ghidra/Ghidra/Features/Decompiler/src/decompile/cpp/space.cc
2020-07-30 12:22:21 -04:00

695 lines
21 KiB
C++

/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "space.hh"
#include "translate.hh"
/// Calculate \e highest based on \e addressSize, and \e wordsize.
/// This also calculates the default pointerLowerBound
void AddrSpace::calcScaleMask(void)
{
pointerLowerBound = (addressSize < 3) ? 0x100: 0x1000;
highest = calc_mask(addressSize); // Maximum address
highest = highest * wordsize + (wordsize-1); // Maximum byte address
pointerUpperBound = highest;
}
/// Initialize an address space with its basic attributes
/// \param m is the space manager associated with the new space
/// \param t is the processor translator associated with the new space
/// \param tp is the type of the new space (PROCESSOR, CONSTANT, INTERNAL,...)
/// \param nm is the name of the new space
/// \param size is the (offset encoding) size of the new space
/// \param ws is the number of bytes in an addressable unit
/// \param ind is the integer identifier for the new space
/// \param fl can be 0 or AddrSpace::hasphysical
/// \param dl is the number of rounds to delay heritage for the new space
AddrSpace::AddrSpace(AddrSpaceManager *m,const Translate *t,spacetype tp,const string &nm,
uint4 size,uint4 ws, int4 ind,uint4 fl,int4 dl)
{
refcount = 0; // No references to this space yet
manage = m;
trans = t;
type = tp;
name = nm;
addressSize = size;
wordsize = ws;
index = ind;
delay = dl;
deadcodedelay = dl; // Deadcode delay initially starts the same as heritage delay
minimumPointerSize = 0; // (initially) assume pointers must match the space size exactly
shortcut = ' '; // Placeholder meaning shortcut is unassigned
// These are the flags we allow to be set from constructor
flags = (fl & hasphysical);
if (t->isBigEndian())
flags |= big_endian;
flags |= (heritaged | does_deadcode); // Always on unless explicitly turned off in derived constructor
calcScaleMask();
}
/// This is a partial constructor, for initializing a space
/// via XML
/// \param m the associated address space manager
/// \param t is the processor translator
/// \param tp the basic type of the space
AddrSpace::AddrSpace(AddrSpaceManager *m,const Translate *t,spacetype tp)
{
refcount = 0;
manage = m;
trans = t;
type = tp;
flags = (heritaged | does_deadcode); // Always on unless explicitly turned off in derived constructor
wordsize = 1;
minimumPointerSize = 0;
shortcut = ' ';
// We let big_endian get set by attribute
}
/// Save the \e name, \e index, \e bigendian, \e delay,
/// \e size, \e wordsize, and \e physical attributes which
/// are common with all address spaces derived from AddrSpace
/// \param s the stream where the attributes are written
void AddrSpace::saveBasicAttributes(ostream &s) const
{
a_v(s,"name",name);
a_v_i(s,"index",index);
a_v_b(s,"bigendian",isBigEndian());
a_v_i(s,"delay",delay);
if (delay != deadcodedelay)
a_v_i(s,"deadcodedelay",deadcodedelay);
a_v_i(s,"size",addressSize);
if (wordsize > 1) a_v_i(s,"wordsize",wordsize);
a_v_b(s,"physical",hasPhysical());
}
/// The logical form of the space is truncated from its actual size
/// Pointers may refer to this original size put the most significant bytes are ignored
/// \param newsize is the size (in bytes) of the truncated (logical) space
void AddrSpace::truncateSpace(uint4 newsize)
{
setFlags(truncated);
addressSize = newsize;
minimumPointerSize = newsize;
calcScaleMask();
}
/// Write the main XML attributes for an address within this space
/// The caller provides only the \e offset, and this routine fills
/// in other details pertaining to this particular space.
/// \param s is the stream to write to
/// \param offset is the offset of the address
void AddrSpace::saveXmlAttributes(ostream &s,uintb offset) const
{
a_v(s,"space",getName()); // Just append the proper attributes
s << ' ' << "offset=\"";
printOffset(s,offset);
s << "\"";
}
/// Write the main XML attributes of an address with this space
/// and a size. The caller provides the \e offset and \e size,
/// and other details about this particular space are filled in.
