New combined decompiler testing framework

This commit is contained in:
caheckman 2021-01-27 14:55:00 -05:00
parent 5d7a7c5291
commit ab76cc6095
32 changed files with 1788 additions and 791 deletions

View file

@ -13,470 +13,81 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/// \file test.cc
/// \brief Unit tests for Ghidra C++ components.
#include "float.hh"
#include "opbehavior.hh"
#include "test.hh"
#include "testfunction.hh"
#include <cmath>
#include <cstdint>
#include <cstring>
vector<UnitTest *> UnitTest::tests;
#include <limits>
#include <vector>
/// Run all the tests unless a non-empty set of names is passed in.
/// In which case, only the named tests in the set are run.
/// \param testnames is the set of names
void UnitTest::run(set<string> &testNames)
// utility functions
float floatFromRawBits(uintb e) {
float f;
memcpy(&f, &e, 4);
return f;
}
{
int total = 0;
int passed = 0;
uintb floatToRawBits(float f) {
uintb result = 0;
memcpy(&result, &f, 4);
return result;
}
double doubleFromRawBits(uintb e) {
double f;
memcpy(&f, &e, 8);
return f;
}
uintb doubleToRawBits(double f) {
uintb result = 0;
memcpy(&result, &f, 8);
return result;
}
// macros to preserve call site
#define ASSERT_FLOAT_ENCODING(f) \
do { \
FloatFormat format(4); \
\
uintb true_encoding = floatToRawBits(f); \
uintb encoding = format.getEncoding(f); \
\
ASSERT_EQUALS(true_encoding, encoding); \
} while (0);
#define ASSERT_DOUBLE_ENCODING(f) \
do { \
FloatFormat format(8); \
\
uintb true_encoding = doubleToRawBits(f); \
uintb encoding = format.getEncoding(f); \
\
ASSERT_EQUALS(true_encoding, encoding); \
} while (0);
//// FloatFormat tests
static std::vector<float> float_test_values{
-0.0f,
+0.0f,
-1.0f,
+1.0f,
-1.234f,
+1.234f,
-std::numeric_limits<float>::denorm_min(),
std::numeric_limits<float>::denorm_min(),
std::numeric_limits<float>::min() - std::numeric_limits<float>::denorm_min(),
std::numeric_limits<float>::min(),
std::numeric_limits<float>::min() + std::numeric_limits<float>::denorm_min(),
-std::numeric_limits<float>::min() + std::numeric_limits<float>::denorm_min(),
-std::numeric_limits<float>::min(),
-std::numeric_limits<float>::min() - std::numeric_limits<float>::denorm_min(),
std::numeric_limits<float>::max(),
std::numeric_limits<float>::quiet_NaN(),
-std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity()
};
static std::vector<int> int_test_values = {
0, -1, 1, 1234, -1234, std::numeric_limits<int>::min(), std::numeric_limits<int>::max()
};
TEST(float_encoding_normal) {
ASSERT_FLOAT_ENCODING(1.234);
ASSERT_FLOAT_ENCODING(-1.234);
}
TEST(double_encoding_normal) {
ASSERT_DOUBLE_ENCODING(1.234);
ASSERT_DOUBLE_ENCODING(-1.234);
}
TEST(float_encoding_nan) {
ASSERT_FLOAT_ENCODING(std::numeric_limits<float>::quiet_NaN());
ASSERT_FLOAT_ENCODING(-std::numeric_limits<float>::quiet_NaN());
}
TEST(double_encoding_nan) {
ASSERT_DOUBLE_ENCODING(std::numeric_limits<double>::quiet_NaN());
ASSERT_DOUBLE_ENCODING(-std::numeric_limits<double>::quiet_NaN());
}
TEST(float_encoding_subnormal) {
ASSERT_FLOAT_ENCODING(std::numeric_limits<float>::denorm_min());
ASSERT_FLOAT_ENCODING(-std::numeric_limits<float>::denorm_min());
}
