Merge remote-tracking branch 'origin/GT-3020-dragonmacher-fg-edges-lose-alpha'

This commit is contained in:
Ryan Kurtz 2019-08-12 12:17:38 -04:00
commit e36b22d268
23 changed files with 581 additions and 282 deletions

View file

@ -19,6 +19,16 @@ import ghidra.app.plugin.core.functiongraph.graph.vertex.FGVertex;
import ghidra.graph.viewer.VisualEdge; import ghidra.graph.viewer.VisualEdge;
import ghidra.program.model.symbol.FlowType; import ghidra.program.model.symbol.FlowType;
/**
* This version of the {@link VisualEdge} adds a few methods.
*
* <p>The {@link #setDefaultAlpha(double)} method was added here instead of the base interface, as it
* was not needed any higher at the time of writing. It can be pulled-up, but there is most
* likely a better pattern for specifying visual attributes of an edge. If we find we need more
* methods like this, then that is a good time for a refactor to change how we manipulate
* rending attributes from various parts of the API (e.g., from the layouts and from animation
* jobs).
*/
public interface FGEdge extends VisualEdge<FGVertex> { public interface FGEdge extends VisualEdge<FGVertex> {
public FlowType getFlowType(); public FlowType getFlowType();
@ -27,6 +37,30 @@ public interface FGEdge extends VisualEdge<FGVertex> {
public void setLabel(String label); public void setLabel(String label);
/**
* Set this edge's base alpha, which determines how much of the edge is visible/see through.
* 0 is completely transparent.
*
* <P>This differs from {@link #setAlpha(double)} in that the latter is used for
* temporary display effects. This method is used to set the alpha value for the edge when
* it is not part of a temporary display effect.
*
* @param alpha the alpha value
*/
public void setDefaultAlpha(double alpha);
/**
* Set this edge's base alpha, which determines how much of the edge is visible/see through.
* 0 is completely transparent.
*
* <P>This differs from {@link #getAlpha()} in that the latter is used for
* temporary display effects. This method is used to set the alpha value for the edge when
* it is not part of a temporary display effect.
*
* @return the alpha value
*/
public double getDefaultAlpha();
@SuppressWarnings("unchecked") @SuppressWarnings("unchecked")
// Suppressing warning on the return type; we know our class is the right type // Suppressing warning on the return type; we know our class is the right type
@Override @Override

View file

@ -34,10 +34,12 @@ public class FGEdgeImpl implements FGEdge {
boolean doHashCode = true; boolean doHashCode = true;
int hashCode; int hashCode;
private boolean inActivePath = false; private boolean inHoveredPath = false;
private boolean inFocusedPath = false;
private boolean selected = false; private boolean selected = false;
private double emphasis = 0D; private double emphasis = 0D;
private double alpha = 1D; private double defaultAlpha = 1D;
private double alpha = defaultAlpha;
private String edgeLabel = null; private String edgeLabel = null;
public FGEdgeImpl(FGVertex startVertex, FGVertex destinationVertex, FlowType flowType, public FGEdgeImpl(FGVertex startVertex, FGVertex destinationVertex, FlowType flowType,
@ -50,13 +52,23 @@ public class FGEdgeImpl implements FGEdge {
} }
@Override @Override
public boolean isInActivePath() { public boolean isInHoveredVertexPath() {
return inActivePath; return inHoveredPath;
} }
@Override @Override
public void setInActivePath(boolean inActivePath) { public boolean isInFocusedVertexPath() {
this.inActivePath = inActivePath; return inFocusedPath;
}
@Override
public void setInHoveredVertexPath(boolean inPath) {
this.inHoveredPath = inPath;
}
@Override
public void setInFocusedVertexPath(boolean inPath) {
this.inFocusedPath = inPath;
} }
@Override @Override
@ -89,6 +101,17 @@ public class FGEdgeImpl implements FGEdge {
return alpha; return alpha;
} }
@Override
public void setDefaultAlpha(double alpha) {
this.defaultAlpha = alpha;
this.alpha = alpha;
}
@Override
public double getDefaultAlpha() {
return defaultAlpha;
}
@Override @Override
public List<Point2D> getArticulationPoints() { public List<Point2D> getArticulationPoints() {
return layoutArticulationPoints; return layoutArticulationPoints;
@ -135,7 +158,9 @@ public class FGEdgeImpl implements FGEdge {
newEdge.layoutArticulationPoints = newPoints; newEdge.layoutArticulationPoints = newPoints;
newEdge.alpha = alpha; newEdge.alpha = alpha;
newEdge.inActivePath = inActivePath; newEdge.defaultAlpha = defaultAlpha;
newEdge.inHoveredPath = inHoveredPath;
newEdge.inFocusedPath = inFocusedPath;
newEdge.selected = selected; newEdge.selected = selected;
return newEdge; return newEdge;
} }

View file

@ -68,7 +68,7 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
*/ */
AbstractGroupingFunctionGraphJob(FGController controller, AbstractGroupingFunctionGraphJob(FGController controller,
GroupedFunctionGraphVertex groupVertex, Set<FGVertex> newVertices, GroupedFunctionGraphVertex groupVertex, Set<FGVertex> newVertices,
Set<FGVertex> verticesToRemove, boolean relayloutOverride, boolean useAnimation) { Set<FGVertex> verticesToRemove, boolean relayoutOverride, boolean useAnimation) {
super(controller, useAnimation); super(controller, useAnimation);
@ -87,7 +87,7 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
FunctionGraphOptions options = controller.getFunctionGraphOptions(); FunctionGraphOptions options = controller.getFunctionGraphOptions();
RelayoutOption relayoutOption = options.getRelayoutOption(); RelayoutOption relayoutOption = options.getRelayoutOption();
this.relayout = relayoutOption == VERTEX_GROUPING_CHANGES || relayoutOption == ALWAYS || this.relayout = relayoutOption == VERTEX_GROUPING_CHANGES || relayoutOption == ALWAYS ||
relayloutOverride; relayoutOverride;
} }
@Override @Override
@ -158,7 +158,7 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
return positions; return positions;
} }
/** /*
* Subclasses must return locations for vertices. This method will be called when no * Subclasses must return locations for vertices. This method will be called when no
* relayout will be performed. * relayout will be performed.
* *
@ -191,15 +191,21 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
@Override @Override
protected void updateOpacity(double percentComplete) { protected void updateOpacity(double percentComplete) {
double oldComponentsAlpha = 1.0 - percentComplete; double oldComponentsAlpha = 1.0 - percentComplete;
Collection<FGVertex> vertices = getVerticesToBeRemoved(); Collection<FGVertex> vertices = getVerticesToBeRemoved();
for (FGVertex vertex : vertices) { for (FGVertex vertex : vertices) {
vertex.setAlpha(oldComponentsAlpha); vertex.setAlpha(oldComponentsAlpha);
Collection<FGEdge> edges = getEdges(vertex); Collection<FGEdge> edges = getEdges(vertex);
for (FGEdge edge : edges) { for (FGEdge edge : edges) {
edge.setAlpha(oldComponentsAlpha);
// don't go past the alpha when removing
double defaultAlpha = edge.getDefaultAlpha();
double alpha = Math.min(oldComponentsAlpha, defaultAlpha);
edge.setAlpha(alpha);
} }
} }
@ -210,7 +216,11 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
Collection<FGEdge> edges = getEdges(vertex); Collection<FGEdge> edges = getEdges(vertex);
for (FGEdge edge : edges) { for (FGEdge edge : edges) {
edge.setAlpha(newComponentsAlpha);
// don't go past the alpha when adding
double defaultAlpha = edge.getDefaultAlpha();
double alpha = Math.min(newComponentsAlpha, defaultAlpha);
edge.setAlpha(alpha);
} }
} }
} }

