mirror of
https://github.com/NationalSecurityAgency/ghidra.git
synced 2025-10-04 18:29:37 +02:00
GT-3020 - Function Graph - fixed edge visual state that was being
overwritten after mutation operations
This commit is contained in:
parent
cb94773ce5
commit
e646deabc1
16 changed files with 242 additions and 93 deletions
|
@ -19,6 +19,16 @@ import ghidra.app.plugin.core.functiongraph.graph.vertex.FGVertex;
|
|||
import ghidra.graph.viewer.VisualEdge;
|
||||
import ghidra.program.model.symbol.FlowType;
|
||||
|
||||
/**
|
||||
* This version of the {@link VisualEdge} adds a few methods.
|
||||
*
|
||||
* <p>The {@link #setDefaultAlpha(double)} method was added here instead of the base interface, as it
|
||||
* was not needed any higher at the time of writing. It can be pulled-up, but there is most
|
||||
* likely a better pattern for specifying visual attributes of an edge. If we find we need more
|
||||
* methods like this, then that is a good time for a refactor to change how we manipulate
|
||||
* rending attributes from various parts of the API (e.g., from the layouts and from animation
|
||||
* jobs).
|
||||
*/
|
||||
public interface FGEdge extends VisualEdge<FGVertex> {
|
||||
|
||||
public FlowType getFlowType();
|
||||
|
@ -27,6 +37,30 @@ public interface FGEdge extends VisualEdge<FGVertex> {
|
|||
|
||||
public void setLabel(String label);
|
||||
|
||||
/**
|
||||
* Set this edge's base alpha, which determines how much of the edge is visible/see through.
|
||||
* 0 is completely transparent.
|
||||
*
|
||||
* <P>This differs from {@link #setAlpha(double)} in that the latter is used for
|
||||
* temporary display effects. This method is used to set the alpha value for the edge when
|
||||
* it is not part of a temporary display effect.
|
||||
*
|
||||
* @param alpha the alpha value
|
||||
*/
|
||||
public void setDefaultAlpha(double alpha);
|
||||
|
||||
/**
|
||||
* Set this edge's base alpha, which determines how much of the edge is visible/see through.
|
||||
* 0 is completely transparent.
|
||||
*
|
||||
* <P>This differs from {@link #getAlpha()} in that the latter is used for
|
||||
* temporary display effects. This method is used to set the alpha value for the edge when
|
||||
* it is not part of a temporary display effect.
|
||||
*
|
||||
* @return the alpha value
|
||||
*/
|
||||
public double getDefaultAlpha();
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
// Suppressing warning on the return type; we know our class is the right type
|
||||
@Override
|
||||
|
|
|
@ -38,7 +38,8 @@ public class FGEdgeImpl implements FGEdge {
|
|||
private boolean inFocusedPath = false;
|
||||
private boolean selected = false;
|
||||
private double emphasis = 0D;
|
||||
private double alpha = 1D;
|
||||
private double defaultAlpha = 1D;
|
||||
private double alpha = defaultAlpha;
|
||||
private String edgeLabel = null;
|
||||
|
||||
public FGEdgeImpl(FGVertex startVertex, FGVertex destinationVertex, FlowType flowType,
|
||||
|
@ -100,6 +101,17 @@ public class FGEdgeImpl implements FGEdge {
|
|||
return alpha;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void setDefaultAlpha(double alpha) {
|
||||
this.defaultAlpha = alpha;
|
||||
this.alpha = alpha;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double getDefaultAlpha() {
|
||||
return defaultAlpha;
|
||||
}
|
||||
|
||||
@Override
|
||||
public List<Point2D> getArticulationPoints() {
|
||||
return layoutArticulationPoints;
