documentation for varmap

This commit is contained in:
caheckman 2019-06-16 01:59:58 -04:00
parent d51d8259b5
commit fa3737c9d9
2 changed files with 328 additions and 188 deletions

View file

@ -16,7 +16,10 @@
#include "varmap.hh"
#include "funcdata.hh"
AddressSorter::AddressSorter(const Address &ad,const Address &use,int4 sz) : addr(ad), useaddr(use)
/// \param ad is the storage address of the variable
/// \param use is the use point address in code
/// \param sz is the optional size of the variable
AddressUsePointPair::AddressUsePointPair(const Address &ad,const Address &use,int4 sz) : addr(ad), useaddr(use)
{
size = sz;
@ -24,28 +27,31 @@ AddressSorter::AddressSorter(const Address &ad,const Address &use,int4 sz) : add
useaddr = Address((AddrSpace *)0,0); // Make sure to set offset to zero, so invalids compare equal
}
bool AddressSorter::operator<(const AddressSorter &op2) const
/// Compare first by storage address and then by use point address.
/// Do NOT compare the optional size.
/// \param op2 is the pair to compare to \b this
/// \return \b true if \b this should be sorted first
bool AddressUsePointPair::operator<(const AddressUsePointPair &op2) const
{ // Compare address and use, but NOT size
{
if (addr != op2.addr)
return (addr < op2.addr);
return (useaddr < op2.useaddr);
}
bool AddressSorter::operator==(const AddressSorter &op2) const
/// Storage addresses and use point addresses must match. Size does not have to match.
/// \param op2 is the pair to test \b this against for equality
/// \return \b true if \b the two pairs are equal
bool AddressUsePointPair::operator==(const AddressUsePointPair &op2) const
{
if (addr != op2.addr) return false;
return (useaddr == op2.useaddr);
}
bool AddressSorter::operator!=(const AddressSorter &op2) const
{
if (addr != op2.addr) return true;
return (useaddr != op2.useaddr);
}
/// \param spc is the (stack) address space associated with this function's local variables
/// \param fd is the function associated with these local variables
/// \param g is the Architecture
ScopeLocal::ScopeLocal(AddrSpace *spc,Funcdata *fd,Architecture *g) : ScopeInternal(fd->getName(),g)
{
@ -55,9 +61,13 @@ ScopeLocal::ScopeLocal(AddrSpace *spc,Funcdata *fd,Architecture *g) : ScopeInter
dedupId = fd->getAddress().getOffset(); // Allow multiple scopes with same name
}
/// Turn any symbols that are \e name \e locked but not \e type \e locked into name recommendations
/// removing the symbol in the process. This allows the decompiler to decide on how the stack is layed
/// out without forcing specific variables to mapped. But, if the decompiler does create a variable at
/// the specific location, it will use the original name.
void ScopeLocal::collectNameRecs(void)
{ // Turn any symbols that are namelocked but not typelocked into name recommendations (removing symbol)
{
SymbolNameTree::iterator iter;
name_recommend.clear(); // Clear out any old name recommendations
@ -82,9 +92,11 @@ void ScopeLocal::collectNameRecs(void)
}
}
/// This resets the discovery process for new local variables mapped to the scope's address space.
/// Any analysis removing specific ranges from the mapped set (via markNotMapped()) is cleared.
void ScopeLocal::resetLocalWindow(void)
{ // Reset local discovery
{
if ((qflags&range_locked)!=0) return;
qflags = 0;
@ -133,6 +145,12 @@ void ScopeLocal::restoreXml(const Element *el)
collectNameRecs();
}
/// The given range can no longer hold a \e mapped local variable. This indicates the range
/// is being used for temporary storage.