View file

@ -19,6 +19,7 @@ import java.awt.Rectangle;
import java.awt.geom.Point2D; import java.awt.geom.Point2D;
import java.util.*; import java.util.*;
import org.apache.commons.collections4.IterableUtils;
import org.jdesktop.animation.timing.Animator; import org.jdesktop.animation.timing.Animator;
import org.jdesktop.animation.timing.interpolation.PropertySetter; import org.jdesktop.animation.timing.interpolation.PropertySetter;
@ -197,22 +198,25 @@ public class MergeVertexFunctionGraphJob extends AbstractAnimatorJob {
parentVertex.setAlpha(oldComponentsAlpha); parentVertex.setAlpha(oldComponentsAlpha);
childVertex.setAlpha(oldComponentsAlpha); childVertex.setAlpha(oldComponentsAlpha);
Collection<FGEdge> edges = getEdges(parentVertex); Iterable<FGEdge> edges =
IterableUtils.chainedIterable(getEdges(parentVertex), getEdges(childVertex));
for (FGEdge edge : edges) { for (FGEdge edge : edges) {
edge.setAlpha(oldComponentsAlpha);
}
edges = getEdges(childVertex); // don't go past the alpha when removing
for (FGEdge edge : edges) { double defaultAlpha = edge.getDefaultAlpha();
edge.setAlpha(oldComponentsAlpha); double alpha = Math.min(oldComponentsAlpha, defaultAlpha);
edge.setAlpha(alpha);
} }
double newComponentsAlpha = percentComplete; double newComponentsAlpha = percentComplete;
mergedVertex.setAlpha(newComponentsAlpha); mergedVertex.setAlpha(newComponentsAlpha);
edges = getEdges(mergedVertex); edges = getEdges(mergedVertex);
for (FGEdge edge : edges) { for (FGEdge edge : edges) {
edge.setAlpha(newComponentsAlpha);
// don't go past the alpha when adding
double defaultAlpha = edge.getDefaultAlpha();
double alpha = Math.min(newComponentsAlpha, defaultAlpha);
edge.setAlpha(alpha);
} }
} }

View file

@ -19,6 +19,7 @@ import java.awt.Rectangle;
import java.awt.geom.Point2D; import java.awt.geom.Point2D;
import java.util.*; import java.util.*;
import org.apache.commons.collections4.IterableUtils;
import org.jdesktop.animation.timing.Animator; import org.jdesktop.animation.timing.Animator;
import org.jdesktop.animation.timing.interpolation.PropertySetter; import org.jdesktop.animation.timing.interpolation.PropertySetter;
@ -114,9 +115,21 @@ public class SplitVertexFunctionGraphJob extends AbstractAnimatorJob {
controller.synchronizeProgramLocationAfterEdit(); controller.synchronizeProgramLocationAfterEdit();
restoreEdgeDisplayAttributes();
viewer.repaint(); viewer.repaint();
} }
private void restoreEdgeDisplayAttributes() {
Iterable<FGEdge> edges =
IterableUtils.chainedIterable(getEdges(parentVertex), getEdges(childVertex));
for (FGEdge edge : edges) {
double alpha = edge.getDefaultAlpha();
edge.setAlpha(alpha);
}
}
public void setPercentComplete(double percentComplete) { public void setPercentComplete(double percentComplete) {
trace("setPercentComplete() callback: " + percentComplete); trace("setPercentComplete() callback: " + percentComplete);
updateNewVertexPositions(percentComplete); updateNewVertexPositions(percentComplete);
@ -214,7 +227,11 @@ public class SplitVertexFunctionGraphJob extends AbstractAnimatorJob {
Collection<FGEdge> edges = getEdges(toSplitVertex); Collection<FGEdge> edges = getEdges(toSplitVertex);
for (FGEdge edge : edges) { for (FGEdge edge : edges) {
edge.setAlpha(oldComponentsAlpha);
// don't go past the alpha when removing
double defaultAlpha = edge.getDefaultAlpha();
double alpha = Math.min(oldComponentsAlpha, defaultAlpha);
edge.setAlpha(alpha);
} }
double newComponentsAlpha = percentComplete; double newComponentsAlpha = percentComplete;
@ -223,12 +240,19 @@ public class SplitVertexFunctionGraphJob extends AbstractAnimatorJob {
edges = getEdges(parentVertex); edges = getEdges(parentVertex);
for (FGEdge edge : edges) { for (FGEdge edge : edges) {
edge.setAlpha(newComponentsAlpha);
// don't go past the alpha when adding
double defaultAlpha = edge.getDefaultAlpha();
double alpha = Math.min(newComponentsAlpha, defaultAlpha);
edge.setAlpha(alpha);
} }
edges = getEdges(childVertex); edges = getEdges(childVertex);
for (FGEdge edge : edges) { for (FGEdge edge : edges) {
edge.setAlpha(newComponentsAlpha); // don't go past the alpha when adding
double defaultAlpha = edge.getDefaultAlpha();
double alpha = Math.min(newComponentsAlpha, defaultAlpha);
edge.setAlpha(alpha);
} }
} }

View file

@ -21,6 +21,7 @@ import java.awt.Color;
import java.awt.geom.Point2D; import java.awt.geom.Point2D;
import java.util.*; import java.util.*;
import org.apache.commons.collections4.IterableUtils;
import org.junit.*; import org.junit.*;
import docking.ActionContext; import docking.ActionContext;
@ -37,6 +38,7 @@ import ghidra.framework.plugintool.util.PluginException;
import ghidra.graph.viewer.options.RelayoutOption; import ghidra.graph.viewer.options.RelayoutOption;
import ghidra.program.model.address.Address; import ghidra.program.model.address.Address;
import ghidra.program.model.address.AddressSetView; import ghidra.program.model.address.AddressSetView;
import util.CollectionUtils;
public class FunctionGraphGroupVertices1Test extends AbstractFunctionGraphTest { public class FunctionGraphGroupVertices1Test extends AbstractFunctionGraphTest {
@ -809,14 +811,41 @@ public class FunctionGraphGroupVertices1Test extends AbstractFunctionGraphTest {
verifyDefaultColor(v2); verifyDefaultColor(v2);
} }
@Test
public void testEdgeDefaultAlphaPersistsAfterGrouping() {
graphFunction("01002cf5");
FGVertex v1 = vertex("01002cf5");
FGVertex v2 = vertex("01002d0f");
FunctionGraph graph = getFunctionGraph();
Iterable<FGEdge> edges = graph.getEdges(v1, v2);
assertEquals(1, IterableUtils.size(edges));
FGEdge edge = CollectionUtils.any(edges);
Double alpha = edge.getAlpha();
assertTrue(alpha < 1.0); // this is the default flow
GroupedFunctionGraphVertex group = group("A", v1, v2);
ungroup(group);
edges = graph.getEdges(v1, v2);
assertEquals(1, IterableUtils.size(edges));
edge = CollectionUtils.any(edges);
Double alphAfterGroup = edge.getAlpha();
assertEquals(alpha, alphAfterGroup);
}
@Test @Test
public void testSymbolAddedWhenGrouped_SymbolOutsideOfGroupNode() { public void testSymbolAddedWhenGrouped_SymbolOutsideOfGroupNode() {
// TODO // TODO
} }
//================================================================================================== //==================================================================================================
// Private Methods // Private Methods
//================================================================================================== //==================================================================================================
// @formatter:off // @formatter:off
@Override @Override

View file

@ -313,7 +313,7 @@ public class TestFGLayoutProvider extends FGLayoutProvider {
} }
else if (startCol.index > endCol.index) { // flow return else if (startCol.index > endCol.index) { // flow return
e.setAlpha(.25); e.setDefaultAlpha(.25);
Shape shape = transformer.apply(startVertex); Shape shape = transformer.apply(startVertex);
Rectangle bounds = shape.getBounds(); Rectangle bounds = shape.getBounds();
@ -338,7 +338,7 @@ public class TestFGLayoutProvider extends FGLayoutProvider {
else { // same column--nothing to route else { // same column--nothing to route
// straight line, which is the default // straight line, which is the default
e.setAlpha(.25); e.setDefaultAlpha(.25);
} }
newEdgeArticulations.put(e, articulations); newEdgeArticulations.put(e, articulations);
} }

View file

@ -17,7 +17,7 @@ package ghidra.app.plugin.core.functiongraph.graph.jung.renderer;
import ghidra.app.plugin.core.functiongraph.graph.FGEdge; import ghidra.app.plugin.core.functiongraph.graph.FGEdge;
public class DecompilerDominanceArticulatedEdgeTransformer extends FGArticulatedEdgeTransformer { public class DNLArticulatedEdgeTransformer extends FGArticulatedEdgeTransformer {
@Override @Override
public int getOverlapOffset(FGEdge edge) { public int getOverlapOffset(FGEdge edge) {