|
||||
|
@ -146,6 +158,7 @@ public class FGEdgeImpl implements FGEdge {
|
|||
newEdge.layoutArticulationPoints = newPoints;
|
||||
|
||||
newEdge.alpha = alpha;
|
||||
newEdge.defaultAlpha = defaultAlpha;
|
||||
newEdge.inHoveredPath = inHoveredPath;
|
||||
newEdge.inFocusedPath = inFocusedPath;
|
||||
newEdge.selected = selected;
|
||||
|
|
|
@ -68,7 +68,7 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
|
|||
*/
|
||||
AbstractGroupingFunctionGraphJob(FGController controller,
|
||||
GroupedFunctionGraphVertex groupVertex, Set<FGVertex> newVertices,
|
||||
Set<FGVertex> verticesToRemove, boolean relayloutOverride, boolean useAnimation) {
|
||||
Set<FGVertex> verticesToRemove, boolean relayoutOverride, boolean useAnimation) {
|
||||
|
||||
super(controller, useAnimation);
|
||||
|
||||
|
@ -87,7 +87,7 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
|
|||
FunctionGraphOptions options = controller.getFunctionGraphOptions();
|
||||
RelayoutOption relayoutOption = options.getRelayoutOption();
|
||||
this.relayout = relayoutOption == VERTEX_GROUPING_CHANGES || relayoutOption == ALWAYS ||
|
||||
relayloutOverride;
|
||||
relayoutOverride;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -158,7 +158,7 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
|
|||
return positions;
|
||||
}
|
||||
|
||||
/**
|
||||
/*
|
||||
* Subclasses must return locations for vertices. This method will be called when no
|
||||
* relayout will be performed.
|
||||
*
|
||||
|
@ -191,15 +191,21 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
|
|||
|
||||
@Override
|
||||
protected void updateOpacity(double percentComplete) {
|
||||
|
||||
double oldComponentsAlpha = 1.0 - percentComplete;
|
||||
|
||||
Collection<FGVertex> vertices = getVerticesToBeRemoved();
|
||||
for (FGVertex vertex : vertices) {
|
||||
|
||||
vertex.setAlpha(oldComponentsAlpha);
|
||||
|
||||
Collection<FGEdge> edges = getEdges(vertex);
|
||||
for (FGEdge edge : edges) {
|
||||
edge.setAlpha(oldComponentsAlpha);
|
||||
|
||||
// don't go past the alpha when removing
|
||||
double defaultAlpha = edge.getDefaultAlpha();
|
||||
double alpha = Math.min(oldComponentsAlpha, defaultAlpha);
|
||||
edge.setAlpha(alpha);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -210,7 +216,11 @@ public abstract class AbstractGroupingFunctionGraphJob extends AbstractFunctionG
|
|||
|
||||
Collection<FGEdge> edges = getEdges(vertex);
|
||||
for (FGEdge edge : edges) {
|
||||
edge.setAlpha(newComponentsAlpha);
|
||||
|
||||
// don't go past the alpha when adding
|
||||
double defaultAlpha = edge.getDefaultAlpha();
|
||||
double alpha = Math.min(newComponentsAlpha, defaultAlpha);
|
||||
edge.setAlpha(alpha);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -19,6 +19,7 @@ import java.awt.Rectangle;
|
|||
import java.awt.geom.Point2D;
|
||||
import java.util.*;
|
||||
|
||||
import org.apache.commons.collections4.IterableUtils;
|
||||
import org.jdesktop.animation.timing.Animator;
|
||||
import org.jdesktop.animation.timing.interpolation.PropertySetter;
|
||||
|
||||
|
@ -197,22 +198,25 @@ public class MergeVertexFunctionGraphJob extends AbstractAnimatorJob {
|
|||
parentVertex.setAlpha(oldComponentsAlpha);
|
||||
childVertex.setAlpha(oldComponentsAlpha);
|
||||
|
||||
Collection<FGEdge> edges = getEdges(parentVertex);
|
||||
Iterable<FGEdge> edges =
|
||||
IterableUtils.chainedIterable(getEdges(parentVertex), getEdges(childVertex));