/// \param spc is the address space holding the given range
/// \param first is the starting offset of the given range
/// \param sz is the number of bytes in the range
/// \param parameter is \b true if the range is being used to store a sub-function parameter
void ScopeLocal::markNotMapped(AddrSpace *spc,uintb first,int4 sz,bool parameter)
{
@ -180,8 +198,8 @@ string ScopeLocal::buildVariableName(const Address &addr,
Datatype *ct,
int4 &index,uint4 flags) const
{
map<AddressSorter,string>::const_iterator iter;
iter = name_recommend.find( AddressSorter(addr,pc,0));
map<AddressUsePointPair,string>::const_iterator iter;
iter = name_recommend.find( AddressUsePointPair(addr,pc,0));
if (iter != name_recommend.end()) {
// We are not checking if the recommended size matches
return makeNameUnique((*iter).second);
@ -209,7 +227,11 @@ string ScopeLocal::buildVariableName(const Address &addr,
}
return ScopeInternal::buildVariableName(addr,pc,ct,index,flags);
}
/// Shrink the MapRange as necessary so that it fits in the mapped region of the Scope
/// and doesn't overlap any other Symbols. If this is not possible, return \b false.
/// \param a is the given MapRange to fit
/// \return \b true if a valid adjustment was made
bool ScopeLocal::adjustFit(MapRange &a) const
{
@ -236,7 +258,10 @@ bool ScopeLocal::adjustFit(MapRange &a) const
a.size = maxsize;
return true;
}
/// A name and final data-type is constructed for the MapRange, and they are entered as
/// a new Symbol into \b this scope.
/// \param a is the given MapRange to create a Symbol for
void ScopeLocal::createEntry(const MapRange &a)
{
@ -267,6 +292,9 @@ static bool compare_ranges(const MapRange *a,const MapRange *b)
return true;
}
/// Set up basic offset boundaries for what constitutes a local variable
/// or a parameter on the stack. This can be informed by the ProtoModel if available.
/// \param proto is the function prototype to use as a prototype model
void AliasChecker::deriveBoundaries(const FuncProto &proto)
{
@ -291,6 +319,9 @@ void AliasChecker::deriveBoundaries(const FuncProto &proto)
}
}
/// If there is an AddrSpace (stack) pointer, find its input Varnode, and look for additive uses
/// of it. Once all these Varnodes are accumulated, calculate specific offsets that start a region
/// being aliased.
void AliasChecker::gatherInternal(void) const
{
@ -317,6 +348,12 @@ void AliasChecker::gatherInternal(void) const
}
}
/// For the given function and address space, gather all Varnodes that are pointers into the
/// address space. The actual calculation can be deferred until the first time
/// hasLocalAlias() is called.
/// \param f is the given function
/// \param spc is the given address space
/// \param defer is \b true is gathering is deferred
void AliasChecker::gather(const Funcdata *f,AddrSpace *spc,bool defer)
{
@ -331,6 +368,11 @@ void AliasChecker::gather(const Funcdata *f,AddrSpace *spc,bool defer)
gatherInternal();
}
/// This is gives a rough analysis of whether the given Varnode might be aliased by another pointer in
/// the function. If \b false is returned, the Varnode is not likely to have an alias. If \b true is returned,
/// the Varnode might have an alias.
/// \param vn is the given Varnode
/// \return \b true if the Varnode might have a pointer alias
bool AliasChecker::hasLocalAlias(Varnode *vn) const
{
@ -352,13 +394,15 @@ void AliasChecker::sortAlias(void) const
sort(alias.begin(),alias.end());
}
// For every sum that involves \b startvn, collect the final result Varnode of the sum.
// A sum is any expression involving only the additive operators
// INT_ADD, INT_SUB, PTRADD, PTRSUB, and SEGMENTOP. The routine traverses forward recursively
// through all descendants of \b vn that are additive operations and collects all the roots
// of the traversed trees.
// \param startvn is the Varnode to trace
// \param addbase will contain all the collected roots
/// \brief Gather result Varnodes for all \e sums that the given starting Varnode is involved in
///
/// For every sum that involves \b startvn, collect the final result Varnode of the sum.
/// A sum is any expression involving only the additive operators
/// INT_ADD, INT_SUB, PTRADD, PTRSUB, and SEGMENTOP. The routine traverses forward recursively
/// through all descendants of \b vn that are additive operations and collects all the roots
/// of the traversed trees.