/// \param s is the stream to write to
/// \param offset is the offset of the address
/// \param size is the size of the memory location
void AddrSpace::saveXmlAttributes(ostream &s,uintb offset,int4 size) const
{
a_v(s,"space",getName()); // Just append the proper attributes
s << ' ' << "offset=\"";
printOffset(s,offset);
s << "\"";
a_v_i(s,"size",size);
}
/// For an XML tag describing an address in this space, this routine
/// recovers the offset and possibly the size described by the tag
/// \param el is the XML address tag
/// \param size is a reference where the recovered size should be stored
/// \return the recovered offset
uintb AddrSpace::restoreXmlAttributes(const Element *el,uint4 &size) const
{
uintb offset;
int4 num = el->getNumAttributes();
bool foundoffset = false;
for(int4 i=0;i<num;++i) {
if (el->getAttributeName(i)=="offset") {
foundoffset = true;
istringstream s1(el->getAttributeValue(i));
s1.unsetf(ios::dec | ios::hex | ios::oct);
s1 >> offset;
}
else if (el->getAttributeName(i)=="size") {
istringstream s2(el->getAttributeValue(i));
s2.unsetf(ios::dec | ios::hex | ios::oct);
s2 >> size;
}
}
if (!foundoffset)
throw LowlevelError("Address is missing offset");
return offset;
}
/// Print the \e offset as hexidecimal digits.
/// \param s is the stream to write to
/// \param offset is the offset to be printed
void AddrSpace::printOffset(ostream &s,uintb offset) const
{
s << "0x" << hex << offset;
}
/// This is a printing method for the debugging routines. It
/// prints taking into account the \e wordsize, adding a
/// "+n" if the offset is not on-cut with wordsize. It also
/// returns the expected/typical size of values from this space.
/// \param s is the stream being written
/// \param offset is the offset to be printed
void AddrSpace::printRaw(ostream &s,uintb offset) const
{
int4 sz = getAddrSize();
if (sz > 4) {
if ((offset>>32) == 0)
sz = 4; // Don't print a bunch of zeroes at front of address
else if ((offset>>48) == 0)
sz = 6;
}
s << "0x" << setfill('0') << setw(2*sz) << hex << byteToAddress(offset,wordsize);
if (wordsize>1) {
int4 cut = offset % wordsize;
if (cut != 0)
s << '+' << dec << cut;
}
}
static int4 get_offset_size(const char *ptr,uintb &offset)
{ // Get optional size and offset fields from string
int4 size;
uint4 val;
char *ptr2;
val = 0; // Defaults
size = -1;
if (*ptr == ':') {
size = strtoul(ptr+1,&ptr2,0);
if (*ptr2 == '+')
val = strtoul(ptr2+1,&ptr2,0);
}
if (*ptr == '+')
val = strtoul(ptr+1,&ptr2,0);
offset += val; // Adjust offset
return size;
}
/// For the console mode, an address space can tailor how it
/// converts user strings into offsets within the space. The
/// base routine can read and convert register names as well
/// as absolute hex addresses. A size can be indicated by
/// appending a ':' and integer, .i.e. 0x1000:2. Offsets within
/// a register can be indicated by appending a '+' and integer,
/// i.e. eax+2
/// \param s is the string to be parsed
/// \param size is a reference to the size being returned
/// \return the parsed offset
uintb AddrSpace::read(const string &s,int4 &size) const
{
const char *enddata;
char *tmpdata;
int4 expsize;
string::size_type append;
string frontpart;
uintb offset;
append = s.find_first_of(":+");
try {
if (append == string::npos) {
const VarnodeData &point(trans->getRegister(s));
offset = point.offset;
size = point.size;
}
else {
frontpart = s.substr(0,append);
const VarnodeData &point(trans->getRegister(frontpart));
offset = point.offset;
size = point.size;
}
}
catch(LowlevelError &err) { // Name doesn't exist
offset = strtoul(s.c_str(),&tmpdata,0);
offset = addressToByte(offset,wordsize);
enddata = (const char *) tmpdata;
if (enddata - s.c_str() == s.size()) { // If no size or offset override
size = manage->getDefaultSize(); // Return "natural" size
return offset;
}
size = manage->getDefaultSize();
}
if (append != string::npos) {
enddata = s.c_str()+append;
expsize = get_offset_size( enddata, offset );
if (expsize!=-1) {
size = expsize;
return offset;
}
}
return offset;
}
/// Write a tag fully describing the details of this space
/// suitable for later recovery via restoreXml.