|
||||
for (FGEdge edge : edges) {
|
||||
edge.setAlpha(oldComponentsAlpha);
|
||||
}
|
||||
|
||||
edges = getEdges(childVertex);
|
||||
for (FGEdge edge : edges) {
|
||||
edge.setAlpha(oldComponentsAlpha);
|
||||
// don't go past the alpha when removing
|
||||
double defaultAlpha = edge.getDefaultAlpha();
|
||||
double alpha = Math.min(oldComponentsAlpha, defaultAlpha);
|
||||
edge.setAlpha(alpha);
|
||||
}
|
||||
|
||||
double newComponentsAlpha = percentComplete;
|
||||
mergedVertex.setAlpha(newComponentsAlpha);
|
||||
|
||||
edges = getEdges(mergedVertex);
|
||||
for (FGEdge edge : edges) {
|
||||
edge.setAlpha(newComponentsAlpha);
|
||||
|
||||
// don't go past the alpha when adding
|
||||
double defaultAlpha = edge.getDefaultAlpha();
|
||||
double alpha = Math.min(newComponentsAlpha, defaultAlpha);
|
||||
edge.setAlpha(alpha);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -19,6 +19,7 @@ import java.awt.Rectangle;
|
|||
import java.awt.geom.Point2D;
|
||||
import java.util.*;
|
||||
|
||||
import org.apache.commons.collections4.IterableUtils;
|
||||
import org.jdesktop.animation.timing.Animator;
|
||||
import org.jdesktop.animation.timing.interpolation.PropertySetter;
|
||||
|
||||
|
@ -114,9 +115,21 @@ public class SplitVertexFunctionGraphJob extends AbstractAnimatorJob {
|
|||
|
||||
controller.synchronizeProgramLocationAfterEdit();
|
||||
|
||||
restoreEdgeDisplayAttributes();
|
||||
|
||||
viewer.repaint();
|
||||
}
|
||||
|
||||
private void restoreEdgeDisplayAttributes() {
|
||||
|
||||
Iterable<FGEdge> edges =
|
||||
IterableUtils.chainedIterable(getEdges(parentVertex), getEdges(childVertex));
|
||||
for (FGEdge edge : edges) {
|
||||
double alpha = edge.getDefaultAlpha();
|
||||
edge.setAlpha(alpha);
|
||||
}
|
||||
}
|
||||
|
||||
public void setPercentComplete(double percentComplete) {
|
||||
trace("setPercentComplete() callback: " + percentComplete);
|
||||
updateNewVertexPositions(percentComplete);
|
||||
|
@ -214,7 +227,11 @@ public class SplitVertexFunctionGraphJob extends AbstractAnimatorJob {
|
|||
|
||||
Collection<FGEdge> edges = getEdges(toSplitVertex);
|
||||
for (FGEdge edge : edges) {
|
||||
edge.setAlpha(oldComponentsAlpha);
|
||||
|
||||
// don't go past the alpha when removing
|
||||
double defaultAlpha = edge.getDefaultAlpha();
|
||||
double alpha = Math.min(oldComponentsAlpha, defaultAlpha);
|
||||
edge.setAlpha(alpha);
|
||||
}
|
||||
|
||||
double newComponentsAlpha = percentComplete;
|
||||
|
@ -223,12 +240,19 @@ public class SplitVertexFunctionGraphJob extends AbstractAnimatorJob {
|
|||
|
||||
edges = getEdges(parentVertex);
|
||||
for (FGEdge edge : edges) {
|
||||
edge.setAlpha(newComponentsAlpha);
|
||||
|
||||
// don't go past the alpha when adding
|
||||
double defaultAlpha = edge.getDefaultAlpha();
|
||||
double alpha = Math.min(newComponentsAlpha, defaultAlpha);
|
||||
edge.setAlpha(alpha);
|
||||
}
|
||||
|
||||
edges = getEdges(childVertex);
|
||||
for (FGEdge edge : edges) {
|
||||
edge.setAlpha(newComponentsAlpha);
|
||||
// don't go past the alpha when adding
|
||||
double defaultAlpha = edge.getDefaultAlpha();
|
||||
double alpha = Math.min(newComponentsAlpha, defaultAlpha);
|
||||
edge.setAlpha(alpha);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -21,6 +21,7 @@ import java.awt.Color;
|
|||
import java.awt.geom.Point2D;
|
||||
import java.util.*;
|
||||
|
||||
import org.apache.commons.collections4.IterableUtils;