/// \param startvn is the Varnode to trace
/// \param addbase will contain all the collected roots
void AliasChecker::gatherAdditiveBase(Varnode *startvn,vector<AddBase> &addbase)
{
@ -414,11 +458,13 @@ void AliasChecker::gatherAdditiveBase(Varnode *startvn,vector<AddBase> &addbase)
vnqueue[i].base->clearMark();
}
// Treat \b vn as the result of a series of ADD operations.
// Examine all the constant terms of this sum and add them together by traversing
// the syntax tree rooted at \b vn, backwards, only through additive operations.
// \param vn is the Varnode to gather off of
// \return the resulting sub-sum
/// \brief If the given Varnode is a sum result, return the constant portion of this sum.
///
/// Treat \b vn as the result of a series of ADD operations.
/// Examine all the constant terms of this sum and add them together by traversing
/// the syntax tree rooted at \b vn, backwards, only through additive operations.
/// \param vn is the given Varnode to gather off of
/// \return the resulting sub-sum
uintb AliasChecker::gatherOffset(Varnode *vn)
{
@ -459,6 +505,10 @@ uintb AliasChecker::gatherOffset(Varnode *vn)
return retval & calc_mask(vn->getSize());
}
/// \param spc is the address space being analyzed
/// \param rn is the subset of addresses within the address space to analyze
/// \param pm is subset of ranges within the address space considered to be parameters
/// \param dt is the default data-type
MapState::MapState(AddrSpace *spc,const RangeList &rn,
const RangeList &pm,Datatype *dt) : range(rn)
{
@ -484,7 +534,14 @@ MapState::~MapState(void)
delete *iter;
}
void MapState::addRange(uintb st,Datatype *ct,uint4 fl,MapRange::ArrayType at,int4 hi)
/// A specific range of bytes is described for the hint, given a starting offset and other information.
/// The size of range can be fixed or open-ended. A putative data-type can be provided.
/// \param st is the starting offset of the range
/// \param ct is the (optional) data-type information, which may be NULL
/// \param fl is additional boolean properties
/// \param rt is the type of the hint
/// \param hi is the biggest guaranteed index for \e open range hints
void MapState::addRange(uintb st,Datatype *ct,uint4 fl,MapRange::RangeType rt,int4 hi)
{
if ((ct == (Datatype *)0)||(ct->getSize()==0)) // Must have a real type
@ -495,7 +552,7 @@ void MapState::addRange(uintb st,Datatype *ct,uint4 fl,MapRange::ArrayType at,in
intb sst = (intb)AddrSpace::byteToAddress(st,spaceid->getWordSize());
sign_extend(sst,spaceid->getAddrSize()*8-1);
sst = (intb)AddrSpace::addressToByte(sst,spaceid->getWordSize());
MapRange *range = new MapRange(st,sz,sst,ct,fl,at,hi);
MapRange *range = new MapRange(st,sz,sst,ct,fl,rt,hi);
maplist.push_back(range);
#ifdef OPACTION_DEBUG
if (debugon) {
@ -509,9 +566,12 @@ void MapState::addRange(uintb st,Datatype *ct,uint4 fl,MapRange::ArrayType at,in
#endif
}
void MapState::addRange(const EntryMap *rangemap)
/// Run through all Symbols in the given map and create a corresponding MapRange hint
/// to \b this collection for each Symbol.