/// \param s is the stream being written
void AddrSpace::saveXml(ostream &s) const
{
s << "<space"; // This implies type=processor
saveBasicAttributes(s);
s << "/>\n";
}
/// Walk a parsed XML tag and recover all the properties defining
/// this space. The processor translator, \e trans, and the
/// \e type must already be filled in.
/// \param el is the parsed XML tag
void AddrSpace::restoreXml(const Element *el)
{
int4 numAttribs = el->getNumAttributes();
deadcodedelay = -1;
for (int4 i=0; i < numAttribs; i++) {
string attrName = el->getAttributeName(i);
string attrValue = el->getAttributeValue(i);
if (attrName == "name") {
name = attrValue;
}
if (attrName == "index")
{
istringstream s1(attrValue);
s1.unsetf(ios::dec | ios::hex | ios::oct);
s1 >> index;
}
if (attrName == "size")
{
istringstream s1(attrValue);
s1.unsetf(ios::dec | ios::hex | ios::oct);
s1 >> addressSize;
}
if (attrName == "wordsize")
{
istringstream s1(attrValue);
s1.unsetf(ios::dec | ios::hex | ios::oct);
s1 >> wordsize;
}
if (attrName == "bigendian") {
if (xml_readbool(attrValue))
flags |= big_endian;
}
if (attrName == "delay") {
istringstream s1(attrValue);
s1.unsetf(ios::dec | ios::hex | ios::oct);
s1 >> delay;
}
if (attrName == "deadcodedelay") {
istringstream s1(attrValue);
s1.unsetf(ios::dec | ios::hex | ios::oct);
s1 >> deadcodedelay;
}
if (attrName == "physical") {
if (xml_readbool(attrValue))
flags |= hasphysical;
}
}
if (deadcodedelay == -1)
deadcodedelay = delay; // If deadcodedelay attribute not present, set it to delay
calcScaleMask();
}
/// This constructs the unique constant space
/// By convention, the name is always "const" and the index
/// is always 0.
/// \param m is the associated address space manager
/// \param t is the associated processor translator
/// \param nm is the name
/// \param ind is the integer identifier
ConstantSpace::ConstantSpace(AddrSpaceManager *m,const Translate *t,
const string &nm,int4 ind)
: AddrSpace(m,t,IPTR_CONSTANT,nm,sizeof(uintb),1,ind,0,0)
{
clearFlags(heritaged|does_deadcode|big_endian);
if (HOST_ENDIAN==1) // Endianness always matches host
setFlags(big_endian);
}
/// Constants are always printed as hexidecimal values in
/// the debugger and console dumps
void ConstantSpace::printRaw(ostream &s,uintb offset) const
{
s << "0x" << hex << offset;
}
/// The ConstantSpace should never be explicitly saved as it is
/// always built automatically
void ConstantSpace::saveXml(ostream &s) const
{
throw LowlevelError("Should never save the constant space as XML");
}
/// As the ConstantSpace is never saved, it should never get
/// restored either.
void ConstantSpace::restoreXml(const Element *el)
{
throw LowlevelError("Should never restore the constant space from XML");
}
/// Construct the \b other space, which is automatically constructed
/// by the compiler, and is only constructed once. The name should
/// always by \b OTHER.
/// \param m is the associated address space manager
/// \param t is the associated processor translator
/// \param nm is the name of the space
/// \param ind is the integer identifier
OtherSpace::OtherSpace(AddrSpaceManager *m,const Translate *t,
const string &nm,int4 ind)
: AddrSpace(m,t,IPTR_PROCESSOR,nm,sizeof(uintb),1,ind,0,0)
{
clearFlags(heritaged|does_deadcode);
setFlags(is_otherspace);
}
OtherSpace::OtherSpace(AddrSpaceManager *m,const Translate *t)
: AddrSpace(m,t,IPTR_PROCESSOR)
{
clearFlags(heritaged|does_deadcode);
setFlags(is_otherspace);
}
void OtherSpace::printRaw(ostream &s,uintb offset) const
{
s << "0x" << hex << offset;
}
void OtherSpace::saveXml(ostream &s) const
{
s << "<space_other";
saveBasicAttributes(s);
s << "/>\n";
}
/// This is the constructor for the \b unique space, which is
/// automatically constructed by the analysis engine, and
/// constructed only once. The name should always be \b unique.