View file

@ -34,7 +34,7 @@ import ghidra.app.decompiler.DecompInterface;
import ghidra.app.decompiler.DecompileOptions; import ghidra.app.decompiler.DecompileOptions;
import ghidra.app.plugin.core.functiongraph.graph.FGEdge; import ghidra.app.plugin.core.functiongraph.graph.FGEdge;
import ghidra.app.plugin.core.functiongraph.graph.FunctionGraph; import ghidra.app.plugin.core.functiongraph.graph.FunctionGraph;
import ghidra.app.plugin.core.functiongraph.graph.jung.renderer.DecompilerDominanceArticulatedEdgeTransformer; import ghidra.app.plugin.core.functiongraph.graph.jung.renderer.DNLArticulatedEdgeTransformer;
import ghidra.app.plugin.core.functiongraph.graph.vertex.FGVertex; import ghidra.app.plugin.core.functiongraph.graph.vertex.FGVertex;
import ghidra.app.plugin.core.functiongraph.graph.vertex.GroupedFunctionGraphVertex; import ghidra.app.plugin.core.functiongraph.graph.vertex.GroupedFunctionGraphVertex;
import ghidra.graph.VisualGraph; import ghidra.graph.VisualGraph;
@ -103,7 +103,7 @@ public class DecompilerNestedLayout extends AbstractFGLayout {
@Override @Override
public Function<FGEdge, Shape> getEdgeShapeTransformer() { public Function<FGEdge, Shape> getEdgeShapeTransformer() {
return new DecompilerDominanceArticulatedEdgeTransformer(); return new DNLArticulatedEdgeTransformer();
} }
@Override @Override
@ -715,7 +715,7 @@ public class DecompilerNestedLayout extends AbstractFGLayout {
// assumption: edges that move to the left in this layout are return flows that happen // assumption: edges that move to the left in this layout are return flows that happen
// after the code block has been executed. We dim those a bit so that they // after the code block has been executed. We dim those a bit so that they
// produce less clutter. // produce less clutter.
e.setAlpha(.25); e.setDefaultAlpha(.25);
} }
private Column getOutermostCol(LayoutLocationMap<FGVertex, FGEdge> layoutLocations, private Column getOutermostCol(LayoutLocationMap<FGVertex, FGEdge> layoutLocations,

View file

@ -61,7 +61,7 @@ public class ColorUtils {
// This can be addressed with some polar plotting: // This can be addressed with some polar plotting:
// Let the hue be the degree, and the saturation be the radius, so that the range // Let the hue be the degree, and the saturation be the radius, so that the range
// of values covers an area of a circle of radius 1. Let the circle be centered // of values covers an area of a circle of radius 1. Let the circle be centered
// at the origin. Plot the two colors and compute their distance in euclidean // at the origin. Plot the two colors and compute their distance in Euclidean
// space. // space.
// Start by plotting the given background // Start by plotting the given background
@ -76,7 +76,7 @@ public class ColorUtils {
// It's not pleasant to put two highly-saturated colors next to each other // It's not pleasant to put two highly-saturated colors next to each other
// Because of this restriction, we know that the maximum distance the two plotted // Because of this restriction, we know that the maximum distance the two plotted
// points can be from eachother is 1, because their total distance to the center // points can be from each other is 1, because their total distance to the center
// is at most 1. // is at most 1.
vals[1] = 1.0f - vals[1]; vals[1] = 1.0f - vals[1];

View file

@ -15,8 +15,6 @@
*/ */
package ghidra.graph.graphs; package ghidra.graph.graphs;
import static com.google.common.collect.Iterables.concat;
import static com.google.common.collect.Iterables.filter;
import static util.CollectionUtils.nonNull; import static util.CollectionUtils.nonNull;
import java.awt.Point; import java.awt.Point;
@ -206,9 +204,11 @@ public abstract class DefaultVisualGraph<V extends VisualVertex,
Collection<E> outs = nonNull(getOutEdges(start)); Collection<E> outs = nonNull(getOutEdges(start));
Collection<E> ins = nonNull(getInEdges(end)); Collection<E> ins = nonNull(getInEdges(end));
Set<E> unique = new HashSet<>();
unique.addAll(outs);
unique.addAll(ins);
Iterable<E> concatenated = concat(outs, ins); Iterable<E> filtered = IterableUtils.filteredIterable(unique, e -> {
Iterable<E> filtered = filter(concatenated, e -> {
return e.getStart().equals(start) && e.getEnd().equals(end); return e.getStart().equals(start) && e.getEnd().equals(end);
}); });
return filtered; return filtered;

View file

@ -699,9 +699,10 @@ public class GraphViewerUtils {
return createHollowEgdeLoopInGraphSpace(vertexShape, startX, startY); return createHollowEgdeLoopInGraphSpace(vertexShape, startX, startY);
} }
// translate the edge to the starting vertex // translate the edge from 0,0 to the starting vertex point
AffineTransform xform = AffineTransform.getTranslateInstance(startX, startY); AffineTransform xform = AffineTransform.getTranslateInstance(startX, startY);
Shape edgeShape = renderContext.getEdgeShapeTransformer().apply(e); Shape edgeShape = renderContext.getEdgeShapeTransformer().apply(e);
double deltaX = endX - startX; double deltaX = endX - startX;
double deltaY = endY - startY; double deltaY = endY - startY;
@ -713,7 +714,7 @@ public class GraphViewerUtils {
double dist = Math.sqrt(deltaX * deltaX + deltaY * deltaY); double dist = Math.sqrt(deltaX * deltaX + deltaY * deltaY);
xform.scale(dist, 1.0f); xform.scale(dist, 1.0f);
// apply the transformations // apply the transformations; converting the given shape from model space into graph space
return xform.createTransformedShape(edgeShape); return xform.createTransformedShape(edgeShape);
} }
@ -1052,7 +1053,7 @@ public class GraphViewerUtils {
LinkedList<E> filteredEdges = new LinkedList<>(); LinkedList<E> filteredEdges = new LinkedList<>();
if (useHover) { if (useHover) {
for (E edge : edges) { for (E edge : edges) {
if (edge.isInActivePath()) { if (edge.isInHoveredVertexPath()) {
filteredEdges.add(edge); filteredEdges.add(edge);
} }
} }

View file

@ -25,7 +25,9 @@ import ghidra.graph.GEdge;
* *
* <P>An edge can be selected, which means that it has been clicked by the user. Also, an * <P>An edge can be selected, which means that it has been clicked by the user. Also, an
* edge can be part of an active path. This allows the UI to paint the edge differently if it * edge can be part of an active path. This allows the UI to paint the edge differently if it
* is in the active path. * is in the active path. The active path concept applies to both hovered and focused vertices
* separately. A hovered vertex is one that the user moves the mouse over; a focused vertex is
* one that is selected.
* *
* <A NAME="articulations"></A> * <A NAME="articulations"></A>
* <P><U>Articulations</U> - The start and end points are always part of the * <P><U>Articulations</U> - The start and end points are always part of the
@ -44,7 +46,7 @@ import ghidra.graph.GEdge;
public interface VisualEdge<V extends VisualVertex> extends GEdge<V> { public interface VisualEdge<V extends VisualVertex> extends GEdge<V> {
/** /**
* Sets this edge selected * Sets this edge selected. This is usually in response to the user selecting the edge.
* *
* @param selected true to select this edge; false to de-select this vertex * @param selected true to select this edge; false to de-select this vertex
*/ */
@ -58,20 +60,36 @@ public interface VisualEdge<V extends VisualVertex> extends GEdge<V> {
public boolean isSelected(); public boolean isSelected();
/** /**
* Sets this edge to be marked as in the active path * Sets this edge to be marked as in the active path of a currently hovered vertex
* *
* @param inActivePath true to be marked as in the active path; false to be marked as not * @param inPath true to be marked as in the active path; false to be marked as not
* in the active path * in the active path
*/ */
public void setInActivePath(boolean inActivePath); public void setInHoveredVertexPath(boolean inPath);
/** /**
* Returns true if this edge is part of an active path (this allows the edge to be * Returns true if this edge is part of an active path for a currently hovered
* differently rendered) * vertex (this allows the edge to be differently rendered)
* *
* @return true if this edge is part of the active path * @return true if this edge is part of the active path
*/ */
public boolean isInActivePath(); public boolean isInHoveredVertexPath();
/**
* Sets this edge to be marked as in the active path of a currently focused/selected vertex
*
* @param inPath true to be marked as in the active path; false to be marked as not
* in the active path
*/
public void setInFocusedVertexPath(boolean inPath);
/**
* Returns true if this edge is part of an active path for a currently focused/selected
* vertex (this allows the edge to be differently rendered)
*
* @return true if this edge is part of the active path
*/
public boolean isInFocusedVertexPath();
/** /**
* Returns the points (in {@link GraphViewerUtils} View Space) of the articulation * Returns the points (in {@link GraphViewerUtils} View Space) of the articulation
@ -132,10 +150,10 @@ public interface VisualEdge<V extends VisualVertex> extends GEdge<V> {
public void setAlpha(double alpha); public void setAlpha(double alpha);
/** /**
* Get the alpha, which determines how much of the edge is visible/see through. 0 is * Get the alpha, which determines how much of the edge is visible/see through. 0 is
* completely transparent. This attribute allows transitional for animations. * completely transparent. This attribute allows transitional for animations.
* *
* @return the alpha value * @return the alpha value
*/ */
public double getAlpha(); public double getAlpha();
} }