/// \param rangemap is the given map of Symbols
void MapState::gatherSymbols(const EntryMap *rangemap)
{ // Add rangemap entries to MapState
{
list<SymbolEntry>::const_iterator iter;
Symbol *sym;
if (rangemap == (EntryMap *)0) return;
@ -521,10 +581,12 @@ void MapState::addRange(const EntryMap *rangemap)
// if ((*iter).isPiece()) continue; // This should probably never happen
uintb start = (*iter).getAddr().getOffset();
Datatype *ct = sym->getType();
addRange(start,ct,sym->getFlags(),MapRange::notAnArray,-1);
addRange(start,ct,sym->getFlags(),MapRange::fixed,-1);
}
}
/// Sort the collection and add a special terminating MapRange
/// \return \b true if the collection isn't empty (and iteration can begin)
bool MapState::initialize(void)
{
@ -537,7 +599,7 @@ bool MapState::initialize(void)
sign_extend(sst,spaceid->getAddrSize()*8-1);
sst = (intb)AddrSpace::addressToByte(sst,spaceid->getWordSize());
// Add extra range to bound any final open entry
MapRange *range = new MapRange(high,1,sst,default_type,0,MapRange::notAnArray,-2);
MapRange *range = new MapRange(high,1,sst,default_type,0,MapRange::endpoint,-2);
maplist.push_back(range);
stable_sort(maplist.begin(),maplist.end(),compare_ranges);
@ -545,9 +607,13 @@ bool MapState::initialize(void)
return true;
}
/// Add a MapRange hint corresponding to each Varnode stored in the address space
/// for the given function. The current knowledge of the Varnode's data-type
/// is included as part of the hint.
/// \param fd is the given function
void MapState::gatherVarnodes(const Funcdata &fd)
{ // Add MapState entry for each varnode in -spaceid-
{
VarnodeLocSet::const_iterator iter,iterend;
Varnode *vn;
iter = fd.beginLoc(spaceid);
@ -557,17 +623,19 @@ void MapState::gatherVarnodes(const Funcdata &fd)
if (vn->isFree()) continue;
uintb start = vn->getOffset();
Datatype *ct = vn->getType();
// Do not force varnodes flags on the entry
// Do not force Varnode flags on the entry
// as the flags were inherited from the previous
// (now obsolete) entry
addRange(start,ct,0,MapRange::notAnArray,-1);
addRange(start,ct,0,MapRange::fixed,-1);
}
}
/// Add a MapRange hint corresponding to each HighVariable that is mapped to our
/// address space for the given function.
/// \param fd is the given function
void MapState::gatherHighs(const Funcdata &fd)
{ // Same as gather_varnodes, but get types from highs
{
vector<HighVariable *> varvec;
VarnodeLocSet::const_iterator iter,iterend;
Varnode *vn;
@ -585,16 +653,18 @@ void MapState::gatherHighs(const Funcdata &fd)
varvec.push_back(high);
uintb start = vn->getOffset();
Datatype *ct = high->getType(); // Get type from high
addRange(start,ct,0,MapRange::notAnArray,-1);
addRange(start,ct,0,MapRange::fixed,-1);
}
for(int4 i=0;i<varvec.size();++i)
varvec[i]->clearMark();
}
/// For any Varnode that looks like a pointer into our address space, create an
/// \e open MapRange hint. The size of the object may not be known.
/// \param fd is the given function
void MapState::gatherOpen(const Funcdata &fd)
{ // Gather open-ended ranges. These correspond
// to the use of ptrs to local variables
{
checker.gather(&fd,spaceid,false);
const vector<AliasChecker::AddBase> &addbase( checker.getAddBase() );
@ -619,7 +689,7 @@ void MapState::gatherOpen(const Funcdata &fd)
else {
minItems = -1;
}
addRange(offset,ct,0,MapRange::isAnArray,minItems);
addRange(offset,ct,0,MapRange::open,minItems);
}
const list<LoadGuard> &loadGuard( fd.getLoadGuards() );
@ -649,16 +719,21 @@ void MapState::gatherOpen(const Funcdata &fd)
}
if (guard.isRangeLocked()) {
int4 minItems = ((guard.getMaximum() - guard.getMinimum()) + 1) / step;
addRange(guard.getMinimum(),ct,0,MapRange::boundArray,minItems-1);
addRange(guard.getMinimum(),ct,0,MapRange::open,minItems-1);
}
else
addRange(guard.getMinimum(),ct,0,MapRange::isAnArray,3);
addRange(guard.getMinimum(),ct,0,MapRange::open,3);
}
}
/// Define stack Symbols based on Varnodes.