/// \param m is the associated address space manager
/// \param t is the associated processor translator
/// \param nm is the name of the space
/// \param ind is the integer identifier
/// \param fl are attribute flags (currently unused)
UniqueSpace::UniqueSpace(AddrSpaceManager *m,const Translate *t,const string &nm,
int4 ind,uint4 fl)
: AddrSpace(m,t,IPTR_INTERNAL,nm,sizeof(uintm),1,ind,fl,0)
{
setFlags(hasphysical);
}
UniqueSpace::UniqueSpace(AddrSpaceManager *m,const Translate *t)
: AddrSpace(m,t,IPTR_INTERNAL)
{
setFlags(hasphysical);
}
void UniqueSpace::saveXml(ostream &s) const
{
s << "<space_unique";
saveBasicAttributes(s);
s << "/>\n";
}
/// This is the constructor for the \b join space, which is automatically constructed by the
/// analysis engine, and constructed only once. The name should always be \b join.
/// \param m is the associated address space manager
/// \param t is the associated processor translator
/// \param nm is the name of the space
/// \param ind is the integer identifier
JoinSpace::JoinSpace(AddrSpaceManager *m,const Translate *t,const string &nm,int4 ind)
: AddrSpace(m,t,IPTR_JOIN,nm,sizeof(uintm),1,ind,0,0)
{
// This is a virtual space
// setFlags(hasphysical);
clearFlags(heritaged); // This space is never heritaged, but does dead-code analysis
}
/// Save a join address to the stream as XML. This method in the interface only
/// outputs XML attributes for a single tag, so we are forced to encode what should probably
/// be recursive tags into an attribute
/// \param s is the stream being written to
/// \param offset is the offset within the address space to encode
void JoinSpace::saveXmlAttributes(ostream &s,uintb offset) const
{
JoinRecord *rec = getManager()->findJoin(offset); // Record must already exist
a_v(s,"space",getName());
int4 num = rec->numPieces();
for(int4 i=0;i<num;++i) {
const VarnodeData &vdata( rec->getPiece(i) );
ostringstream t;
t << " piece" << dec << (i+1) << "=\"";
t << vdata.space->getName() << ":0x";
t << hex << vdata.offset << ':' << dec << vdata.size << '\"';
s << t.str();
}
if (num == 1)
a_v_i(s,"logicalsize",rec->getUnified().size);
}
/// Save a join address to the stream as XML. This method in the interface only
/// outputs XML attributes for a single tag, so we are forced to encode what should probably
/// be recursive tags into an attribute
/// \param s is the stream being written to
/// \param offset is the offset within the address space to encode
/// \param size is the size of the memory location being encoded
void JoinSpace::saveXmlAttributes(ostream &s,uintb offset,int4 size) const
{
JoinRecord *rec = getManager()->findJoin(offset); // Record must already exist
a_v(s,"space",getName());
int4 num = rec->numPieces();
int4 count = 0;
for(int4 i=0;i<num;++i) {
const VarnodeData &vdata( rec->getPiece(i) );
ostringstream t;
t << " piece" << dec << (i+1) << "=\"";
t << vdata.space->getName() << ":0x";
t << hex << vdata.offset << ':' << dec << vdata.size << '\"';
count += vdata.size;
s << t.str();
}
if (num == 1)
a_v_i(s,"logicalsize",rec->getUnified().size);
if ((count != size)&&(num>1))
throw LowlevelError("size attribute in join tag does not match size of pieces");
}
/// Restore a join address from an XML tag. Pieces of the join are encoded as a sequence
/// of tag attributes. The Translate::findAddJoin method is used to construct a logical
/// address within the join space.