View file

@ -32,9 +32,10 @@ public abstract class AbstractVisualEdge<V extends VisualVertex> implements Visu
private V start; private V start;
private V end; private V end;
private boolean selected; private boolean inHoveredPath = false;
private boolean inActivePath; private boolean inFocusedPath = false;
private double alpha = 1.0; private double alpha = 1.0;
private boolean selected;
private double emphasis; private double emphasis;
private List<Point2D> articulations = new ArrayList<>(); private List<Point2D> articulations = new ArrayList<>();
@ -65,13 +66,23 @@ public abstract class AbstractVisualEdge<V extends VisualVertex> implements Visu
} }
@Override @Override
public void setInActivePath(boolean inActivePath) { public boolean isInHoveredVertexPath() {
this.inActivePath = inActivePath; return inHoveredPath;
} }
@Override @Override
public boolean isInActivePath() { public boolean isInFocusedVertexPath() {
return inActivePath; return inFocusedPath;
}
@Override
public void setInHoveredVertexPath(boolean inPath) {
this.inHoveredPath = inPath;
}
@Override
public void setInFocusedVertexPath(boolean inPath) {
this.inFocusedPath = inPath;
} }
@Override @Override

View file

@ -81,14 +81,15 @@ import ghidra.graph.viewer.vertex.VisualGraphVertexShapeTransformer;
public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends VisualEdge<V>> public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends VisualEdge<V>>
extends BasicEdgeRenderer<V, E> { extends BasicEdgeRenderer<V, E> {
private static final float HOVERED_STROKE_WIDTH = 8.0f; private static final float HOVERED_PATH_STROKE_WIDTH = 8.0f;
private static final float SELECTED_STROKE_WIDTH = 4.0f; private static final float FOCUSED_PATH_STROKE_WIDTH = 4.0f;
private static final float SELECTED_STROKE_WIDTH = FOCUSED_PATH_STROKE_WIDTH + 2;
private static final float EMPHASIZED_STOKE_WIDTH = SELECTED_STROKE_WIDTH + 3.0f; private static final float EMPHASIZED_STOKE_WIDTH = SELECTED_STROKE_WIDTH + 3.0f;
private float dashingPatternOffset; private float dashingPatternOffset;
private Color baseColor = Color.BLACK; private Color defaultBaseColor = Color.BLACK;
private Color highlightColor = Color.GRAY; private Color defaultHighlightColor = Color.GRAY;
/** /**
* Sets the offset value for painting dashed lines. This allows clients to animate the * Sets the offset value for painting dashed lines. This allows clients to animate the
@ -103,24 +104,29 @@ public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends Visua
} }
public void setBaseColor(Color color) { public void setBaseColor(Color color) {
this.baseColor = color; this.defaultBaseColor = color;
} }
public Color getBaseColor(Graph<V, E> g, E e) { public Color getBaseColor(Graph<V, E> g, E e) {
return baseColor; return defaultBaseColor;
} }
public void setHighlightColor(Color highlightColor) { public void setHighlightColor(Color highlightColor) {
this.highlightColor = highlightColor; this.defaultHighlightColor = highlightColor;
} }
public Color getHighlightColor(Graph<V, E> g, E e) { public Color getHighlightColor(Graph<V, E> g, E e) {
return highlightColor; return defaultHighlightColor;
} }
// template method // template method
protected boolean isInActivePath(E e) { protected boolean isInHoveredVertexPath(E e) {
return e.isInActivePath(); return e.isInHoveredVertexPath();
}
// template method
protected boolean isInFocusedVertexPath(E e) {
return e.isInFocusedVertexPath();
} }
// template method // template method
@ -153,12 +159,17 @@ public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends Visua
float scalex = (float) g.getTransform().getScaleX(); float scalex = (float) g.getTransform().getScaleX();
float scaley = (float) g.getTransform().getScaleY(); float scaley = (float) g.getTransform().getScaleY();
boolean isActive = isInActivePath(e); boolean isInHoveredPath = isInHoveredVertexPath(e);
boolean isInFocusedPath = isInFocusedVertexPath(e);
boolean isSelected = isSelected(e); boolean isSelected = isSelected(e);
boolean isEmphasized = isEmphasiszed(e); boolean isEmphasized = isEmphasiszed(e);
Color hoveredColor = getHighlightColor(graph, e); Color highlightColor = getHighlightColor(graph, e);
Color selectedColor = getHighlightColor(graph, e).darker(); Color baseColor = getBaseColor(graph, e);
Color hoveredColor = highlightColor;
Color focusedColor = baseColor;
Color selectedColor = highlightColor.darker(); // note: we can do better for selected color
Color selectedAccentColor = highlightColor;
float scale = StrictMath.min(scalex, scaley); float scale = StrictMath.min(scalex, scaley);
@ -190,146 +201,199 @@ public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends Visua
Context<Graph<V, E>, E> context = Context.<Graph<V, E>, E> getInstance(graph, e); Context<Graph<V, E>, E> context = Context.<Graph<V, E>, E> getInstance(graph, e);
boolean edgeHit = vt.transform(edgeShape).intersects(deviceRectangle); boolean edgeHit = vt.transform(edgeShape).intersects(deviceRectangle);
if (edgeHit) { if (!edgeHit) {
return;
Paint oldPaint = g.getPaint();
// get Paints for filling and drawing
// (filling is done first so that drawing and label use same Paint)
Paint fillPaint = rc.getEdgeFillPaintTransformer().apply(e);
BasicStroke selectedStroke = getSelectedStroke(e, scale);
BasicStroke hoverStroke = getHoveredStroke(e, scale);
BasicStroke empahsisStroke = getEmphasisStroke(e, scale);
if (fillPaint != null) {
if (isActive) {
Stroke saveStroke = g.getStroke();
g.setPaint(hoveredColor);
g.setStroke(hoverStroke);
g.fill(edgeShape);
g.setStroke(saveStroke);
}
if (isSelected) {
Stroke saveStroke = g.getStroke();
g.setPaint(selectedColor);
g.setStroke(selectedStroke);
g.fill(edgeShape);
g.setStroke(saveStroke);
}
g.setPaint(fillPaint);
g.fill(edgeShape);
}
Paint drawPaint = rc.getEdgeDrawPaintTransformer().apply(e);
if (drawPaint != null) {
if (isEmphasized) {
Stroke saveStroke = g.getStroke();
g.setPaint(drawPaint);
g.setStroke(empahsisStroke);
g.draw(edgeShape);
g.setStroke(saveStroke);
}
if (isActive) {
Stroke saveStroke = g.getStroke();
g.setPaint(hoveredColor);
g.setStroke(hoverStroke);
g.draw(edgeShape);
g.setStroke(saveStroke);
}
if (isSelected) {
Stroke saveStroke = g.getStroke();
g.setPaint(selectedColor);
g.setStroke(selectedStroke);
g.draw(edgeShape);
g.setStroke(saveStroke);
}
g.setPaint(drawPaint);
g.draw(edgeShape);
// debug - draw a box around the edge
//Rectangle shapeBounds = edgeShape.getBounds();
//g.setPaint(Color.ORANGE);
//g.draw(shapeBounds);
}
Predicate<Context<Graph<V, E>, E>> predicate = rc.getEdgeArrowPredicate();
boolean drawArrow = predicate.apply(context);
if (drawArrow) {
Stroke new_stroke = rc.getEdgeArrowStrokeTransformer().apply(e);
Stroke old_stroke = g.getStroke();
if (new_stroke != null) {
g.setStroke(new_stroke);
}
Shape vs2 = getVertexShapeForArrow(rc, layout, v2); // end vertex
boolean arrowHit = vt.transform(vs2).intersects(deviceRectangle);
Paint arrowFillPaint = rc.getArrowFillPaintTransformer().apply(e);
Paint arrowDrawPaint = rc.getArrowDrawPaintTransformer().apply(e);
if (arrowHit) {
EdgeArrowRenderingSupport<V, E> arrowRenderingSupport =
new BasicEdgeArrowRenderingSupport<>();
AffineTransform at =
arrowRenderingSupport.getArrowTransform(rc, edgeShape, vs2);
if (at == null) {
return;
}
Shape arrow = rc.getEdgeArrowTransformer().apply(context);
arrow = scaleArrowForBetterVisibility(rc, arrow);
arrow = at.createTransformedShape(arrow);
if (isEmphasized) {
Stroke saveStroke = g.getStroke();
g.setPaint(arrowDrawPaint);
g.setStroke(empahsisStroke);
g.fill(arrow);
g.draw(arrow);
g.setStroke(saveStroke);
}
if (isActive) {
Stroke saveStroke = g.getStroke();
g.setPaint(hoveredColor);
g.setStroke(hoverStroke);
g.fill(arrow);
g.draw(arrow);
g.setStroke(saveStroke);
}
if (isSelected) {
Stroke saveStroke = g.getStroke();
g.setPaint(selectedColor);
g.setStroke(selectedStroke);