/// This method can be called repeatedly during decompilation. It helps propagate data-types.
/// Unaliased symbols can optionally be marked to facilitate removal of INDIRECT ops, but
/// this is generally done later in the process.
/// \param aliasyes is \b true if unaliased Symbols should be marked
void ScopeLocal::restructureVarnode(bool aliasyes)
{ // Define stack mapping based on varnodes. Don't mark unaliased symbols unless -aliasyes- is true
{
clearUnlockedCategory(-1); // Clear out any unlocked entries
MapState state(spaceid,getRangeTree(),fd->getFuncProto().getParamRange(),
glb->types->getBase(1,TYPE_UNKNOWN)); // Organize list of ranges to insert
@ -669,7 +744,7 @@ void ScopeLocal::restructureVarnode(bool aliasyes)
#endif
state.gatherVarnodes(*fd); // Gather stack type information from varnodes
state.gatherOpen(*fd);
state.addRange(maptable[spaceid->getIndex()]);
state.gatherSymbols(maptable[spaceid->getIndex()]);
restructure(state,false);
// At some point, processing mapped input symbols may be folded
@ -683,6 +758,10 @@ void ScopeLocal::restructureVarnode(bool aliasyes)
markUnaliased(state.getAlias());
}
/// Define stack Symbols based on HighVariables.
/// This method is called once at the end of decompilation to create the final set of stack Symbols after
/// all data-type propagation has settled. It creates a consistent data-type for all Varnode instances of
/// a HighVariable.
void ScopeLocal::restructureHigh(void)
{ // Define stack mapping based on highs
@ -696,7 +775,7 @@ void ScopeLocal::restructureHigh(void)
#endif
state.gatherHighs(*fd); // Gather stack type information from highs
state.gatherOpen(*fd);
state.addRange(maptable[spaceid->getIndex()]);
state.gatherSymbols(maptable[spaceid->getIndex()]);
restructure(state,true);
if (overlapproblems)
@ -752,21 +831,33 @@ static bool range_preferred(const MapRange *a,const MapRange *b,bool reconcile)
return true;
if (!reconcile) { // If the ranges don't reconcile
if ((a->isArray())&&(!b->isArray())) // Throw out the open range
if ((a->rangeType == MapRange::open)&&(b->rangeType != MapRange::open)) // Throw out the open range
return false;
if ((b->isArray())&&(!a->isArray()))
if ((b->rangeType == MapRange::open)&&(a->rangeType != MapRange::open))
return true;
}
return (0>a->type->typeOrder(*b->type)); // Prefer the more specific
}
/// If the first MapRange is an array and the following details line up, adjust the first MapRange
/// so that it \e absorbs the second and return \b true.
/// The second MapRange:
/// - must have the same element size
/// - must have close to the same data-type
/// - must line up with the step of the first array
/// - must not be a locked data-type
/// - must not extend the size of the first array beyond what is known of its limits
///
/// \param a is the first MapRange
/// \param b is the second MapRange being absorbed
/// \return \b true if the second MapRange was successfully absorbed
bool ScopeLocal::rangeAbsorb(MapRange *a,MapRange *b)
{ // check if -a- is an array and could absorb -b-
if (!a->isArray()) return false;
{
if (a->rangeType != MapRange::open) return false;
if (a->highind < 0) return false;
if (b->highind==-2) return false; // Don't merge with bounding range
if (b->rangeType == MapRange::endpoint) return false; // Don't merge with bounding range
Datatype *settype = a->type;
if (settype->getSize() != b->type->getSize()) return false;
if (settype->getMetatype() == TYPE_UNKNOWN)
@ -787,7 +878,7 @@ bool ScopeLocal::rangeAbsorb(MapRange *a,MapRange *b)
diffsz /= settype->getSize();
if (diffsz > a->highind) return false;
a->type = settype;
if (b->isArray() && (0 <= b->highind)) { // If b has array indexing
if (b->rangeType == MapRange::open && (0 <= b->highind)) { // If b has array indexing
int4 trialhi = b->highind + diffsz;
if (a->highind < trialhi)
a->highind = trialhi;
@ -795,9 +886,17 @@ bool ScopeLocal::rangeAbsorb(MapRange *a,MapRange *b)
return true;
}
/// Given that the two MapRanges intersect, redefine the first MapRange so that it
/// becomes the union of the two original ranges. The union must succeed in some form.