TEST(double_encoding_subnormal) {
ASSERT_DOUBLE_ENCODING(std::numeric_limits<double>::denorm_min());
ASSERT_DOUBLE_ENCODING(-std::numeric_limits<double>::denorm_min());
}
TEST(float_encoding_min_normal) {
ASSERT_FLOAT_ENCODING(std::numeric_limits<float>::min());
ASSERT_FLOAT_ENCODING(-std::numeric_limits<float>::min());
}
TEST(double_encoding_min_normal) {
ASSERT_DOUBLE_ENCODING(std::numeric_limits<double>::min());
ASSERT_DOUBLE_ENCODING(-std::numeric_limits<double>::min());
}
TEST(float_encoding_infinity) {
ASSERT_FLOAT_ENCODING(std::numeric_limits<float>::infinity());
ASSERT_FLOAT_ENCODING(-std::numeric_limits<float>::infinity());
}
TEST(double_encoding_infinity) {
ASSERT_DOUBLE_ENCODING(std::numeric_limits<double>::infinity());
ASSERT_DOUBLE_ENCODING(-std::numeric_limits<double>::infinity());
}
TEST(float_midpoint_rounding) {
FloatFormat ff(4);
// IEEE754 recommends "round to nearest even" for binary formats, like single and double
// precision floating point. It rounds to the nearest integer (significand) when unambiguous,
// and to the nearest even on the midpoint.
// There are 52 bits of significand in a double and 23 in a float.
// Below we construct a sequence of double precision values to demonstrate each case
// in rounding,
// d0 - zeros in low 29 bits, round down
// d1 - on the rounding midpoint with integer even integer part, round down
// d2 - just above the midpoint, round up
double d0 = doubleFromRawBits(0x4010000000000000L);
double d1 = doubleFromRawBits(0x4010000010000000L);
double d2 = doubleFromRawBits(0x4010000010000001L);
// d3 - zeros in low 29 bits, round down
// d4 - on the rounding midpoint with integer part odd, round up
// d5 - just above the midpoint, round up
double d3 = doubleFromRawBits(0x4010000020000000L);
double d4 = doubleFromRawBits(0x4010000030000000L);
double d5 = doubleFromRawBits(0x4010000030000001L);
float f0 = (float)d0;
float f1 = (float)d1;
float f2 = (float)d2;
float f3 = (float)d3;
float f4 = (float)d4;
float f5 = (float)d5;
uintb e0 = ff.getEncoding(d0);
uintb e1 = ff.getEncoding(d1);
uintb e2 = ff.getEncoding(d2);
uintb e3 = ff.getEncoding(d3);
uintb e4 = ff.getEncoding(d4);
uintb e5 = ff.getEncoding(d5);
ASSERT_EQUALS(floatToRawBits(f0), e0);
ASSERT_EQUALS(floatToRawBits(f1), e1);
ASSERT_EQUALS(floatToRawBits(f2), e2);
ASSERT_EQUALS(floatToRawBits(f3), e3);
ASSERT_EQUALS(floatToRawBits(f4), e4);
ASSERT_EQUALS(floatToRawBits(f5), e5);
ASSERT_EQUALS(e0, e1);
ASSERT_NOT_EQUALS(e1, e2);
ASSERT_NOT_EQUALS(e3, e4);
ASSERT_EQUALS(e4, e5);
}
// op tests
// generated
TEST(float_opNan) {
FloatFormat format(4);
for(float f:float_test_values) {
uintb true_result = isnan(f);
uintb encoding = format.getEncoding(f);
uintb result = format.opNan(encoding);
ASSERT_EQUALS(true_result, result);
for(auto &t : UnitTest::tests) {
if (testNames.size() > 0 && testNames.find(t->name) == testNames.end()) {
continue;
}
}
TEST(float_opNeg) {
FloatFormat format(4);
for(float f:float_test_values) {
uintb true_result = floatToRawBits(-f);
uintb encoding = format.getEncoding(f);
uintb result = format.opNeg(encoding);
ASSERT_EQUALS(true_result, result);
std::cerr << "testing : " << t->name << " ..." << std::endl;