g.fill(arrow);
g.draw(arrow);
g.setStroke(saveStroke);
}
g.setPaint(arrowFillPaint);
g.fill(arrow);
g.setPaint(arrowDrawPaint);
g.draw(arrow);
}
// restore paint and stroke
if (new_stroke != null) {
g.setStroke(old_stroke);
}
}
// restore old paint
g.setPaint(oldPaint);
} }
Paint oldPaint = g.getPaint();
// get Paints for filling and drawing
// (filling is done first so that drawing and label use the same Paint)
BasicStroke hoverStroke = getHoveredPathStroke(e, scale);
BasicStroke focusedStroke = getFocusedPathStroke(e, scale);
BasicStroke selectedStroke = getSelectedStroke(e, scale);
BasicStroke selectedAccentStroke = getSelectedAccentStroke(e, scale);
BasicStroke empahsisStroke = getEmphasisStroke(e, scale);
//
// Fill
//
Paint fillPaint = rc.getEdgeFillPaintTransformer().apply(e);
if (fillPaint != null) {
// basic shape
g.setPaint(fillPaint);
g.fill(edgeShape);
// Currently, graphs with complicated edge shapes (those with articulations) do not
// use a fill paint. If we execute this code with articulated edges, the display
// looks unusual. So, for now, only 'fill' with these effects when the client has
// explicitly used a fill paint transformer.
if (isEmphasized) {
Stroke saveStroke = g.getStroke();
g.setPaint(fillPaint);
g.setStroke(empahsisStroke);
g.fill(edgeShape);
g.setStroke(saveStroke);
}
if (isInHoveredPath) {
Stroke saveStroke = g.getStroke();
g.setPaint(hoveredColor);
g.setStroke(hoverStroke);
g.fill(edgeShape);
g.setStroke(saveStroke);
}
if (isInFocusedPath) {
Stroke saveStroke = g.getStroke();
g.setPaint(focusedColor);
g.setStroke(focusedStroke);
g.fill(edgeShape);
g.setStroke(saveStroke);
}
if (isSelected) {
Stroke saveStroke = g.getStroke();
g.setPaint(selectedColor);
g.setStroke(selectedStroke);
g.fill(edgeShape);
g.setStroke(saveStroke);
}
}
//
// Draw
//
Paint drawPaint = rc.getEdgeDrawPaintTransformer().apply(e);
if (drawPaint != null) {
// basic shape
g.setPaint(drawPaint);
g.draw(edgeShape);
}
if (isEmphasized) {
Stroke saveStroke = g.getStroke();
g.setPaint(drawPaint);
g.setStroke(empahsisStroke);
g.draw(edgeShape);
g.setStroke(saveStroke);
}
if (isInHoveredPath) {
Stroke saveStroke = g.getStroke();
g.setPaint(hoveredColor);
g.setStroke(hoverStroke);
g.draw(edgeShape);
g.setStroke(saveStroke);
}
if (isInFocusedPath) {
Stroke saveStroke = g.getStroke();
g.setPaint(focusedColor);
g.setStroke(focusedStroke);
g.draw(edgeShape);
g.setStroke(saveStroke);
}
if (isSelected) {
Stroke saveStroke = g.getStroke();
g.setPaint(selectedAccentColor);
g.setStroke(selectedAccentStroke);
g.draw(edgeShape);
g.setPaint(selectedColor);
g.setStroke(selectedStroke);
g.draw(edgeShape);
g.setStroke(saveStroke);
}
// debug - draw a box around the edge
//Rectangle shapeBounds = edgeShape.getBounds();
//g.setPaint(Color.ORANGE);
//g.draw(shapeBounds);
//
// Arrow Head
//
Predicate<Context<Graph<V, E>, E>> predicate = rc.getEdgeArrowPredicate();
boolean drawArrow = predicate.apply(context);
if (!drawArrow) {
g.setPaint(oldPaint);
return;
}
Stroke arrowStroke = rc.getEdgeArrowStrokeTransformer().apply(e);
Stroke oldArrowStroke = g.getStroke();
if (arrowStroke != null) {
g.setStroke(arrowStroke);
}
Shape vs2 = getVertexShapeForArrow(rc, layout, v2); // end vertex
boolean arrowHit = vt.transform(vs2).intersects(deviceRectangle);
if (!arrowHit) {
g.setPaint(oldPaint);
return;
}
EdgeArrowRenderingSupport<V, E> arrowRenderingSupport =
new BasicEdgeArrowRenderingSupport<>();
AffineTransform at = arrowRenderingSupport.getArrowTransform(rc, edgeShape, vs2);
if (at == null) {
g.setPaint(oldPaint);
g.setStroke(oldArrowStroke);
return;
}
Paint arrowFillPaint = rc.getArrowFillPaintTransformer().apply(e);
Paint arrowDrawPaint = rc.getArrowDrawPaintTransformer().apply(e);
Shape arrow = rc.getEdgeArrowTransformer().apply(context);
arrow = scaleArrowForBetterVisibility(rc, arrow);
arrow = at.createTransformedShape(arrow);
// basic shape
g.setPaint(arrowFillPaint);
g.fill(arrow);
g.setPaint(arrowDrawPaint);
g.draw(arrow);
if (isEmphasized) {
Stroke saveStroke = g.getStroke();
g.setPaint(arrowDrawPaint);
g.setStroke(empahsisStroke);
g.fill(arrow);
g.draw(arrow);
g.setStroke(saveStroke);
}
if (isInHoveredPath) {
Stroke saveStroke = g.getStroke();
g.setPaint(hoveredColor);
g.setStroke(hoverStroke);
g.fill(arrow);
g.draw(arrow);
g.setStroke(saveStroke);
}
if (isInFocusedPath) {
Stroke saveStroke = g.getStroke();
g.setPaint(focusedColor);
g.setStroke(focusedStroke);
g.draw(edgeShape);
g.setStroke(saveStroke);
}
if (isSelected) {
Stroke saveStroke = g.getStroke();
g.setPaint(selectedColor);
g.setStroke(selectedStroke);
g.fill(arrow);
g.draw(arrow);
g.setStroke(saveStroke);
}
g.setStroke(oldArrowStroke);
g.setPaint(oldPaint);
} }
protected Shape getVertexShapeForArrow(RenderContext<V, E> rc, Layout<V, E> layout, V v) { protected Shape getVertexShapeForArrow(RenderContext<V, E> rc, Layout<V, E> layout, V v) {
@ -343,10 +407,10 @@ public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends Visua
* @param rc the render context for the graph * @param rc the render context for the graph
* @param graph the graph * @param graph the graph
* @param e the edge to shape * @param e the edge to shape
* @param x1 the start vertex point x * @param x1 the start vertex point x; layout space
* @param y1 the start vertex point y * @param y1 the start vertex point y; layout space
* @param x2 the end vertex point x * @param x2 the end vertex point x; layout space
* @param y2 the end vertex point y * @param y2 the end vertex point y; layout space
* @param isLoop true if the start == end, which is a self-loop * @param isLoop true if the start == end, which is a self-loop
* @param vertexShape the vertex shape (used in the case of a loop to draw a circle from the * @param vertexShape the vertex shape (used in the case of a loop to draw a circle from the
* shape to itself) * shape to itself)
@ -355,17 +419,27 @@ public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends Visua
public abstract Shape getEdgeShape(RenderContext<V, E> rc, Graph<V, E> graph, E e, float x1, public abstract Shape getEdgeShape(RenderContext<V, E> rc, Graph<V, E> graph, E e, float x1,
float y1, float x2, float y2, boolean isLoop, Shape vertexShape); float y1, float x2, float y2, boolean isLoop, Shape vertexShape);
private BasicStroke getHoveredStroke(E e, float scale) { private BasicStroke getHoveredPathStroke(E e, float scale) {
float width = HOVERED_STROKE_WIDTH / (float) Math.pow(scale, .80); float width = HOVERED_PATH_STROKE_WIDTH / (float) Math.pow(scale, .80);
return new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_BEVEL, 0f, return new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND, 0f,
new float[] { width * 1, width * 2 }, width * 3 * dashingPatternOffset); new float[] { width * 1, width * 2 }, width * 3 * dashingPatternOffset);
} }
private BasicStroke getFocusedPathStroke(E e, float scale) {
float width = FOCUSED_PATH_STROKE_WIDTH / (float) Math.pow(scale, .80);
return new BasicStroke(width);
}
private BasicStroke getSelectedStroke(E e, float scale) { private BasicStroke getSelectedStroke(E e, float scale) {
float width = SELECTED_STROKE_WIDTH / (float) Math.pow(scale, .80); float width = SELECTED_STROKE_WIDTH / (float) Math.pow(scale, .80);
return new BasicStroke(width); return new BasicStroke(width);
} }
private BasicStroke getSelectedAccentStroke(E e, float scale) {
float width = (SELECTED_STROKE_WIDTH + 2) / (float) Math.pow(scale, .80);
return new BasicStroke(width);
}
private BasicStroke getEmphasisStroke(E e, float scale) { private BasicStroke getEmphasisStroke(E e, float scale) {
double emphasisRatio = e.getEmphasis(); // this value is 0 when no emphasis double emphasisRatio = e.getEmphasis(); // this value is 0 when no emphasis
float fullEmphasis = EMPHASIZED_STOKE_WIDTH; float fullEmphasis = EMPHASIZED_STOKE_WIDTH;