/// An attempt is made to preserve the data-type information of both the original ranges,
/// but changes will be made if necessary. An exception is thrown if the data-types
/// are locked and cannot be reconciled.
/// \param a is the first given MapRange
/// \param b is the second given MapRange
/// \param warning is \b true if overlaps that cannot be reconciled should generate a warning comment
void ScopeLocal::rangeUnion(MapRange *a,MapRange *b,bool warning)
{ // Two ranges intersect, produce the reconciled union (in a)
{
uintb aend,bend;
uintb end;
Datatype *restype;
@ -807,7 +906,7 @@ void ScopeLocal::rangeUnion(MapRange *a,MapRange *b,bool warning)
aend = spaceid->wrapOffset(a->start+a->size);
bend = spaceid->wrapOffset(b->start+b->size);
MapRange::ArrayType arrayType = MapRange::notAnArray;
MapRange::RangeType rangeType = MapRange::fixed;
highestIndex = -1;
if ((aend==0)||(bend==0))
end = 0;
@ -819,33 +918,22 @@ void ScopeLocal::rangeUnion(MapRange *a,MapRange *b,bool warning)
if (range_preferred(a,b,reconcile)) { // Find bigger type
restype = a->type;
flags = a->flags;
arrayType = a->arrayType;
rangeType = a->rangeType;
highestIndex = a->highind;
}
else {
restype = b->type;
flags = b->flags;
arrayType = b->arrayType;
rangeType = b->rangeType;
highestIndex = b->highind;
}
if ((a->start==b->start)&&(a->size==b->size)) {
arrayType = MapRange::notAnArray;
if (a->isArray() || b->isArray()) {
arrayType = MapRange::isAnArray;
if (a->highind < b->highind) {
highestIndex = b->highind;
if (b->arrayType == MapRange::boundArray)
arrayType = b->arrayType;
}
else {
highestIndex = a->highind;
if (a->arrayType == MapRange::boundArray)
arrayType = a->arrayType;
}
}
rangeType = (a->rangeType==MapRange::open || b->rangeType==MapRange::open) ? MapRange::open : MapRange::fixed;
if (rangeType == MapRange::open)
highestIndex = (a->highind < b->highind) ? b->highind : a->highind;
}
if (warning && (!reconcile)) { // See if two types match up
if ((!b->isArray())&&(!a->isArray()))
if ((b->rangeType != MapRange::open)&&(a->rangeType != MapRange::open))
overlapproblems = true;
}
}
@ -866,7 +954,7 @@ void ScopeLocal::rangeUnion(MapRange *a,MapRange *b,bool warning)
a->type = restype;
a->flags = flags;
a->arrayType = arrayType;
a->rangeType = rangeType;
a->highind = highestIndex;
if ((!reconcile)&&(a->start != b->start)) { // Truncation is forced
if ((a->flags & Varnode::typelock)!=0) { // If a is locked
@ -876,13 +964,19 @@ void ScopeLocal::rangeUnion(MapRange *a,MapRange *b,bool warning)
a->size = spaceid->wrapOffset(end-a->start);
a->type = glb->types->getBase(a->size,TYPE_UNKNOWN);
a->flags = 0;
a->arrayType = MapRange::notAnArray;
a->rangeType = MapRange::fixed;
a->highind = -1;
return;
}
a->size = restype->getSize();
}
/// MapRange hints from the given collection are merged into a definitive set of Symbols
/// for \b this scope. Overlapping or open MapRange hints are adjusted to form a disjoint
/// cover of the mapped portion of the address space. Names for the disjoint cover elements
/// are chosen, and these form the final Symbols.
/// \param state is the given collection of MapRange hints
/// \param warning is \b true if a warning comment should be generated for overlaps that cannot be reconciled
void ScopeLocal::restructure(MapState &state,bool warning)
{
@ -900,7 +994,7 @@ void ScopeLocal::restructure(MapState &state,bool warning)
rangeUnion(&cur,next,warning); // Union them
else {
if (!rangeAbsorb(&cur,next)) {
if (cur.isArray())
if (cur.rangeType == MapRange::open)
cur.size = next->sstart-cur.sstart;
if (adjustFit(cur))
createEntry(cur);
@ -912,9 +1006,14 @@ void ScopeLocal::restructure(MapState &state,bool warning)
// build an entry for it
}
/// Given a set of alias starting offsets, calculate whether each Symbol within this scope might be
/// aliased by a pointer. The method uses locked Symbol information when available to determine
/// how far an alias start might extend. Otherwise a heuristic is used to determine if the Symbol
/// is far enough away from the start of the alias to be considered unaliased.
/// \param alias is the given set of alias starting offsets
void ScopeLocal::markUnaliased(const vector<uintb> &alias)
{ // Mark all local symbols for which there are no aliases
{
EntryMap *rangemap = maptable[spaceid->getIndex()];
if (rangemap == (EntryMap *)0) return;
list<SymbolEntry>::iterator iter,enditer;
@ -948,9 +1047,12 @@ void ScopeLocal::markUnaliased(const vector<uintb> &alias)
}
}
/// This assigns a Symbol to any input Varnode stored in our address space, which could be
/// a parameter but isn't in the formal prototype of the function (these should already be in
/// the scope marked as category '0').
void ScopeLocal::fakeInputSymbols(void)
{ // We create fake input symbols on the stack
{
int4 lockedinputs = getCategorySize(0);
VarnodeDefSet::const_iterator iter,enditer;
@ -1008,22 +1110,18 @@ void ScopeLocal::fakeInputSymbols(void)
}
}
bool ScopeLocal::makeNameRecommendation(string &res,const Address &addr,const Address &usepoint) const
{
map<AddressSorter,string>::const_iterator iter;
iter = name_recommend.find( AddressSorter(addr,usepoint,0) );
if (iter != name_recommend.end()) {
res = (*iter).second;
return true;
}
return false;
}
/// \brief Try to pick recommended names for any unnamed Symbols
///
/// Unlocked symbols that are presented to the decompiler are stored off as \e recommended names. These
/// can be reattached after the decompiler makes a determination of what the final Symbols are.
/// This method runs through the recommended names and checks if they can be applied to an existing
/// unnamed Symbol.
/// \param resname will hold the new name strings
/// \param ressym will hold the list of Symbols corresponding to the new name strings
void ScopeLocal::makeNameRecommendationsForSymbols(vector<string> &resname,vector<Symbol *> &ressym) const
{ // Find nameable symbols with a varnode rep matching a name recommendation
map<AddressSorter,string>::const_iterator iter;
map<AddressUsePointPair,string>::const_iterator iter;
for(iter=name_recommend.begin();iter!=name_recommend.end();++iter) {
VarnodeLocSet::const_iterator biter,eiter;
bool isaddrtied;
@ -1058,8 +1156,16 @@ void ScopeLocal::makeNameRecommendationsForSymbols(vector<string> &resname,vecto
}
}
/// \brief Add a new recommended name to the list
///
/// Recommended names are associated with a storage address, a use point, and a suggested size.
/// The name may be reattached to a Symbol after decompilation.
/// \param addr is the storage address
/// \param usepoint is the address of the code use point
/// \param nm is the recommended name
/// \param sz is the suggested size the Symbol should match
void ScopeLocal::addRecommendName(const Address &addr,const Address &usepoint,const string &nm,int4 sz)
{ // Add a recommended name for a local symbol
name_recommend[ AddressSorter(addr,usepoint,sz) ] = nm;
{
name_recommend[ AddressUsePointPair(addr,usepoint,sz) ] = nm;
}