|
||||
import org.junit.*;
|
||||
|
||||
import docking.ActionContext;
|
||||
|
@ -37,6 +38,7 @@ import ghidra.framework.plugintool.util.PluginException;
|
|||
import ghidra.graph.viewer.options.RelayoutOption;
|
||||
import ghidra.program.model.address.Address;
|
||||
import ghidra.program.model.address.AddressSetView;
|
||||
import util.CollectionUtils;
|
||||
|
||||
public class FunctionGraphGroupVertices1Test extends AbstractFunctionGraphTest {
|
||||
|
||||
|
@ -809,14 +811,41 @@ public class FunctionGraphGroupVertices1Test extends AbstractFunctionGraphTest {
|
|||
verifyDefaultColor(v2);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testEdgeDefaultAlphaPersistsAfterGrouping() {
|
||||
|
||||
graphFunction("01002cf5");
|
||||
|
||||
FGVertex v1 = vertex("01002cf5");
|
||||
FGVertex v2 = vertex("01002d0f");
|
||||
|
||||
FunctionGraph graph = getFunctionGraph();
|
||||
Iterable<FGEdge> edges = graph.getEdges(v1, v2);
|
||||
assertEquals(1, IterableUtils.size(edges));
|
||||
FGEdge edge = CollectionUtils.any(edges);
|
||||
|
||||
Double alpha = edge.getAlpha();
|
||||
assertTrue(alpha < 1.0); // this is the default flow
|
||||
|
||||
GroupedFunctionGraphVertex group = group("A", v1, v2);
|
||||
ungroup(group);
|
||||
|
||||
edges = graph.getEdges(v1, v2);
|
||||
assertEquals(1, IterableUtils.size(edges));
|
||||
edge = CollectionUtils.any(edges);
|
||||
|
||||
Double alphAfterGroup = edge.getAlpha();
|
||||
assertEquals(alpha, alphAfterGroup);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSymbolAddedWhenGrouped_SymbolOutsideOfGroupNode() {
|
||||
// TODO
|
||||
}
|
||||
|
||||
//==================================================================================================
|
||||
// Private Methods
|
||||
//==================================================================================================
|
||||
//==================================================================================================
|
||||
// Private Methods
|
||||
//==================================================================================================
|
||||
|
||||
// @formatter:off
|
||||
@Override
|
||||
|
|
|
@ -313,7 +313,7 @@ public class TestFGLayoutProvider extends FGLayoutProvider {
|
|||
}
|
||||
|
||||
else if (startCol.index > endCol.index) { // flow return
|
||||
e.setAlpha(.25);
|
||||
e.setDefaultAlpha(.25);
|
||||
|
||||
Shape shape = transformer.apply(startVertex);
|
||||
Rectangle bounds = shape.getBounds();
|
||||
|
@ -338,7 +338,7 @@ public class TestFGLayoutProvider extends FGLayoutProvider {
|
|||
|
||||
else { // same column--nothing to route
|
||||
// straight line, which is the default
|
||||
e.setAlpha(.25);
|
||||
e.setDefaultAlpha(.25);
|
||||
}
|
||||
newEdgeArticulations.put(e, articulations);
|
||||
}
|
||||
|
|
|
@ -17,7 +17,7 @@ package ghidra.app.plugin.core.functiongraph.graph.jung.renderer;
|
|||
|
||||
import ghidra.app.plugin.core.functiongraph.graph.FGEdge;
|
||||
|
||||
public class DecompilerDominanceArticulatedEdgeTransformer extends FGArticulatedEdgeTransformer {
|
||||
public class DNLArticulatedEdgeTransformer extends FGArticulatedEdgeTransformer {
|
||||
|
||||
@Override
|
||||
public int getOverlapOffset(FGEdge edge) {
|
|
@ -34,7 +34,7 @@ import ghidra.app.decompiler.DecompInterface;
|
|||
import ghidra.app.decompiler.DecompileOptions;
|
||||
import ghidra.app.plugin.core.functiongraph.graph.FGEdge;