View file

@ -27,6 +27,8 @@ import ghidra.graph.viewer.VisualVertex;
* A renderer designed to override default edge rendering to NOT paint emphasizing effects. We * A renderer designed to override default edge rendering to NOT paint emphasizing effects. We
* do this because space is limited in the satellite and because this rendering can take excess * do this because space is limited in the satellite and because this rendering can take excess
* processing time. * processing time.
* @param <V> the vertex type
* @param <E> the edge type
*/ */
public class VisualGraphEdgeSatelliteRenderer<V extends VisualVertex, E extends VisualEdge<V>> public class VisualGraphEdgeSatelliteRenderer<V extends VisualVertex, E extends VisualEdge<V>>
extends VisualEdgeRenderer<V, E> { extends VisualEdgeRenderer<V, E> {
@ -38,7 +40,12 @@ public class VisualGraphEdgeSatelliteRenderer<V extends VisualVertex, E extends
} }
@Override @Override
protected boolean isInActivePath(E e) { protected boolean isInHoveredVertexPath(E e) {
return false;
}
@Override
protected boolean isInFocusedVertexPath(E e) {
return false; return false;
} }

View file

@ -149,6 +149,13 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
TaskMonitor timeoutMonitor = TimeoutTaskMonitor.timeoutIn(ALGORITHM_TIMEOUT, TaskMonitor timeoutMonitor = TimeoutTaskMonitor.timeoutIn(ALGORITHM_TIMEOUT,
TimeUnit.SECONDS, new TaskMonitorAdapter(true)); TimeUnit.SECONDS, new TaskMonitorAdapter(true));
Set<V> sources = GraphAlgorithms.getSources(graph);
if (sources.isEmpty()) {
Msg.debug(this, "No sources found for graph; cannot calculate dominance: " +
graph.getClass().getSimpleName());
return null;
}
try { try {
// note: calling the constructor performs the work // note: calling the constructor performs the work
return new ChkDominanceAlgorithm<>(graph, timeoutMonitor); return new ChkDominanceAlgorithm<>(graph, timeoutMonitor);
@ -268,16 +275,19 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
public void setVertexHoverMode(PathHighlightMode mode) { public void setVertexHoverMode(PathHighlightMode mode) {
this.vertexHoverMode = Objects.requireNonNull(mode); this.vertexHoverMode = Objects.requireNonNull(mode);
if (vertexHoverMode == PathHighlightMode.OFF) {
clearHoveredEdgesSwing();
}
} }
public void setHoveredVertex(V hoveredVertex) { public void setHoveredVertex(V hoveredVertex) {
if (workPauser.isPaused()) {
return; // hovers a transient, no need to remember the request
}
clearHoveredEdgesSwing(); clearHoveredEdgesSwing();
if (workPauser.isPaused()) {
return; // hovers are transient, no need to remember the request
}
if (hoveredVertex == null) { if (hoveredVertex == null) {
return; return;
} }
@ -362,13 +372,13 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
private void clearHoveredEdgesSwing() { private void clearHoveredEdgesSwing() {
for (E edge : graph.getEdges()) { for (E edge : graph.getEdges()) {
edge.setInActivePath(false); edge.setInHoveredVertexPath(false);
} }
} }
private void clearFocusedEdgesSwing() { private void clearFocusedEdgesSwing() {
for (E edge : graph.getEdges()) { for (E edge : graph.getEdges()) {
edge.setSelected(false); edge.setInFocusedVertexPath(false);
} }
} }
@ -498,25 +508,25 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
private void setInFocusedEdges(V vertex) { private void setInFocusedEdges(V vertex) {
Supplier<Set<E>> supplier = () -> getReverseFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> supplier = () -> getReverseFlowEdgesForVertexAsync(vertex);
focusRunManager.runNow(new SelectRunnable(supplier), null); focusRunManager.runNow(new SetFocusedEdgesRunnable(supplier), null);
} }
private void setOutFocusedEdgesSwing(V vertex) { private void setOutFocusedEdgesSwing(V vertex) {
Supplier<Set<E>> supplier = () -> getForwardFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> supplier = () -> getForwardFlowEdgesForVertexAsync(vertex);
focusRunManager.runNow(new SelectRunnable(supplier), null); focusRunManager.runNow(new SetFocusedEdgesRunnable(supplier), null);
} }
private void setForwardScopedFlowFocusedEdgesSwing(V vertex) { private void setForwardScopedFlowFocusedEdgesSwing(V vertex) {
Supplier<Set<E>> supplier = () -> getForwardScopedFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> supplier = () -> getForwardScopedFlowEdgesForVertexAsync(vertex);
focusRunManager.runNow(new SelectRunnable(supplier), null); focusRunManager.runNow(new SetFocusedEdgesRunnable(supplier), null);
} }
private void setReverseScopedFlowFocusedEdgesSwing(V vertex) { private void setReverseScopedFlowFocusedEdgesSwing(V vertex) {
Supplier<Set<E>> supplier = () -> getReverseScopedFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> supplier = () -> getReverseScopedFlowEdgesForVertexAsync(vertex);
focusRunManager.runNow(new SelectRunnable(supplier), null); focusRunManager.runNow(new SetFocusedEdgesRunnable(supplier), null);
} }
private void setInOutFocusedEdgesSwing(V vertex) { private void setInOutFocusedEdgesSwing(V vertex) {
@ -525,46 +535,46 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
// Select ins and outs, one after the other. // Select ins and outs, one after the other.
// //
Supplier<Set<E>> inSupplier = () -> getReverseFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> inSupplier = () -> getReverseFlowEdgesForVertexAsync(vertex);
focusRunManager.runNow(new SelectRunnable(inSupplier), null); focusRunManager.runNow(new SetFocusedEdgesRunnable(inSupplier), null);
Supplier<Set<E>> outSupplier = () -> getForwardFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> outSupplier = () -> getForwardFlowEdgesForVertexAsync(vertex);
focusRunManager.runNext(new SelectRunnable(outSupplier), null); focusRunManager.runNext(new SetFocusedEdgesRunnable(outSupplier), null);
} }
private void setVertexCycleFocusedEdgesSwing(V vertex) { private void setVertexCycleFocusedEdgesSwing(V vertex) {
Supplier<Set<E>> supplier = () -> getCircuitEdgesAsync(vertex); Supplier<Set<E>> supplier = () -> getCircuitEdgesAsync(vertex);
focusRunManager.runNow(new SelectRunnable(supplier), null); focusRunManager.runNow(new SetFocusedEdgesRunnable(supplier), null);
} }
private void setAllCycleFocusedEdgesSwing() { private void setAllCycleFocusedEdgesSwing() {
Supplier<Set<E>> supplier = () -> getAllCircuitFlowEdgesAsync(); Supplier<Set<E>> supplier = () -> getAllCircuitFlowEdgesAsync();
focusRunManager.runNow(new SelectRunnable(supplier), null); focusRunManager.runNow(new SetFocusedEdgesRunnable(supplier), null);
} }
private void setInHoveredEdgesSwing(V vertex) { private void setInHoveredEdgesSwing(V vertex) {
Supplier<Set<E>> supplier = () -> getReverseFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> supplier = () -> getReverseFlowEdgesForVertexAsync(vertex);
hoverRunManager.runNow(new HoverRunnable(supplier), null); hoverRunManager.runNow(new SetHoveredEdgesRunnable(supplier), null);
} }
private void setOutHoveredEdgesSwing(V vertex) { private void setOutHoveredEdgesSwing(V vertex) {
Supplier<Set<E>> supplier = () -> getForwardFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> supplier = () -> getForwardFlowEdgesForVertexAsync(vertex);
hoverRunManager.runNow(new HoverRunnable(supplier), null); hoverRunManager.runNow(new SetHoveredEdgesRunnable(supplier), null);
} }
private void setForwardScopedFlowHoveredEdgesSwing(V vertex) { private void setForwardScopedFlowHoveredEdgesSwing(V vertex) {
Supplier<Set<E>> supplier = () -> getForwardScopedFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> supplier = () -> getForwardScopedFlowEdgesForVertexAsync(vertex);
hoverRunManager.runNow(new HoverRunnable(supplier), null); hoverRunManager.runNow(new SetHoveredEdgesRunnable(supplier), null);
} }
private void setReverseScopedFlowHoveredEdgesSwing(V vertex) { private void setReverseScopedFlowHoveredEdgesSwing(V vertex) {
Supplier<Set<E>> supplier = () -> getReverseScopedFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> supplier = () -> getReverseScopedFlowEdgesForVertexAsync(vertex);
hoverRunManager.runNow(new HoverRunnable(supplier), null); hoverRunManager.runNow(new SetHoveredEdgesRunnable(supplier), null);
} }
private void setInOutHoveredEdgesSwing(V vertex) { private void setInOutHoveredEdgesSwing(V vertex) {
@ -573,32 +583,32 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
// Select ins and outs, one after the other. // Select ins and outs, one after the other.
// //
Supplier<Set<E>> inSupplier = () -> getReverseFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> inSupplier = () -> getReverseFlowEdgesForVertexAsync(vertex);
hoverRunManager.runNow(new HoverRunnable(inSupplier), null); hoverRunManager.runNow(new SetHoveredEdgesRunnable(inSupplier), null);
Supplier<Set<E>> outSupplier = () -> getForwardFlowEdgesForVertexAsync(vertex); Supplier<Set<E>> outSupplier = () -> getForwardFlowEdgesForVertexAsync(vertex);
hoverRunManager.runNext(new HoverRunnable(outSupplier), null); hoverRunManager.runNext(new SetHoveredEdgesRunnable(outSupplier), null);
} }
private void setVertexCycleHoveredEdgesSwing(V vertex) { private void setVertexCycleHoveredEdgesSwing(V vertex) {
Supplier<Set<E>> supplier = () -> getCircuitEdgesAsync(vertex); Supplier<Set<E>> supplier = () -> getCircuitEdgesAsync(vertex);
hoverRunManager.runNow(new HoverRunnable(supplier), null); hoverRunManager.runNow(new SetHoveredEdgesRunnable(supplier), null);
} }
private void setVertexToVertexPathHoveredEdgesSwing(V start, V end) { private void setVertexToVertexPathHoveredEdgesSwing(V start, V end) {
Callback callback = () -> calculatePathsBetweenVerticesAsync(start, end); Callback callback = () -> calculatePathsBetweenVerticesAsync(start, end);
focusRunManager.runNow(new SlowHoverRunnable(callback), null); focusRunManager.runNow(new SlowSetHoveredEdgesRunnable(callback), null);
} }
private void selectSwing(Collection<E> edges) { private void setInFocusedPathOnSwing(Collection<E> edges) {
edges.forEach(e -> e.setSelected(true)); edges.forEach(e -> e.setInFocusedVertexPath(true));
listener.pathHighlightChanged(false); listener.pathHighlightChanged(false);
} }
private void activateSwing(Collection<E> edges) { private void setInHoverPathOnSwing(Collection<E> edges) {
edges.forEach(e -> e.setInActivePath(true)); edges.forEach(e -> e.setInHoveredVertexPath(true));
listener.pathHighlightChanged(true); listener.pathHighlightChanged(true);
} }
@ -626,9 +636,14 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
return; return;
} }
if (!cf.isCompletedExceptionally()) { if (cf.isCompletedExceptionally()) {
// clear the contents of the future, as it is acting like a cache return;
clearer.accept(cf.getNow(null)); }
// clear the contents of the future, as it is acting like a cache
T result = cf.getNow(null);
if (result != null) {
clearer.accept(result);
} }
} }
@ -833,7 +848,7 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
CallbackAccumulator<List<V>> accumulator = new CallbackAccumulator<>(path -> { CallbackAccumulator<List<V>> accumulator = new CallbackAccumulator<>(path -> {
Collection<E> edges = pathToEdgesAsync(path); Collection<E> edges = pathToEdgesAsync(path);
SystemUtilities.runSwingLater(() -> activateSwing(edges)); SystemUtilities.runSwingLater(() -> setInHoverPathOnSwing(edges));
}); });
TaskMonitor timeoutMonitor = TimeoutTaskMonitor.timeoutIn(ALGORITHM_TIMEOUT, TaskMonitor timeoutMonitor = TimeoutTaskMonitor.timeoutIn(ALGORITHM_TIMEOUT,
@ -890,12 +905,12 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
* A class to handle off-loading the calculation of edges to be hovered. The results will * A class to handle off-loading the calculation of edges to be hovered. The results will
* then be used to update the UI. * then be used to update the UI.
*/ */
private class HoverRunnable implements SwingRunnable { private class SetHoveredEdgesRunnable implements SwingRunnable {
private Supplier<Set<E>> edgeSupplier; private Supplier<Set<E>> edgeSupplier;
private Set<E> edges; private Set<E> edges;
HoverRunnable(Supplier<Set<E>> edgeSupplier) { SetHoveredEdgesRunnable(Supplier<Set<E>> edgeSupplier) {
this.edgeSupplier = edgeSupplier; this.edgeSupplier = edgeSupplier;
} }
@ -915,20 +930,20 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
if (isCancelled) { if (isCancelled) {
return; return;
} }
activateSwing(edges); setInHoverPathOnSwing(edges);
} }
} }
/** /**
* A class to handle off-loading the calculation of edges to be focused/selected. * A class to handle off-loading the calculation of edges to be focused.
* The results will then be used to update the UI. * The results will then be used to update the UI.
*/ */
private class SelectRunnable implements SwingRunnable { private class SetFocusedEdgesRunnable implements SwingRunnable {
private Supplier<Set<E>> edgeSupplier; private Supplier<Set<E>> edgeSupplier;
private Set<E> edges; private Set<E> edges;
SelectRunnable(Supplier<Set<E>> edgeSupplier) { SetFocusedEdgesRunnable(Supplier<Set<E>> edgeSupplier) {
this.edgeSupplier = edgeSupplier; this.edgeSupplier = edgeSupplier;
} }
@ -948,7 +963,7 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
if (isCancelled) { if (isCancelled) {
return; return;
} }
selectSwing(edges); setInFocusedPathOnSwing(edges);
} }
} }
@ -956,11 +971,11 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
* A class meant to run in the hover RunManager that is slow or open-ended. Work will * A class meant to run in the hover RunManager that is slow or open-ended. Work will
* be performed as long as possible, updating results along the way. * be performed as long as possible, updating results along the way.
*/ */
private class SlowHoverRunnable implements MonitoredRunnable { private class SlowSetHoveredEdgesRunnable implements MonitoredRunnable {
private Callback callback; private Callback callback;
SlowHoverRunnable(Callback callback) { SlowSetHoveredEdgesRunnable(Callback callback) {
this.callback = callback; this.callback = callback;
} }