++total;
try {
t->func();
++passed;
std::cerr << " passed." << std::endl;
} catch(...) {
}
}
std::cerr << "==============================" << std::endl;
std::cerr << passed << "/" << total << " tests passed." << std::endl;
}
int main(int argc, char **argv) {
bool runUnitTests = true;
bool runDataTests = true;
TEST(float_opAbs) {
FloatFormat format(4);
for(float f:float_test_values) {
uintb true_result = floatToRawBits(abs(f));
uintb encoding = format.getEncoding(f);
uintb result = format.opAbs(encoding);
ASSERT_EQUALS(true_result, result);
argc -= 1;
argv += 1;
set<string> unitTestNames;
set<string> dataTestNames;
string dirname("../datatests");
if (argc > 0) {
string command(argv[0]);
if (command == "-path") {
dirname = argv[1];
runDataTests = true;
argv += 2;
argc -= 2;
}
}
TEST(float_opSqrt) {
FloatFormat format(4);
for(float f:float_test_values) {
uintb true_result = floatToRawBits(sqrtf(f));
uintb encoding = format.getEncoding(f);
uintb result = format.opSqrt(encoding);
ASSERT_EQUALS(true_result, result);
}
if (argc > 0) {
string command(argv[0]);
if (command == "unittests") {
runUnitTests = true;
runDataTests = false; // Run only unit tests
unitTestNames.insert(argv + 1,argv + argc);
}
}
TEST(float_opCeil) {
FloatFormat format(4);
for(float f:float_test_values) {
uintb true_result = floatToRawBits(ceilf(f));
uintb encoding = format.getEncoding(f);
uintb result = format.opCeil(encoding);
ASSERT_EQUALS(true_result, result);
else if (command == "datatests") {
runUnitTests = false; // Run only data-tests
runDataTests = true;
dataTestNames.insert(argv + 1,argv + argc);
}
}
TEST(float_opFloor) {
FloatFormat format(4);
for(float f:float_test_values) {
uintb true_result = floatToRawBits(floorf(f));
uintb encoding = format.getEncoding(f);
uintb result = format.opFloor(encoding);
ASSERT_EQUALS(true_result, result);
else {
cout << "USAGE: ghidra_test [-path <datatestdir>] [[unittests|datatests] [testname1 testname2 ...]]" << endl;
}
}
if (runUnitTests)
UnitTest::run(unitTestNames);
if (runDataTests) {
cout << endl << endl;
const char *sleighhomepath = getenv("SLEIGHHOME");
if (sleighhomepath != (const char *)0)
cout << "Using SLEIGHHOME=" << sleighhomepath << endl;
else
cout << "No SLEIGHHOME environment variable" << endl;
startDecompilerLibrary(sleighhomepath);
FunctionTestCollection::runTestCollections(dirname,dataTestNames);
}
}
TEST(float_opRound) {
FloatFormat format(4);
for(float f:float_test_values) {
uintb true_result = floatToRawBits(roundf(f));
uintb encoding = format.getEncoding(f);
uintb result = format.opRound(encoding);
ASSERT_EQUALS(true_result, result);
}
}
TEST(float_opInt2Float_size4) {
FloatFormat format(4);
for(int i:int_test_values) {
uintb true_result = floatToRawBits((float)i);
uintb result = format.opInt2Float(i, 4);
ASSERT_EQUALS(true_result, result);
}
}
// TODO other sized ints
TEST(float_to_double_opFloat2Float) {
FloatFormat format(4);
FloatFormat format8(8);
for(float f:float_test_values) {
uintb true_result = doubleToRawBits((double)f);
uintb encoding = format.getEncoding(f);
uintb result = format.opFloat2Float(encoding, format8);
ASSERT_EQUALS(true_result, result);
}
}