/// \param el is the parsed XML element to extract the address from
/// \param size is a reference to be filled in as the size encoded by the tag
/// \return the offset of the final address encoded by the tag
uintb JoinSpace::restoreXmlAttributes(const Element *el,uint4 &size) const
{
vector<VarnodeData> pieces;
int4 numAttribs = el->getNumAttributes();
uint4 sizesum = 0;
uint4 logicalsize = 0;
for(int4 i=0;i<numAttribs;++i) {
string attrName = el->getAttributeName(i);
if (0!=attrName.compare(0,5,"piece")) {
if (attrName == "logicalsize") {
istringstream s3(el->getAttributeValue(i));
s3.unsetf(ios::dec | ios::hex | ios::oct);
s3 >> logicalsize;
}
continue;
}
int4 pos = (int4)(attrName[5] - '1');
while(pieces.size() <= pos)
pieces.push_back(VarnodeData());
VarnodeData &vdat( pieces[pos] );
string attrVal = el->getAttributeValue(i);
string::size_type offpos = attrVal.find(':');
if (offpos == string::npos) {
const Translate *trans = getTrans();
const VarnodeData &point(trans->getRegister(attrVal));
vdat = point;
}
else {
string::size_type szpos = attrVal.find(':',offpos+1);
if (szpos==string::npos)
throw LowlevelError("join address piece attribute is malformed");
string spcname = attrVal.substr(0,offpos);
vdat.space = getManager()->getSpaceByName(spcname);
istringstream s1(attrVal.substr(offpos+1,szpos));
s1.unsetf(ios::dec | ios::hex | ios::oct);
s1 >> vdat.offset;
istringstream s2(attrVal.substr(szpos+1));
s2.unsetf(ios::dec | ios::hex | ios::oct);
s2 >> vdat.size;
}
sizesum += vdat.size;
}
JoinRecord *rec = getManager()->findAddJoin(pieces,logicalsize);
size = rec->getUnified().size;
return rec->getUnified().offset;
}
void JoinSpace::printRaw(ostream &s,uintb offset) const
{
JoinRecord *rec = getManager()->findJoin(offset);
int4 szsum = 0;
int4 num = rec->numPieces();
s << '{';
for(int4 i=0;i<num;++i) {
const VarnodeData &vdat( rec->getPiece(i) );
szsum += vdat.size;
if (i!=0)
s << ',';
vdat.space->printRaw(s,vdat.offset);
}
if (num == 1) {
szsum = rec->getUnified().size;
s << ':' << szsum;
}
s << '}';
}
uintb JoinSpace::read(const string &s,int4 &size) const
{
vector<VarnodeData> pieces;
int4 szsum = 0;
int4 i=0;
while(i < s.size()) {
pieces.push_back(VarnodeData()); // Prepare to read next VarnodeData
string token;
while((i<s.size())&&(s[i]!=',')) {
token += s[i];
i += 1;
}
i += 1; // Skip the comma
try {
pieces.back() = getTrans()->getRegister(token);
}
catch(LowlevelError &err) { // Name doesn't exist
char shortcut = token[0];
AddrSpace *spc = getManager()->getSpaceByShortcut(shortcut);
if (spc == (AddrSpace *)0)
throw LowlevelError("Could not parse join string");
int4 subsize;
pieces.back().space = spc;
pieces.back().offset = spc->read(token.substr(1),subsize);
pieces.back().size = subsize;
}
szsum += pieces.back().size;
}
JoinRecord *rec = getManager()->findAddJoin(pieces,0);
size = szsum;
return rec->getUnified().offset;
}
void JoinSpace::saveXml(ostream &s) const
{
throw LowlevelError("Should never save join space to XML");
}
void JoinSpace::restoreXml(const Element *el)
{
throw LowlevelError("Should never restore join space from XML");
}
/// \param m is the address space manager
/// \param t is the processor translator
OverlaySpace::OverlaySpace(AddrSpaceManager *m,const Translate *t)
: AddrSpace(m,t,IPTR_PROCESSOR)
{
baseSpace = (AddrSpace *)0;
setFlags(overlay);
}
/// \return the base address space
AddrSpace *OverlaySpace::getBaseSpace(void) const
{
return baseSpace;
}
void OverlaySpace::saveXml(ostream &s) const
{
s << "<space_overlay";
a_v(s,"name",name);
a_v_i(s,"index",index);
a_v(s,"base",baseSpace->getName());
s << "/>\n";
}
void OverlaySpace::restoreXml(const Element *el)
{
name = el->getAttributeValue("name");
istringstream s1(el->getAttributeValue("index"));
s1.unsetf(ios::dec | ios::hex | ios::oct);
s1 >> index;
string basename = el->getAttributeValue("base");
baseSpace = getManager()->getSpaceByName(basename);
if (baseSpace == (AddrSpace *)0)
throw LowlevelError("Base space does not exist for overlay space: "+name);
addressSize = baseSpace->getAddrSize();
wordsize = baseSpace->getWordSize();
delay = baseSpace->getDelay();
deadcodedelay = baseSpace->getDeadcodeDelay();
calcScaleMask();
if (baseSpace->isBigEndian())
setFlags(big_endian);
if (baseSpace->hasPhysical())
setFlags(hasphysical);
}