View file

@ -22,6 +22,7 @@ import edu.uci.ics.jung.visualization.control.AbstractGraphMousePlugin;
import ghidra.graph.VisualGraph; import ghidra.graph.VisualGraph;
import ghidra.graph.viewer.*; import ghidra.graph.viewer.*;
import ghidra.graph.viewer.edge.VisualGraphPathHighlighter; import ghidra.graph.viewer.edge.VisualGraphPathHighlighter;
import ghidra.util.task.SwingUpdateManager;
/** /**
* A mouse plugin to handle vertex hovers, to include animating paths in the graph, based * A mouse plugin to handle vertex hovers, to include animating paths in the graph, based
@ -45,6 +46,8 @@ public class VisualGraphHoverMousePlugin<V extends VisualVertex, E extends Visua
private final VisualizationViewer<V, E> sourceViewer; private final VisualizationViewer<V, E> sourceViewer;
private final VisualizationViewer<V, E> otherViewer; private final VisualizationViewer<V, E> otherViewer;
private SwingUpdateManager mouseHoverUpdater = new SwingUpdateManager(this::updateMouseHovers);
private MouseEvent lastMouseEvent;
private V hoveredVertex; private V hoveredVertex;
public VisualGraphHoverMousePlugin(GraphComponent<V, E, ?> graphComponent, public VisualGraphHoverMousePlugin(GraphComponent<V, E, ?> graphComponent,
@ -60,16 +63,23 @@ public class VisualGraphHoverMousePlugin<V extends VisualVertex, E extends Visua
@Override @Override
public void mouseMoved(MouseEvent e) { public void mouseMoved(MouseEvent e) {
updateMouseHovers(e); lastMouseEvent = e;
mouseHoverUpdater.update();
} }
private void updateMouseHovers(MouseEvent e) { private void updateMouseHovers() {
if (graphComponent.isUninitialized()) { if (graphComponent.isUninitialized()) {
return; return;
} }
GraphViewer<V, E> viewer = getGraphViewer(e); PathHighlightMode hoverMode = graphComponent.getVertexHoverPathHighlightMode();
V newHoveredVertex = GraphViewerUtils.getVertexFromPointInViewSpace(viewer, e.getPoint()); if (hoverMode == PathHighlightMode.OFF) {
return;
}
GraphViewer<V, E> viewer = getGraphViewer(lastMouseEvent);
V newHoveredVertex =
GraphViewerUtils.getVertexFromPointInViewSpace(viewer, lastMouseEvent.getPoint());
if (newHoveredVertex == hoveredVertex) { if (newHoveredVertex == hoveredVertex) {
return; return;
} }
@ -123,7 +133,9 @@ public class VisualGraphHoverMousePlugin<V extends VisualVertex, E extends Visua
if (e.isPopupTrigger()) { if (e.isPopupTrigger()) {
return; return;
} }
updateMouseHovers(e);
lastMouseEvent = e;
updateMouseHovers();
} }
@Override @Override
@ -140,4 +152,9 @@ public class VisualGraphHoverMousePlugin<V extends VisualVertex, E extends Visua
public void mouseClicked(MouseEvent e) { public void mouseClicked(MouseEvent e) {
// handled by dragged and released // handled by dragged and released
} }
@Override
public void dispose() {
mouseHoverUpdater.dispose();
}
} }