|
||||
import ghidra.app.plugin.core.functiongraph.graph.FunctionGraph;
|
||||
import ghidra.app.plugin.core.functiongraph.graph.jung.renderer.DecompilerDominanceArticulatedEdgeTransformer;
|
||||
import ghidra.app.plugin.core.functiongraph.graph.jung.renderer.DNLArticulatedEdgeTransformer;
|
||||
import ghidra.app.plugin.core.functiongraph.graph.vertex.FGVertex;
|
||||
import ghidra.app.plugin.core.functiongraph.graph.vertex.GroupedFunctionGraphVertex;
|
||||
import ghidra.graph.VisualGraph;
|
||||
|
@ -103,7 +103,7 @@ public class DecompilerNestedLayout extends AbstractFGLayout {
|
|||
|
||||
@Override
|
||||
public Function<FGEdge, Shape> getEdgeShapeTransformer() {
|
||||
return new DecompilerDominanceArticulatedEdgeTransformer();
|
||||
return new DNLArticulatedEdgeTransformer();
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -715,7 +715,7 @@ public class DecompilerNestedLayout extends AbstractFGLayout {
|
|||
// assumption: edges that move to the left in this layout are return flows that happen
|
||||
// after the code block has been executed. We dim those a bit so that they
|
||||
// produce less clutter.
|
||||
e.setAlpha(.25);
|
||||
e.setDefaultAlpha(.25);
|
||||
}
|
||||
|
||||
private Column getOutermostCol(LayoutLocationMap<FGVertex, FGEdge> layoutLocations,
|
||||
|
|
|
@ -15,8 +15,6 @@
|
|||
*/
|
||||
package ghidra.graph.graphs;
|
||||
|
||||
import static com.google.common.collect.Iterables.concat;
|
||||
import static com.google.common.collect.Iterables.filter;
|
||||
import static util.CollectionUtils.nonNull;
|
||||
|
||||
import java.awt.Point;
|
||||
|
@ -206,9 +204,11 @@ public abstract class DefaultVisualGraph<V extends VisualVertex,
|
|||
|
||||
Collection<E> outs = nonNull(getOutEdges(start));
|
||||
Collection<E> ins = nonNull(getInEdges(end));
|
||||
Set<E> unique = new HashSet<>();
|
||||
unique.addAll(outs);
|
||||
unique.addAll(ins);
|
||||
|
||||
Iterable<E> concatenated = concat(outs, ins);
|
||||
Iterable<E> filtered = filter(concatenated, e -> {
|
||||
Iterable<E> filtered = IterableUtils.filteredIterable(unique, e -> {
|
||||
return e.getStart().equals(start) && e.getEnd().equals(end);
|
||||
});
|
||||
return filtered;
|
||||
|
|
|
@ -699,9 +699,10 @@ public class GraphViewerUtils {
|
|||
return createHollowEgdeLoopInGraphSpace(vertexShape, startX, startY);
|
||||
}
|
||||
|
||||
// translate the edge to the starting vertex
|
||||
// translate the edge from 0,0 to the starting vertex point
|
||||
AffineTransform xform = AffineTransform.getTranslateInstance(startX, startY);
|
||||
Shape edgeShape = renderContext.getEdgeShapeTransformer().apply(e);
|
||||
|
||||
double deltaX = endX - startX;
|
||||
double deltaY = endY - startY;
|
||||
|
||||
|
@ -713,7 +714,7 @@ public class GraphViewerUtils {
|
|||
double dist = Math.sqrt(deltaX * deltaX + deltaY * deltaY);
|
||||
xform.scale(dist, 1.0f);
|
||||
|
||||
// apply the transformations
|
||||
// apply the transformations; converting the given shape from model space into graph space
|
||||
return xform.createTransformedShape(edgeShape);
|
||||
}
|
||||
|
||||
|
|
|
@ -150,10 +150,10 @@ public interface VisualEdge<V extends VisualVertex> extends GEdge<V> {
|
|||
public void setAlpha(double alpha);
|
||||
|
||||
/**
|
||||
* Get the alpha, which determines how much of the edge is visible/see through. 0 is
|
||||
* completely transparent. This attribute allows transitional for animations.
