(N, V) > 0.0);',
' N = (2.0 * Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;',
// Init colors
' vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);',
' vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);',
' vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);',
// note: could allow multiple lights
' for (int i=0; i<1; i++)',
' {',
// Get light direction (make sure to prevent zero devision)
' vec3 L = normalize(view_ray); //lightDirs[i];',
' float lightEnabled = float( length(L) > 0.0 );',
' L = normalize(L + (1.0 - lightEnabled));',
// Calculate lighting properties
' float lambertTerm = clamp(dot(N, L), 0.0, 1.0);',
' vec3 H = normalize(L+V); // Halfway vector',
' float specularTerm = pow(max(dot(H, N), 0.0), shininess);',
// Calculate mask
' float mask1 = lightEnabled;',
// Calculate colors
' ambient_color += mask1 * ambient_color; // * gl_LightSource[i].ambient;',
' diffuse_color += mask1 * lambertTerm;',
' specular_color += mask1 * specularTerm * specular_color;',
' }',
// Calculate final color by componing different components
' vec4 final_color;',
' vec4 color = apply_colormap(val);',
' final_color = color * (ambient_color + diffuse_color) + specular_color;',
' final_color.a = color.a;',
' return final_color;',
' }',
].join( '\n' )
};