View file

@ -108,4 +108,11 @@ public interface VisualGraphMousePlugin<V extends VisualVertex, E extends Visual
VisualGraphViewUpdater<V, E> updater = viewer.getViewUpdater(); VisualGraphViewUpdater<V, E> updater = viewer.getViewUpdater();
return updater; return updater;
} }
/**
* Signals to perform any cleanup when this plugin is going away
*/
public default void dispose() {
// stub
}
} }

View file

@ -95,6 +95,11 @@ public class VisualGraphPluggableGraphMouse<V extends VisualVertex, E extends Vi
} }
public void dispose() { public void dispose() {
for (GraphMousePlugin mp : mousePlugins) {
if (mp instanceof VisualGraphMousePlugin) {
((VisualGraphMousePlugin<?, ?>) mp).dispose();
}
}
mousePlugins.clear(); mousePlugins.clear();
} }

View file

@ -57,9 +57,13 @@ public class ArticulatedEdgeRenderer<V extends VisualVertex, E extends VisualEdg
new Point2D.Float((float) point.getX() + offset, (float) point.getY() + offset); new Point2D.Float((float) point.getX() + offset, (float) point.getY() + offset);
point = rc.getMultiLayerTransformer().transform(Layer.LAYOUT, offsetPoint); point = rc.getMultiLayerTransformer().transform(Layer.LAYOUT, offsetPoint);
path.lineTo((float) point.getX(), (float) point.getY()); path.lineTo((float) point.getX(), (float) point.getY());
path.moveTo((float) point.getX(), (float) point.getY());
} }
path.lineTo(x2, y2); path.lineTo(x2, y2);
path.moveTo(x2, y2);
path.closePath();
return path; return path;
} }

View file

@ -17,7 +17,7 @@ package ghidra.graph.viewer.shape;
import java.awt.Shape; import java.awt.Shape;
import java.awt.geom.*; import java.awt.geom.*;
import java.util.*; import java.util.List;
import edu.uci.ics.jung.visualization.decorators.ParallelEdgeShapeTransformer; import edu.uci.ics.jung.visualization.decorators.ParallelEdgeShapeTransformer;
import ghidra.graph.viewer.*; import ghidra.graph.viewer.*;
@ -26,6 +26,8 @@ import ghidra.util.SystemUtilities;
/** /**
* An edge shape that renders as a series of straight lines between articulation points. * An edge shape that renders as a series of straight lines between articulation points.
* @param <V> the vertex type
* @param <E> the edge type
*/ */
public class ArticulatedEdgeTransformer<V extends VisualVertex, E extends VisualEdge<V>> public class ArticulatedEdgeTransformer<V extends VisualVertex, E extends VisualEdge<V>>
extends ParallelEdgeShapeTransformer<V, E> { extends ParallelEdgeShapeTransformer<V, E> {
@ -75,38 +77,50 @@ public class ArticulatedEdgeTransformer<V extends VisualVertex, E extends Visual
final double originY = p1.getY(); final double originY = p1.getY();
int offset = getOverlapOffset(e); int offset = getOverlapOffset(e);
GeneralPath generalPath = new GeneralPath(); GeneralPath path = new GeneralPath();
generalPath.moveTo(0, 0); path.moveTo(0, 0);
for (Point2D pt : articulations) { for (Point2D pt : articulations) {
generalPath.lineTo((float) (pt.getX() - originX) + offset, float x = (float) (pt.getX() - originX) + offset;
(float) (pt.getY() - originY) + offset); float y = (float) (pt.getY() - originY) + offset;
path.lineTo(x, y);
path.moveTo(x, y);
} }
generalPath.lineTo((float) (p2.getX() - originX), (float) (p2.getY() - originY)); float p2x = (float) (p2.getX() - originX);
float p2y = (float) (p2.getY() - originY);
path.lineTo(p2x, p2y);
path.moveTo(p2x, p2y);
path.closePath();
ArrayList<Point2D> reverse = new ArrayList<>(articulations);
Collections.reverse(reverse);
for (Point2D pt : reverse) {
generalPath.lineTo((float) (pt.getX() - originX) + offset,
(float) (pt.getY() - originY) + offset);
}
AffineTransform transform = new AffineTransform(); AffineTransform transform = new AffineTransform();
final double deltaY = p2.getY() - originY; final double deltaY = p2.getY() - originY;
final double deltaX = p2.getX() - originX; final double deltaX = p2.getX() - originX;
if (deltaX == 0 && deltaY == 0) { if (deltaX == 0 && deltaY == 0) {
// this implies the source and destination node are at the same location, which // this implies the source and destination node are at the same location, which
// is possible if the user drags it there or during animations // is possible if the user drags it there or during animations
return transform.createTransformedShape(generalPath); return transform.createTransformedShape(path);
} }
double theta = StrictMath.atan2(deltaY, deltaX); double theta = StrictMath.atan2(deltaY, deltaX);
transform.rotate(theta); transform.rotate(theta);
double scale = StrictMath.sqrt(deltaY * deltaY + deltaX * deltaX); double scale = StrictMath.sqrt(deltaY * deltaY + deltaX * deltaX);
transform.scale(scale, 1.0f); transform.scale(scale, 1.0f);
//
// TODO
// The current design and use of this transformer is a bit odd. We currently have code
// to create the edge shape here and in the ArticulatedEdgeRenderer. Ideally, this
// class would be the only one that creates the edge shape. Then, any clients of the
// edge transformer would have to take the shape and then transform it to the desired
// space (the view or graph space). The transformations could be done using the
// GraphViewerUtils.
//
try { try {
// TODO it is not clear why this is using an inverse transform; why not just create
// the transform that we want?
AffineTransform inverse = transform.createInverse(); AffineTransform inverse = transform.createInverse();
Shape transformedShape = inverse.createTransformedShape(generalPath); Shape transformedShape = inverse.createTransformedShape(path);
return transformedShape; return transformedShape;
} }
catch (NoninvertibleTransformException e1) { catch (NoninvertibleTransformException e1) {

View file

@ -675,12 +675,12 @@ public class VisualGraphPathHighlighterTest extends AbstractVisualGraphTest {
nonHoveredEdges.removeAll(expectedEdges); nonHoveredEdges.removeAll(expectedEdges);
for (TestEdge e : expectedEdges) { for (TestEdge e : expectedEdges) {
boolean isHovered = swing(() -> e.isInActivePath()); boolean isHovered = swing(() -> e.isInHoveredVertexPath());
assertTrue("Edge was not hovered: " + e, isHovered); assertTrue("Edge was not hovered: " + e, isHovered);
} }
for (TestEdge e : nonHoveredEdges) { for (TestEdge e : nonHoveredEdges) {
boolean isHovered = swing(() -> e.isInActivePath()); boolean isHovered = swing(() -> e.isInHoveredVertexPath());
assertFalse("Edge hovered when it should not have been: " + e, isHovered); assertFalse("Edge hovered when it should not have been: " + e, isHovered);
} }
} }
@ -694,7 +694,7 @@ public class VisualGraphPathHighlighterTest extends AbstractVisualGraphTest {
private void assertNotHovered(TestEdge... edges) { private void assertNotHovered(TestEdge... edges) {
for (TestEdge e : edges) { for (TestEdge e : edges) {
boolean isHovered = swing(() -> e.isInActivePath()); boolean isHovered = swing(() -> e.isInHoveredVertexPath());
assertFalse("Edge should not have been hovered: " + e, isHovered); assertFalse("Edge should not have been hovered: " + e, isHovered);
} }
} }