|
||||
*
|
||||
* @return the alpha value
|
||||
*/
|
||||
* Get the alpha, which determines how much of the edge is visible/see through. 0 is
|
||||
* completely transparent. This attribute allows transitional for animations.
|
||||
*
|
||||
* @return the alpha value
|
||||
*/
|
||||
public double getAlpha();
|
||||
}
|
||||
|
|
|
@ -168,7 +168,7 @@ public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends Visua
|
|||
Color baseColor = getBaseColor(graph, e);
|
||||
Color hoveredColor = highlightColor;
|
||||
Color focusedColor = baseColor;
|
||||
Color selectedColor = highlightColor.darker();
|
||||
Color selectedColor = highlightColor.darker(); // note: we can do better for selected color
|
||||
Color selectedAccentColor = highlightColor;
|
||||
|
||||
float scale = StrictMath.min(scalex, scaley);
|
||||
|
@ -223,38 +223,42 @@ public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends Visua
|
|||
// basic shape
|
||||
g.setPaint(fillPaint);
|
||||
g.fill(edgeShape);
|
||||
}
|
||||
|
||||
if (isEmphasized) {
|
||||
Stroke saveStroke = g.getStroke();
|
||||
g.setPaint(fillPaint);
|
||||
g.setStroke(empahsisStroke);
|
||||
g.fill(edgeShape);
|
||||
g.setStroke(saveStroke);
|
||||
}
|
||||
// Currently, graphs with complicated edge shapes (those with articulations) do not
|
||||
// use a fill paint. If we execute this code with articulated edges, the display
|
||||
// looks unusual. So, for now, only 'fill' with these effects when the client has
|
||||
// explicitly used a fill paint transformer.
|
||||
if (isEmphasized) {
|
||||
Stroke saveStroke = g.getStroke();
|
||||
g.setPaint(fillPaint);
|
||||
g.setStroke(empahsisStroke);
|
||||
g.fill(edgeShape);
|
||||
g.setStroke(saveStroke);
|
||||
}
|
||||
|
||||
if (isInHoveredPath) {
|
||||
Stroke saveStroke = g.getStroke();
|
||||
g.setPaint(hoveredColor);
|
||||
g.setStroke(hoverStroke);
|
||||
g.fill(edgeShape);
|
||||
g.setStroke(saveStroke);
|
||||
}
|
||||
if (isInHoveredPath) {
|
||||
Stroke saveStroke = g.getStroke();
|
||||
g.setPaint(hoveredColor);
|
||||
g.setStroke(hoverStroke);
|
||||
g.fill(edgeShape);
|
||||
g.setStroke(saveStroke);
|
||||
}
|
||||
|
||||
if (isInFocusedPath) {
|
||||
Stroke saveStroke = g.getStroke();
|
||||
g.setPaint(focusedColor);
|
||||
g.setStroke(focusedStroke);
|
||||
g.fill(edgeShape);
|
||||
g.setStroke(saveStroke);
|
||||
}
|
||||
if (isInFocusedPath) {
|
||||
Stroke saveStroke = g.getStroke();
|
||||
g.setPaint(focusedColor);
|
||||
g.setStroke(focusedStroke);
|
||||
g.fill(edgeShape);
|
||||
g.setStroke(saveStroke);
|
||||
}
|
||||
|
||||
if (isSelected) {
|
||||
Stroke saveStroke = g.getStroke();
|
||||
g.setPaint(selectedColor);
|
||||
g.setStroke(selectedStroke);
|
||||
g.fill(edgeShape);
|
||||
g.setStroke(saveStroke);
|
||||
if (isSelected) {
|
||||
Stroke saveStroke = g.getStroke();
|
||||
g.setPaint(selectedColor);
|
||||
g.setStroke(selectedStroke);
|
||||
g.fill(edgeShape);
|
||||
g.setStroke(saveStroke);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -403,10 +407,10 @@ public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends Visua
|
|||
* @param rc the render context for the graph
|
||||
* @param graph the graph
|
||||
* @param e the edge to shape
|
||||
* @param x1 the start vertex point x
|
||||
* @param y1 the start vertex point y
|
||||
* @param x2 the end vertex point x
|
||||
* @param y2 the end vertex point y
|
||||
* @param x1 the start vertex point x; layout space
|
||||
* @param y1 the start vertex point y; layout space
|
||||
* @param x2 the end vertex point x; layout space