// TODO float2float going the other direction, double_to_float_opFloat2Float
TEST(float_opTrunc_to_int) {
FloatFormat format(4);
FloatFormat format8(8);
for(float f:float_test_values) {
// avoid undefined behavior
if((int64_t)f > std::numeric_limits<int>::max() || (int64_t)f < std::numeric_limits<int>::min())
continue;
uintb true_result = ((uintb)(int32_t)f) & 0xffffffff;
uintb encoding = format.getEncoding(f);
uintb result = format.opTrunc(encoding, 4);
ASSERT_EQUALS(true_result, result);
}
}
// TODO trunc to other sizes
TEST(float_opEqual) {
FloatFormat format(4);
for(float f1:float_test_values) {
uintb encoding1 = format.getEncoding(f1);
for(float f2:float_test_values) {
uintb true_result = (f1==f2);
uintb encoding2 = format.getEncoding(f2);
uintb result = format.opEqual(encoding1, encoding2);
ASSERT_EQUALS(true_result, result);
}
}
}
TEST(float_opNotEqual) {
FloatFormat format(4);
for(float f1:float_test_values) {
uintb encoding1 = format.getEncoding(f1);
for(float f2:float_test_values) {
uintb true_result = (f1!=f2);
uintb encoding2 = format.getEncoding(f2);
uintb result = format.opNotEqual(encoding1, encoding2);
ASSERT_EQUALS(true_result, result);
}
}
}
TEST(float_opLess) {
FloatFormat format(4);
for(float f1:float_test_values) {
uintb encoding1 = format.getEncoding(f1);
for(float f2:float_test_values) {
uintb true_result = (f1<f2);
uintb encoding2 = format.getEncoding(f2);
uintb result = format.opLess(encoding1, encoding2);
ASSERT_EQUALS(true_result, result);
}
}
}
TEST(float_opLessEqual) {
FloatFormat format(4);
for(float f1:float_test_values) {
uintb encoding1 = format.getEncoding(f1);
for(float f2:float_test_values) {
uintb true_result = (f1<=f2);
uintb encoding2 = format.getEncoding(f2);
uintb result = format.opLessEqual(encoding1, encoding2);
ASSERT_EQUALS(true_result, result);
}
}
}
TEST(float_opAdd) {
FloatFormat format(4);
for(float f1:float_test_values) {
uintb encoding1 = format.getEncoding(f1);
for(float f2:float_test_values) {
uintb true_result = floatToRawBits(f1+f2);
uintb encoding2 = format.getEncoding(f2);
uintb result = format.opAdd(encoding1, encoding2);
ASSERT_EQUALS(true_result, result);
}
}
}
TEST(float_opDiv) {
FloatFormat format(4);
for(float f1:float_test_values) {
uintb encoding1 = format.getEncoding(f1);
for(float f2:float_test_values) {
uintb true_result = floatToRawBits(f1/f2);
uintb encoding2 = format.getEncoding(f2);
uintb result = format.opDiv(encoding1, encoding2);
ASSERT_EQUALS(true_result, result);
}
}
}
TEST(float_opMult) {
FloatFormat format(4);
for(float f1:float_test_values) {
uintb encoding1 = format.getEncoding(f1);
for(float f2:float_test_values) {
uintb true_result = floatToRawBits(f1*f2);
uintb encoding2 = format.getEncoding(f2);
uintb result = format.opMult(encoding1, encoding2);
ASSERT_EQUALS(true_result, result);
}
}
}
TEST(float_opSub) {
FloatFormat format(4);
for(float f1:float_test_values) {
uintb encoding1 = format.getEncoding(f1);
for(float f2:float_test_values) {
uintb true_result = floatToRawBits(f1-f2);
uintb encoding2 = format.getEncoding(f2);
uintb result = format.opSub(encoding1, encoding2);
ASSERT_EQUALS(true_result, result);
}
}
}
// end generated