|
||||
* @param y2 the end vertex point y; layout space
|
||||
* @param isLoop true if the start == end, which is a self-loop
|
||||
* @param vertexShape the vertex shape (used in the case of a loop to draw a circle from the
|
||||
* shape to itself)
|
||||
|
@ -417,7 +421,7 @@ public abstract class VisualEdgeRenderer<V extends VisualVertex, E extends Visua
|
|||
|
||||
private BasicStroke getHoveredPathStroke(E e, float scale) {
|
||||
float width = HOVERED_PATH_STROKE_WIDTH / (float) Math.pow(scale, .80);
|
||||
return new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_BEVEL, 0f,
|
||||
return new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND, 0f,
|
||||
new float[] { width * 1, width * 2 }, width * 3 * dashingPatternOffset);
|
||||
}
|
||||
|
||||
|
|
|
@ -149,6 +149,13 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
|
|||
TaskMonitor timeoutMonitor = TimeoutTaskMonitor.timeoutIn(ALGORITHM_TIMEOUT,
|
||||
TimeUnit.SECONDS, new TaskMonitorAdapter(true));
|
||||
|
||||
Set<V> sources = GraphAlgorithms.getSources(graph);
|
||||
if (sources.isEmpty()) {
|
||||
Msg.debug(this, "No sources found for graph; cannot calculate dominance: " +
|
||||
graph.getClass().getSimpleName());
|
||||
return null;
|
||||
}
|
||||
|
||||
try {
|
||||
// note: calling the constructor performs the work
|
||||
return new ChkDominanceAlgorithm<>(graph, timeoutMonitor);
|
||||
|
@ -275,12 +282,12 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
|
|||
|
||||
public void setHoveredVertex(V hoveredVertex) {
|
||||
|
||||
if (workPauser.isPaused()) {
|
||||
return; // hovers a transient, no need to remember the request
|
||||
}
|
||||
|
||||
clearHoveredEdgesSwing();
|
||||
|
||||
if (workPauser.isPaused()) {
|
||||
return; // hovers are transient, no need to remember the request
|
||||
}
|
||||
|
||||
if (hoveredVertex == null) {
|
||||
return;
|
||||
}
|
||||
|
@ -629,9 +636,14 @@ public class VisualGraphPathHighlighter<V extends VisualVertex, E extends Visual
|
|||
return;
|
||||
}
|
||||
|
||||
if (!cf.isCompletedExceptionally()) {
|
||||
// clear the contents of the future, as it is acting like a cache
|
||||
clearer.accept(cf.getNow(null));
|
||||
if (cf.isCompletedExceptionally()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// clear the contents of the future, as it is acting like a cache
|
||||
T result = cf.getNow(null);
|
||||
if (result != null) {
|
||||
clearer.accept(result);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -57,9 +57,13 @@ public class ArticulatedEdgeRenderer<V extends VisualVertex, E extends VisualEdg
|
|||
new Point2D.Float((float) point.getX() + offset, (float) point.getY() + offset);
|
||||
point = rc.getMultiLayerTransformer().transform(Layer.LAYOUT, offsetPoint);
|
||||
path.lineTo((float) point.getX(), (float) point.getY());
|
||||
path.moveTo((float) point.getX(), (float) point.getY());
|
||||
}
|
||||
|
||||
path.lineTo(x2, y2);
|
||||
path.moveTo(x2, y2);
|
||||
path.closePath();
|
||||
|
||||
return path;
|
||||
}
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ package ghidra.graph.viewer.shape;
|
|||
|
||||
import java.awt.Shape;
|
||||
import java.awt.geom.*;
|
||||
import java.util.*;
|
||||
import java.util.List;
|
||||
|
||||
import edu.uci.ics.jung.visualization.decorators.ParallelEdgeShapeTransformer;
|
||||
import ghidra.graph.viewer.*;
|
||||
|
@ -26,6 +26,8 @@ import ghidra.util.SystemUtilities;
|
|||
|
||||
/**
|
||||
* An edge shape that renders as a series of straight lines between articulation points.
|
||||
* @param <V> the vertex type
|
||||
* @param <E> the edge type
|
||||
*/
|
||||
public class ArticulatedEdgeTransformer<V extends VisualVertex, E extends VisualEdge<V>>
|
||||
extends ParallelEdgeShapeTransformer<V, E> {
|
||||
|
@ -75,38 +77,50 @@ public class ArticulatedEdgeTransformer<V extends VisualVertex, E extends Visual
|
|||
final double originY = p1.getY();
|
||||
|
||||
int offset = getOverlapOffset(e);
|
||||
GeneralPath generalPath = new GeneralPath();
|
||||
generalPath.moveTo(0, 0);
|
||||
GeneralPath path = new GeneralPath();
|
||||
path.moveTo(0, 0);
|
||||
for (Point2D pt : articulations) {
|
||||
generalPath.lineTo((float) (pt.getX() - originX) + offset,
|
||||
(float) (pt.getY() - originY) + offset);
|
||||
float x = (float) (pt.getX() - originX) + offset;
|
||||
float y = (float) (pt.getY() - originY) + offset;
|
||||
path.lineTo(x, y);
|
||||
path.moveTo(x, y);
|
||||
}
|
||||
|
||||
generalPath.lineTo((float) (p2.getX() - originX), (float) (p2.getY() - originY));
|
||||
float p2x = (float) (p2.getX() - originX);
|
||||
float p2y = (float) (p2.getY() - originY);
|
||||
path.lineTo(p2x, p2y);
|
||||
path.moveTo(p2x, p2y);
|
||||
path.closePath();
|
||||
|
||||
ArrayList<Point2D> reverse = new ArrayList<>(articulations);
|
||||
Collections.reverse(reverse);
|
||||
for (Point2D pt : reverse) {
|
||||
generalPath.lineTo((float) (pt.getX() - originX) + offset,
|
||||
(float) (pt.getY() - originY) + offset);
|
||||
}
|
||||
AffineTransform transform = new AffineTransform();
|
||||
|
||||
final double deltaY = p2.getY() - originY;
|
||||
final double deltaX = p2.getX() - originX;
|
||||
if (deltaX == 0 && deltaY == 0) {
|
||||
// this implies the source and destination node are at the same location, which
|
||||
// is possible if the user drags it there or during animations
|
||||
return transform.createTransformedShape(generalPath);
|
||||
return transform.createTransformedShape(path);
|
||||
}
|
||||
|
||||
double theta = StrictMath.atan2(deltaY, deltaX);
|
||||
transform.rotate(theta);
|
||||
double scale = StrictMath.sqrt(deltaY * deltaY + deltaX * deltaX);
|
||||
transform.scale(scale, 1.0f);
|
||||
|
||||
//
|
||||
// TODO
|
||||
// The current design and use of this transformer is a bit odd. We currently have code
|
||||
// to create the edge shape here and in the ArticulatedEdgeRenderer. Ideally, this
|
||||
// class would be the only one that creates the edge shape. Then, any clients of the
|
||||
// edge transformer would have to take the shape and then transform it to the desired
|
||||
// space (the view or graph space). The transformations could be done using the
|
||||
// GraphViewerUtils.
|
||||
//
|
||||
|
||||
try {
|
||||
// TODO it is not clear why this is using an inverse transform; why not just create
|
||||
// the transform that we want?
|
||||
AffineTransform inverse = transform.createInverse();
|
||||
Shape transformedShape = inverse.createTransformedShape(generalPath);
|
||||
Shape transformedShape = inverse.createTransformedShape(path);
|
||||
return transformedShape;
|
||||
}
|
||||
catch (NoninvertibleTransformException e1) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue