ghidra/Ghidra/Features/Decompiler/src/decompile/cpp/modelrules.cc
2024-03-13 16:55:44 +00:00

1418 lines
45 KiB
C++

/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "modelrules.hh"
#include "funcdata.hh"
namespace ghidra {
ElementId ELEM_DATATYPE = ElementId("datatype",273);
ElementId ELEM_CONSUME = ElementId("consume",274);
ElementId ELEM_CONSUME_EXTRA = ElementId("consume_extra",275);
ElementId ELEM_CONVERT_TO_PTR = ElementId("convert_to_ptr",276);
ElementId ELEM_GOTO_STACK = ElementId("goto_stack",277);
ElementId ELEM_JOIN = ElementId("join",278);
ElementId ELEM_DATATYPE_AT = ElementId("datatype_at",279);
ElementId ELEM_POSITION = ElementId("position",280);
ElementId ELEM_VARARGS = ElementId("varargs",281);
ElementId ELEM_HIDDEN_RETURN = ElementId("hidden_return",282);
ElementId ELEM_JOIN_PER_PRIMITIVE = ElementId("join_per_primitive",283);
ElementId ELEM_JOIN_DUAL_CLASS = ElementId("join_dual_class",285);
/// \brief Check that a big Primitive properly overlaps smaller Primitives
///
/// If the big Primitive does not properly overlap the smaller Primitives starting at the given \b point,
/// return -1. Otherwise, if the big Primitive is floating-point, add the overlapped primitives to the
/// common refinement list, or if not a floating-point, add the big Primitive to the list.
/// (Integer primitives are \e preferred over floating-point primitives in this way) Return the index of
/// the next primitive after the overlap.
/// \param res holds the common refinement list
/// \param small is the list of Primitives that are overlapped
/// \param point is the index of the first overlap
/// \param big is the big overlapping Primitive
/// \return the index of the next Primitive after the overlap or -1 if the overlap is invalid
int4 PrimitiveExtractor::checkOverlap(vector<Primitive> &res,vector<Primitive> &small,int4 point,Primitive &big)
{
int4 endOff = big.offset + big.dt->getAlignSize();
// If big data-type is a float, let smaller primitives override it, otherwise we keep the big primitive
bool useSmall = big.dt->getMetatype() == TYPE_FLOAT;
while(point < small.size()) {
int4 curOff = small[point].offset;
if (curOff >= endOff) break;
curOff += small[point].dt->getAlignSize();
if (curOff > endOff)
return -1; // Improper overlap of the end of big
if (useSmall)
res.push_back(small[point]);
point += 1;
}
if (!useSmall) // If big data-type was preferred
res.push_back(big); // use big Primitive in the refinement
return point;
}
/// \brief Overwrite \b first list with common refinement of \b first and \b second
///
/// Given two sets of overlapping Primitives, find a \e common \e refinement of the lists.
/// If there is any partial overlap of two Primitives, \b false is returned.
/// If the same primitive data-type occurs at the same offset, it is included in the refinement.
/// Otherwise an integer data-type is preferred over a floating-point data-type, or a bigger
/// primitive is preferred over smaller overlapping primitives.
/// The final refinement replaces the \b first list.
/// \param first is the first list of Primitives
/// \param second is the second list
/// \return \b true if a refinement was successfully constructed
bool PrimitiveExtractor::commonRefinement(vector<Primitive> &first,vector<Primitive> &second)
{
int4 firstPoint = 0;
int4 secondPoint = 0;
vector<Primitive> common;
while(firstPoint < first.size() && secondPoint < second.size()) {
Primitive &firstElement( first[firstPoint] );
Primitive &secondElement( second[secondPoint] );
if (firstElement.offset < secondElement.offset &&
firstElement.offset + firstElement.dt->getAlignSize() <= secondElement.offset) {
common.push_back(firstElement);
firstPoint += 1;
continue;
}
if (secondElement.offset < firstElement.offset &&
secondElement.offset + secondElement.dt->getAlignSize() <= firstElement.offset) {
common.push_back(secondElement);
secondPoint += 1;
continue;
}
if (firstElement.dt->getAlignSize() >= secondElement.dt->getAlignSize()) {
secondPoint = checkOverlap(common,second,secondPoint,firstElement);
if (secondPoint < 0) return false;
firstPoint += 1;
}
else {
firstPoint = checkOverlap(common,first,firstPoint,secondElement);
if (firstPoint < 0) return false;
secondPoint += 1;
}
}
// Add any tail primitives from either list
while(firstPoint < first.size()) {
common.push_back(first[firstPoint]);
firstPoint += 1;
}
while(secondPoint < second.size()) {
common.push_back(second[secondPoint]);
secondPoint += 1;
}
first.swap(common); // Replace first with the refinement
return true;
}
/// Form a primitive list for each field of the union. Then, if possible, form a common refinement
/// of all the primitive lists and add to the end of \b this extractor's list.
/// \param dt is the union data-type
/// \param max is the maximum number primitives allowed for \b this extraction
/// \param offset is the starting offset of the union within the parent
/// \return \b true if a common refinement was found and appended
bool PrimitiveExtractor::handleUnion(TypeUnion *dt,int4 max,int4 offset)
{
if ((flags & union_invalid) != 0)
return false;
int4 num = dt->numDepend();
if (num == 0)
return false;
const TypeField *curField = dt->getField(0);
PrimitiveExtractor common(curField->type,false,offset + curField->offset,max);
if (!common.isValid())
return false;
for(int4 i=1;i<num;++i) {
curField = dt->getField(i);
PrimitiveExtractor next(curField->type,false,offset + curField->offset,max);
if (!next.isValid())
return false;
if (!commonRefinement(common.primitives,next.primitives))
return false;
}
if (primitives.size() + common.primitives.size() > max)
return false;
for(int4 i=0;i<common.primitives.size();++i)
primitives.push_back(common.primitives[i]);
return true;
}
/// An array of the primitive data-types, with their associated offsets, is constructed.
/// If the given data-type is already primitive it is put in the array by itself. Otherwise
/// if it is composite, its components are recursively added to the array.
/// Boolean properties about the primitives encountered are recorded:
/// - Are any of the primitives \b undefined
/// - Are all the primitives properly aligned.
///
/// If a maximum number of extracted primitives is exceeded, or if an illegal
/// data-type is encountered (\b void or other internal data-type) false is returned.
/// \param dt is the given data-type to extract primitives from
/// \param max is the maximum number of primitives to extract before giving up
/// \param offset is the starting offset to associate with the first primitive
/// \return \b true if all primitives were extracted
bool PrimitiveExtractor::extract(Datatype *dt,int4 max,int4 offset)
{
switch(dt->getMetatype()) {
case TYPE_UNKNOWN:
flags |= unknown_element; ///< Mark that the data-type contains an unknown primitive
// fallthru
case TYPE_INT:
case TYPE_UINT:
case TYPE_BOOL:
case TYPE_CODE:
case TYPE_FLOAT:
case TYPE_PTR:
case TYPE_PTRREL:
if (primitives.size() >= max)
return false;
primitives.emplace_back(dt,offset);
return true;
case TYPE_ARRAY:
{
int4 numEls = ((TypeArray *)dt)->numElements();
Datatype *base = ((TypeArray *)dt)->getBase();
for(int4 i=0;i<numEls;++i) {
if (!extract(base,max,offset))
return false;
offset += base->getAlignSize();
}
return true;
}
case TYPE_UNION:
return handleUnion((TypeUnion *)dt,max,offset);
case TYPE_STRUCT:
break;
default:
return false;
}
TypeStruct *structPtr = (TypeStruct *)dt;
vector<TypeField>::const_iterator enditer = structPtr->endField();
int4 expectedOff = offset;
for(vector<TypeField>::const_iterator iter=structPtr->beginField();iter!=enditer;++iter) {
Datatype *compDt = (*iter).type;
int4 curOff = (*iter).offset + offset;
int4 align = compDt->getAlignment();
if (curOff % align != 0)
flags |= unaligned;
int4 rem = expectedOff % align;
if (rem != 0) {
expectedOff += (align - rem);
}
if (expectedOff != curOff) {
flags |= extra_space;
}
if (!extract(compDt,max,curOff))
return false;
expectedOff = curOff + compDt->getAlignSize();
}
return true;
}
/// \param dt is data-type extract from
/// \param unionIllegal is \b true if unions encountered during extraction are considered illegal
/// \param offset is the starting offset to associate with the data-type
/// \param max is the maximum number of primitives to extract before giving up
PrimitiveExtractor::PrimitiveExtractor(Datatype *dt,bool unionIllegal,int offset,int4 max)
{
flags = unionIllegal ? union_invalid : 0;
if (!extract(dt,max,offset))
flags |= invalid;
}
/// \param decoder is the given stream decoder
/// \return the new data-type filter instance
DatatypeFilter *DatatypeFilter::decodeFilter(Decoder &decoder)
{
DatatypeFilter *filter;
uint4 elemId = decoder.openElement(ELEM_DATATYPE);
string nm = decoder.readString(ATTRIB_NAME);
if (nm == "any") {
filter = new SizeRestrictedFilter();
}
else if (nm == "homogeneous-float-aggregate") {
filter = new HomogeneousAggregate(TYPE_FLOAT,4,0,0);
}
else {
// If no other name matches, assume this is a metatype
type_metatype meta = string2metatype(nm);
filter = new MetaTypeFilter(meta);
}
filter->decode(decoder);
decoder.closeElement(elemId);
return filter;
}
SizeRestrictedFilter::SizeRestrictedFilter(int4 min,int4 max)
{
minSize = min;
maxSize = max;
if (maxSize == 0 && minSize >= 0) {
// If no ATTRIB_MAXSIZE is given, assume there is no upper bound on size
maxSize = 0x7fffffff;
}
}
/// If \b maxSize is not zero, the data-type is checked to see if its size in bytes
/// falls between \b minSize and \b maxSize inclusive.
/// \param dt is the data-type to test
/// \return \b true if the data-type meets the size restrictions
bool SizeRestrictedFilter::filterOnSize(Datatype *dt) const
{
if (maxSize == 0) return true; // maxSize of 0 means no size filtering is performed
return (dt->getSize() >= minSize && dt->getSize() <= maxSize);
}
void SizeRestrictedFilter::decode(Decoder &decoder)
{
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_MINSIZE)
minSize = decoder.readUnsignedInteger();
else if (attribId == ATTRIB_MAXSIZE)
maxSize = decoder.readUnsignedInteger();
}
if (maxSize == 0 && minSize >= 0) {
// If no ATTRIB_MAXSIZE is given, assume there is no upper bound on size
maxSize = 0x7fffffff;
}
}
MetaTypeFilter::MetaTypeFilter(type_metatype meta)
{
metaType = meta;
}
MetaTypeFilter::MetaTypeFilter(type_metatype meta,int4 min,int4 max)
: SizeRestrictedFilter(min,max)
{
metaType = meta;
}
bool MetaTypeFilter::filter(Datatype *dt) const
{
if (dt->getMetatype() != metaType) return false;
return filterOnSize(dt);
}
HomogeneousAggregate::HomogeneousAggregate(type_metatype meta)
{
metaType = meta;
maxPrimitives = 2;
}
HomogeneousAggregate::HomogeneousAggregate(type_metatype meta,int4 maxPrim,int4 min,int4 max)
: SizeRestrictedFilter(min,max)
{
metaType = meta;
maxPrimitives = maxPrim;
}
bool HomogeneousAggregate::filter(Datatype *dt) const
{
type_metatype meta = dt->getMetatype();
if (meta != TYPE_ARRAY && meta != TYPE_STRUCT)
return false;
PrimitiveExtractor primitives(dt,true,0,4);
if (!primitives.isValid() || primitives.size() == 0 || primitives.containsUnknown()
|| !primitives.isAligned() || primitives.containsHoles())
return false;
Datatype *base = primitives.get(0).dt;
if (base->getMetatype() != metaType)
return false;
for(int4 i=1;i<primitives.size();++i) {
if (primitives.get(i).dt != base)
return false;
}
return true;
}
/// If the next element is a qualifier filter, decode it from the stream and return it.
/// Otherwise return null
/// \param decoder is the given stream decoder
/// \return the new qualifier instance or null
QualifierFilter *QualifierFilter::decodeFilter(Decoder &decoder)
{
QualifierFilter *filter;
uint4 elemId = decoder.peekElement();
if (elemId == ELEM_VARARGS)
filter = new VarargsFilter();
else if (elemId == ELEM_POSITION)
filter = new PositionMatchFilter(-1);
else if (elemId == ELEM_DATATYPE_AT)
filter = new DatatypeMatchFilter();
else
return (QualifierFilter *)0;
filter->decode(decoder);
return filter;
}
/// The AndFilter assumes ownership of all the filters in the array and the original vector is cleared
/// \param filters is the list of filters pulled into \b this filter
AndFilter::AndFilter(vector<QualifierFilter *> filters)
{
subQualifiers.swap(filters);
}
AndFilter::~AndFilter(void)
{
for(int4 i=0;i<subQualifiers.size();++i)
delete subQualifiers[i];
}
QualifierFilter *AndFilter::clone(void) const
{
vector<QualifierFilter *> newFilters;
for(int4 i=0;i<subQualifiers.size();++i)
newFilters.push_back(subQualifiers[i]->clone());
return new AndFilter(newFilters);
}
bool AndFilter::filter(const PrototypePieces &proto,int4 pos) const
{
for(int4 i=0;i<subQualifiers.size();++i) {
if (!subQualifiers[i]->filter(proto,pos))
return false;
}
return true;
}
bool VarargsFilter::filter(const PrototypePieces &proto,int4 pos) const
{
if (proto.firstVarArgSlot < 0) return false;
return (pos >= proto.firstVarArgSlot);
}
void VarargsFilter::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_VARARGS);
decoder.closeElement(elemId);
}
bool PositionMatchFilter::filter(const PrototypePieces &proto,int4 pos) const
{
return (pos == position);
}
void PositionMatchFilter::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_POSITION);
position = decoder.readSignedInteger(ATTRIB_INDEX);
decoder.closeElement(elemId);
}
DatatypeMatchFilter::~DatatypeMatchFilter(void)
{
if (typeFilter != (DatatypeFilter *)0)
delete typeFilter;
}
QualifierFilter *DatatypeMatchFilter::clone(void) const
{
DatatypeMatchFilter *res = new DatatypeMatchFilter();
res->position = position;
res->typeFilter = typeFilter->clone();
return res;
}
bool DatatypeMatchFilter::filter(const PrototypePieces &proto,int4 pos) const
{
// The position of the current parameter being assigned, pos, is NOT used
Datatype *dt;
if (position < 0)
dt = proto.outtype;
else {
if (position >= proto.intypes.size())
return false;
dt = proto.intypes[position];
}
return typeFilter->filter(dt);
}
void DatatypeMatchFilter::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_DATATYPE_AT);
position = decoder.readSignedInteger(ATTRIB_INDEX);
typeFilter = DatatypeFilter::decodeFilter(decoder);
decoder.closeElement(elemId);
}
bool AssignAction::fillinOutputMap(ParamActive *active) const
{
return false; // Default implementation for an inactive action
}
/// \brief Read the next model rule action element from the stream
///
/// Allocate the action object corresponding to the element and configure it.
/// If the next element is not an action, throw an exception.
/// \param decoder is the stream decoder
/// \param res is the resource set for the new action
/// \return the new action
AssignAction *AssignAction::decodeAction(Decoder &decoder,const ParamListStandard *res)
{
AssignAction *action;
uint4 elemId = decoder.peekElement();
if (elemId == ELEM_GOTO_STACK)
action = new GotoStack(res,0);
else if (elemId == ELEM_JOIN) {
action = new MultiSlotAssign(res);
}
else if (elemId == ELEM_CONSUME) {
action = new ConsumeAs(TYPECLASS_GENERAL,res);
}
else if (elemId == ELEM_CONVERT_TO_PTR) {
action = new ConvertToPointer(res);
}
else if (elemId == ELEM_HIDDEN_RETURN) {
action = new HiddenReturnAssign(res,hiddenret_specialreg);
}
else if (elemId == ELEM_JOIN_PER_PRIMITIVE) {
bool consumeMostSig = false;
AddrSpace *spc = res->getSpacebase();
if (spc != (AddrSpace *)0 && spc->isBigEndian()) {
consumeMostSig = true;
}
action = new MultiMemberAssign(TYPECLASS_GENERAL,false,consumeMostSig,res);
}
else if (elemId == ELEM_JOIN_DUAL_CLASS) {
action = new MultiSlotDualAssign(res);
}
else
throw DecoderError("Expecting model rule action");
action->decode(decoder);
return action;
}
/// \brief Read the next model rule sideeffect element from the stream
///
/// Allocate the sideeffect object corresponding to the element and configure it.
/// If the next element is not a sideeffect, throw an exception.
/// \param decoder is the stream decoder
/// \param res is the resource set for the new sideeffect
/// \return the new sideeffect
AssignAction *AssignAction::decodeSideeffect(Decoder &decoder,const ParamListStandard *res)
{
AssignAction *action;
uint4 elemId = decoder.peekElement();
if (elemId == ELEM_CONSUME_EXTRA) {
action = new ConsumeExtra(res);
}
else
throw DecoderError("Expecting model rule sideeffect");
action->decode(decoder);
return action;
}
void GotoStack::initializeEntry(void)
{
stackEntry = resource->getStackEntry();
if (stackEntry == (const ParamEntry *)0)
throw LowlevelError("Cannot find matching <pentry> for action: gotostack");
}
/// \param res is the new resource set to associate with \b this action
/// \param val is a dummy value
GotoStack::GotoStack(const ParamListStandard *res,int4 val)
: AssignAction(res)
{
stackEntry = (const ParamEntry *)0;
fillinOutputActive = true;
}
GotoStack::GotoStack(const ParamListStandard *res)
: AssignAction(res)
{
stackEntry = (const ParamEntry *)0;
fillinOutputActive = true;
initializeEntry();
}
uint4 GotoStack::assignAddress(Datatype *dt,const PrototypePieces &proto,int4 pos,TypeFactory &tlst,
vector<int4> &status,ParameterPieces &res) const
{
int4 grp = stackEntry->getGroup();
res.type = dt;
res.addr = stackEntry->getAddrBySlot(status[grp],dt->getSize(),dt->getAlignment());
res.flags = 0;
return success;
}
bool GotoStack::fillinOutputMap(ParamActive *active) const
{
int4 count = 0;
for(int4 i=0;i<active->getNumTrials();++i) {
ParamTrial &trial(active->getTrial(i));
const ParamEntry *entry = trial.getEntry();
if (entry == (const ParamEntry *)0) break;
if (entry != stackEntry)
return false;
count += 1;
if (count > 1)
return false;
}
return (count == 1);
}
void GotoStack::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_GOTO_STACK);
decoder.closeElement(elemId);
initializeEntry();
}
ConvertToPointer::ConvertToPointer(const ParamListStandard *res)
: AssignAction(res)
{
space = res->getSpacebase();
}
uint4 ConvertToPointer::assignAddress(Datatype *dt,const PrototypePieces &proto,int4 pos,TypeFactory &tlist,
vector<int4> &status,ParameterPieces &res) const
{
AddrSpace *spc = space;
if (spc == (AddrSpace*)0)
spc = tlist.getArch()->getDefaultDataSpace();
int4 pointersize = spc->getAddrSize();
int4 wordsize = spc->getWordSize();
// Convert the data-type to a pointer
Datatype *pointertp = tlist.getTypePointer(pointersize,dt,wordsize);
// (Recursively) assign storage
uint4 responseCode = resource->assignAddress(pointertp, proto, pos, tlist, status, res);
res.flags = ParameterPieces::indirectstorage;
return responseCode;
}
void ConvertToPointer::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_CONVERT_TO_PTR);
decoder.closeElement(elemId);
}
/// Find the first ParamEntry matching the \b resourceType, and the ParamEntry
/// corresponding to the \e stack if \b consumeFromStack is set.
void MultiSlotAssign::initializeEntries(void)
{
firstIter = resource->getFirstIter(resourceType);
stackEntry = resource->getStackEntry();
if (firstIter == resource->getEntry().end())
throw LowlevelError("Could not find matching resources for action: join");
if (consumeFromStack && stackEntry == (const ParamEntry *)0)
throw LowlevelError("Cannot find matching <pentry> for action: join");
}
/// Set default configuration
/// \param res is the new resource set to associate with \b this action
MultiSlotAssign::MultiSlotAssign(const ParamListStandard *res)
: AssignAction(res)
{
resourceType = TYPECLASS_GENERAL; // Join general purpose registers
fillinOutputActive = true;
uint4 listType = res->getType();
// Consume from stack on input parameters by default
consumeFromStack = (listType != ParamList::p_register_out && listType != ParamList::p_standard_out);
consumeMostSig = false;
enforceAlignment = false;
justifyRight = false;
AddrSpace *spc = res->getSpacebase();
if (spc != (AddrSpace *)0 && spc->isBigEndian()) {
consumeMostSig = true;
justifyRight = true;
}
stackEntry = (const ParamEntry *)0;
}
MultiSlotAssign::MultiSlotAssign(type_class store,bool stack,bool mostSig,bool align,bool justRight,const ParamListStandard *res)
: AssignAction(res)
{
resourceType = store;
fillinOutputActive = true;
consumeFromStack = stack;
consumeMostSig = mostSig;
enforceAlignment = align;
justifyRight = justRight;
stackEntry = (const ParamEntry *)0;
initializeEntries();
}
uint4 MultiSlotAssign::assignAddress(Datatype *dt,const PrototypePieces &proto,int4 pos,TypeFactory &tlist,
vector<int4> &status,ParameterPieces &res) const
{
vector<int4> tmpStatus = status;
vector<VarnodeData> pieces;
int4 sizeLeft = dt->getSize();
list<ParamEntry>::const_iterator iter = firstIter;
list<ParamEntry>::const_iterator endIter = resource->getEntry().end();
if (enforceAlignment) {
int4 resourcesConsumed = 0;
while(iter != endIter) {
const ParamEntry &entry( *iter );
if (!entry.isExclusion())
break; // Reached end of resource list
if (entry.getType() == resourceType && entry.getAllGroups().size() == 1) { // Single register
if (tmpStatus[entry.getGroup()] == 0) { // Not consumed
int4 align = dt->getAlignment();
int4 regSize = entry.getSize();
if (align <= regSize || (resourcesConsumed % align) == 0)
break;
tmpStatus[entry.getGroup()] = -1; // Consume unaligned register
}
resourcesConsumed += entry.getSize();
}
++iter;
}
}
while(sizeLeft > 0 && iter != endIter) {
const ParamEntry &entry( *iter );
++iter;
if (!entry.isExclusion())
break; // Reached end of resource list
if (entry.getType() != resourceType || entry.getAllGroups().size() != 1)
continue; // Not a single register from desired resource list
if (tmpStatus[entry.getGroup()] != 0)
continue; // Already consumed
int4 trialSize = entry.getSize();
Address addr = entry.getAddrBySlot(tmpStatus[entry.getGroup()], trialSize,1);
tmpStatus[entry.getGroup()] = -1; // Consume the register
pieces.push_back(VarnodeData());
pieces.back().space = addr.getSpace();
pieces.back().offset = addr.getOffset();
pieces.back().size = trialSize;
sizeLeft -= trialSize;
}
if (sizeLeft > 0) { // Have to use stack to get enough bytes
if (!consumeFromStack)
return fail;
int4 grp = stackEntry->getGroup();
Address addr = stackEntry->getAddrBySlot(tmpStatus[grp],sizeLeft,1); // Consume all the space we need
if (addr.isInvalid())
return fail;
pieces.push_back(VarnodeData());
pieces.back().space = addr.getSpace();
pieces.back().offset = addr.getOffset();
pieces.back().size = sizeLeft;
}
else if (sizeLeft < 0) { // Have odd data-type size
if (resourceType == TYPECLASS_FLOAT && pieces.size() == 1) {
AddrSpaceManager *manager = tlist.getArch();
VarnodeData &tmp( pieces.front() );
Address addr = manager->constructFloatExtensionAddress(tmp.getAddr(),tmp.size,dt->getSize());
tmp.space = addr.getSpace();
tmp.offset = addr.getOffset();
tmp.size = dt->getSize();
}
else if (justifyRight) {
pieces.front().offset += -sizeLeft; // Initial bytes of first entry are padding
pieces.front().size += sizeLeft;
}
else {
pieces.back().size += sizeLeft;
}
}
status = tmpStatus; // Commit resource usage for all the pieces
res.flags = 0;
res.type = dt;
if (pieces.size() == 1) {
res.addr = pieces[0].getAddr();
return success;
}
if (!consumeMostSig) {
vector<VarnodeData> reverse;
for(int4 i=pieces.size()-1;i>=0;--i)
reverse.push_back(pieces[i]);
pieces.swap(reverse);
}
JoinRecord *joinRecord = tlist.getArch()->findAddJoin(pieces, 0);
res.addr = joinRecord->getUnified().getAddr();
return success;
}
bool MultiSlotAssign::fillinOutputMap(ParamActive *active) const
{
int4 count = 0;
int4 curGroup = -1;
int4 partial = -1;
for(int4 i=0;i<active->getNumTrials();++i) {
ParamTrial &trial(active->getTrial(i));
const ParamEntry *entry = trial.getEntry();
if (entry == (const ParamEntry *)0) break;
if (entry->getType() != resourceType) // Trials must come from action's type_class
return false;
if (count == 0) {
if (!entry->isFirstInClass())
return false; // Trials must start on first entry of the type_class
}
else {
if (entry->getGroup() != curGroup + 1) // Trials must be consecutive
return false;
}
curGroup = entry->getGroup();
if (trial.getSize() != entry->getSize()) {
if (partial != -1)
return false; // At most, one trial can be partial size
partial = i;
}
count += 1;
}
if (partial != -1) {
if (justifyRight) {
if (partial != 0) return false;
}
else {
if (partial != count - 1) return false;
}
ParamTrial &trial(active->getTrial(partial));
if (justifyRight == consumeMostSig) {
if (trial.getOffset() != 0)
return false; // Partial entry must be least sig bytes
}
else {
if (trial.getOffset() + trial.getSize() != trial.getEntry()->getSize()) {
return false; // Partial entry must be most sig bytes
}
}
}
return (count > 0);
}
void MultiSlotAssign::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_JOIN);
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_REVERSEJUSTIFY) {
if (decoder.readBool())
justifyRight = !justifyRight;
}
else if (attribId == ATTRIB_STORAGE) {
resourceType = string2typeclass(decoder.readString());
}
else if (attribId == ATTRIB_ALIGN) {
enforceAlignment = decoder.readBool();
}
}
decoder.closeElement(elemId);
initializeEntries(); // Need new firstIter
}
MultiMemberAssign::MultiMemberAssign(type_class store,bool stack,bool mostSig,const ParamListStandard *res)
: AssignAction(res)
{
resourceType = store;
consumeFromStack = stack;
consumeMostSig = mostSig;
fillinOutputActive = true;
}
uint4 MultiMemberAssign::assignAddress(Datatype *dt,const PrototypePieces &proto,int4 pos,TypeFactory &tlist,
vector<int4> &status,ParameterPieces &res) const
{
vector<int4> tmpStatus = status;
vector<VarnodeData> pieces;
PrimitiveExtractor primitives(dt,false,0,16);
if (!primitives.isValid() || primitives.size() == 0 || primitives.containsUnknown()
|| !primitives.isAligned() || primitives.containsHoles())
return fail;
ParameterPieces param;
for(int4 i=0;i<primitives.size();++i) {
Datatype *curType = primitives.get(i).dt;
if (resource->assignAddressFallback(resourceType, curType, !consumeFromStack, tmpStatus,param) == fail)
return fail;
pieces.push_back(VarnodeData());
pieces.back().space = param.addr.getSpace();
pieces.back().offset = param.addr.getOffset();
pieces.back().size = curType->getSize();
}
status = tmpStatus; // Commit resource usage for all the pieces
res.flags = 0;
res.type = dt;
if (pieces.size() == 1) {
res.addr = pieces[0].getAddr();
return success;
}
if (!consumeMostSig) {
vector<VarnodeData> reverse;
for(int4 i=pieces.size()-1;i>=0;--i)
reverse.push_back(pieces[i]);
pieces.swap(reverse);
}
JoinRecord *joinRecord = tlist.getArch()->findAddJoin(pieces, 0);
res.addr = joinRecord->getUnified().getAddr();
return success;
}
bool MultiMemberAssign::fillinOutputMap(ParamActive *active) const
{
int4 count = 0;
int4 curGroup = -1;
for(int4 i=0;i<active->getNumTrials();++i) {
ParamTrial &trial(active->getTrial(i));
const ParamEntry *entry = trial.getEntry();
if (entry == (const ParamEntry *)0) break;
if (entry->getType() != resourceType) // Trials must come from action's type_class
return false;
if (count == 0) {
if (!entry->isFirstInClass())
return false;
}
else {
if (entry->getGroup() != curGroup + 1) // Trials must be consecutive
return false;
}
curGroup = entry->getGroup();
if (trial.getOffset() != 0)
return false; // Entry must be justified
count += 1;
}
return (count > 0);
}
void MultiMemberAssign::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_JOIN_PER_PRIMITIVE);
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_STORAGE) {
resourceType = string2typeclass(decoder.readString());
}
}
decoder.closeElement(elemId);
}
/// Find the first ParamEntry matching the \b baseType, and the first matching \b altType.
void MultiSlotDualAssign::initializeEntries(void)
{
baseIter = resource->getFirstIter(baseType);
altIter = resource->getFirstIter(altType);
list<ParamEntry>::const_iterator enditer = resource->getEntry().end();
if (baseIter == enditer || altIter == enditer)
throw LowlevelError("Could not find matching resources for action: join_dual_class");
tileSize = (*baseIter).getSize();
if (tileSize != (*altIter).getSize())
throw LowlevelError("Storage class register sizes do not match for action: join_dual_class");
}
/// \brief Get the first unused ParamEntry that matches the given storage class
///
/// \param iter points to the starting entry to search
/// \param storage is the given storage class to match
/// \param status is the usage information for the entries
/// \return the iterator to the unused ParamEntry
list<ParamEntry>::const_iterator MultiSlotDualAssign::getFirstUnused(list<ParamEntry>::const_iterator iter,
type_class storage,vector<int4> &status) const
{
list<ParamEntry>::const_iterator endIter = resource->getEntry().end();
for(;iter != endIter; ++iter) {
const ParamEntry &entry( *iter );
if (!entry.isExclusion())
break; // Reached end of resource list
if (entry.getType() != storage || entry.getAllGroups().size() != 1)
continue; // Not a single register from desired resource
if (status[entry.getGroup()] != 0)
continue; // Already consumed
return iter;
}
return endIter;
}
/// \brief Get the storage class to use for the specific section of the data-type
///
/// For the section starting at \b off extending through \b tileSize bytes, if any primitive overlaps
/// the boundary of the section, return -1. Otherwise, if all the primitive data-types in the section
/// match the alternate storage class, return 1, or if one or more does not match, return 0.
/// The \b index of the first primitive after the start of the section is provided and is then updated
/// to be the first primitive after the end of the section.
/// \param primitives is the list of primitive data-types making up the data-type
/// \param off is the starting offset of the section
/// \param index is the index of the first primitive in the section
/// \return 0 for a base tile, 1 for an alternate tile, -1 for boundary overlaps
int4 MultiSlotDualAssign::getTileClass(const PrimitiveExtractor &primitives,int4 off,int4 &index) const
{
int4 res = 1;
int4 count = 0;
int4 endBoundary = off + tileSize;
while(index < primitives.size()) {
const PrimitiveExtractor::Primitive &element( primitives.get(index) );
if (element.offset < off) return -1;
if (element.offset >= endBoundary) break;
if (element.offset + element.dt->getSize() > endBoundary) return -1;
count += 1;
index += 1;
type_class storage = metatype2typeclass(element.dt->getMetatype());
if (storage != altType)
res = 0;
}
if (count == 0) return -1; // Must be at least one primitive in section
return res;
}
/// Set default configuration
/// \param res is the new resource set to associate with \b this action
MultiSlotDualAssign::MultiSlotDualAssign(const ParamListStandard *res)
: AssignAction(res)
{
fillinOutputActive = true;
baseType = TYPECLASS_GENERAL; // Tile from general purpose registers
altType = TYPECLASS_FLOAT; // Use specialized registers for floating-point components
consumeMostSig = false;
justifyRight = false;
AddrSpace *spc = res->getSpacebase();
if (spc != (AddrSpace *)0 && spc->isBigEndian()) {
consumeMostSig = true;
justifyRight = true;
}
tileSize = 0;
}
MultiSlotDualAssign::MultiSlotDualAssign(type_class baseStore,type_class altStore,bool mostSig,bool justRight,
const ParamListStandard *res)
: AssignAction(res)
{
fillinOutputActive = true;
baseType = baseStore;
altType = altStore;
consumeMostSig = mostSig;
justifyRight = justRight;
initializeEntries();
}
uint4 MultiSlotDualAssign::assignAddress(Datatype *dt,const PrototypePieces &proto,int4 pos,TypeFactory &tlist,
vector<int4> &status,ParameterPieces &res) const
{
PrimitiveExtractor primitives(dt,false,0,1024);
if (!primitives.isValid() || primitives.size() == 0 || primitives.containsHoles())
return fail;
int4 primitiveIndex = 0;
vector<int4> tmpStatus = status;
vector<VarnodeData> pieces;
int4 typeSize = dt->getSize();
int4 sizeLeft = typeSize;
list<ParamEntry>::const_iterator iterBase = baseIter;
list<ParamEntry>::const_iterator iterAlt = altIter;
list<ParamEntry>::const_iterator endIter = resource->getEntry().end();
while(sizeLeft > 0) {
list<ParamEntry>::const_iterator iter;
int4 iterType = getTileClass(primitives, typeSize-sizeLeft, primitiveIndex);
if (iterType < 0)
return fail;
if (iterType == 0) {
iter = iterBase = getFirstUnused(iterBase, baseType, tmpStatus);
}
else {
iter = iterAlt = getFirstUnused(iterAlt, altType, tmpStatus);
}
if (iter == endIter)
return fail; // Out of the particular resource
const ParamEntry &entry( *iter );
int4 trialSize = entry.getSize();
Address addr = entry.getAddrBySlot(tmpStatus[entry.getGroup()], trialSize,1);
tmpStatus[entry.getGroup()] = -1; // Consume the register
pieces.push_back(VarnodeData());
pieces.back().space = addr.getSpace();
pieces.back().offset = addr.getOffset();
pieces.back().size = trialSize;
sizeLeft -= trialSize;
}
if (sizeLeft < 0) { // Have odd data-type size
if (justifyRight) {
pieces.front().offset += -sizeLeft; // Initial bytes of first entry are padding
pieces.front().size += sizeLeft;
}
else {
pieces.back().size += sizeLeft;
}
}
status = tmpStatus; // Commit resource usage for all the pieces
res.flags = 0;
res.type = dt;
if (pieces.size() == 1) {
res.addr = pieces[0].getAddr();
return success;
}
if (!consumeMostSig) {
vector<VarnodeData> reverse;
for(int4 i=pieces.size()-1;i>=0;--i)
reverse.push_back(pieces[i]);
pieces.swap(reverse);
}
JoinRecord *joinRecord = tlist.getArch()->findAddJoin(pieces, 0);
res.addr = joinRecord->getUnified().getAddr();
return success;
}
bool MultiSlotDualAssign::fillinOutputMap(ParamActive *active) const
{
int4 count = 0;
int4 curGroup = -1;
int4 partial = -1;
type_class resourceType = TYPECLASS_GENERAL;
for(int4 i=0;i<active->getNumTrials();++i) {
ParamTrial &trial(active->getTrial(i));
const ParamEntry *entry = trial.getEntry();
if (entry == (const ParamEntry *)0) break;
if (count == 0) {
resourceType = entry->getType();
if (resourceType != baseType && resourceType != altType)
return false;
}
else if (entry->getType() != resourceType) // Trials must come from action's type_class
return false;
if (count == 0) {
if (!entry->isFirstInClass())
return false; // Trials must start on first entry of the type_class
}
else {
if (entry->getGroup() != curGroup + 1) // Trials must be consecutive
return false;
}
curGroup = entry->getGroup();
if (trial.getSize() != entry->getSize()) {
if (partial != -1)
return false; // At most, one trial can be partial size
partial = i;
}
count += 1;
}
if (partial != -1) {
if (justifyRight) {
if (partial != 0) return false;
}
else {
if (partial != count - 1) return false;
}
ParamTrial &trial(active->getTrial(partial));
if (justifyRight == consumeMostSig) {
if (trial.getOffset() != 0)
return false; // Partial entry must be least sig bytes
}
else {
if (trial.getOffset() + trial.getSize() != trial.getEntry()->getSize()) {
return false; // Partial entry must be most sig bytes
}
}
}
return (count > 0);
}
void MultiSlotDualAssign::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_JOIN_DUAL_CLASS);
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_REVERSEJUSTIFY) {
if (decoder.readBool())
justifyRight = !justifyRight;
}
else if (attribId == ATTRIB_STORAGE || attribId == ATTRIB_A) {
baseType = string2typeclass(decoder.readString());
}
else if (attribId == ATTRIB_B) {
altType = string2typeclass(decoder.readString());
}
}
decoder.closeElement(elemId);
initializeEntries(); // Need new firstIter
}
ConsumeAs::ConsumeAs(type_class store,const ParamListStandard *res)
: AssignAction(res)
{
resourceType = store;
fillinOutputActive = true;
}
uint4 ConsumeAs::assignAddress(Datatype *dt,const PrototypePieces &proto,int4 pos,TypeFactory &tlist,
vector<int4> &status,ParameterPieces &res) const
{
return resource->assignAddressFallback(resourceType, dt, true, status, res);
}
bool ConsumeAs::fillinOutputMap(ParamActive *active) const
{
int4 count = 0;
for(int4 i=0;i<active->getNumTrials();++i) {
ParamTrial &trial(active->getTrial(i));
const ParamEntry *entry = trial.getEntry();
if (entry == (const ParamEntry *)0) break;
if (entry->getType() != resourceType) // Trials must come from action's type_class
return false;
if (!entry->isFirstInClass())
return false;
count += 1;
if (count > 1)
return false;
if (trial.getOffset() != 0)
return false; // Entry must be justified
}
return (count > 0);
}
void ConsumeAs::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_CONSUME);
resourceType = string2typeclass(decoder.readString(ATTRIB_STORAGE));
decoder.closeElement(elemId);
}
HiddenReturnAssign::HiddenReturnAssign(const ParamListStandard *res,uint4 code)
: AssignAction(res)
{
retCode = code;
}
uint4 HiddenReturnAssign::assignAddress(Datatype *dt,const PrototypePieces &proto,int4 pos,TypeFactory &tlist,
vector<int4> &status,ParameterPieces &res) const
{
return retCode; // Signal to assignMap to use TYPECLASS_HIDDENRET
}
void HiddenReturnAssign::decode(Decoder &decoder)
{
retCode = hiddenret_specialreg;
uint4 elemId = decoder.openElement(ELEM_HIDDEN_RETURN);
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == ATTRIB_VOIDLOCK)
retCode = hiddenret_specialreg_void;
else if (attribId == ATTRIB_STRATEGY) {
string strategyString = decoder.readString();
if (strategyString == "normalparam")
retCode = hiddenret_ptrparam;
else if (strategyString == "special")
retCode = hiddenret_specialreg;
else
throw DecoderError("Bad <hidden_return> strategy: " + strategyString);
}
else
break;
}
decoder.closeElement(elemId);
}
/// Find the first ParamEntry matching the \b resourceType.
void ConsumeExtra::initializeEntries(void)
{
firstIter = resource->getFirstIter(resourceType);
if (firstIter == resource->getEntry().end())
throw LowlevelError("Could not find matching resources for action: consumeextra");
}
ConsumeExtra::ConsumeExtra(const ParamListStandard *res)
: AssignAction(res)
{
resourceType = TYPECLASS_GENERAL;
matchSize = true;
}
ConsumeExtra::ConsumeExtra(type_class store,bool match,const ParamListStandard *res)
: AssignAction(res)
{
resourceType = store;
matchSize = match;
initializeEntries();
}
uint4 ConsumeExtra::assignAddress(Datatype *dt,const PrototypePieces &proto,int4 pos,TypeFactory &tlist,
vector<int4> &status,ParameterPieces &res) const
{
list<ParamEntry>::const_iterator iter = firstIter;
list<ParamEntry>::const_iterator endIter = resource->getEntry().end();
int4 sizeLeft = dt->getSize();
while(sizeLeft > 0 && iter != endIter) {
const ParamEntry &entry(*iter);
++iter;
if (!entry.isExclusion())
break; // Reached end of resource list
if (entry.getType() != resourceType || entry.getAllGroups().size() != 1)
continue; // Not a single register in desired list
if (status[entry.getGroup()] != 0)
continue; // Already consumed
status[entry.getGroup()] = -1; // Consume the slot/register
sizeLeft -= entry.getSize();
if (!matchSize)
break; // Only consume a single register
}
return success;
}
void ConsumeExtra::decode(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_CONSUME_EXTRA);
resourceType = string2typeclass(decoder.readString(ATTRIB_STORAGE));
decoder.closeElement(elemId);
initializeEntries();
}
ModelRule::ModelRule(const ModelRule &op2,const ParamListStandard *res)
{
if (op2.filter != (DatatypeFilter *)0)
filter = op2.filter->clone();
else
filter = (DatatypeFilter *)0;
if (op2.qualifier != (QualifierFilter *)0)
qualifier = op2.qualifier->clone();
else
qualifier = (QualifierFilter *)0;
if (op2.assign != (AssignAction *)0)
assign = op2.assign->clone(res);
else
assign = (AssignAction *)0;
for(int4 i=0;i<op2.sideeffects.size();++i)
sideeffects.push_back(op2.sideeffects[i]->clone(res));
}
/// The provided components are cloned into the new object.
/// \param typeFilter is the data-type filter the rule applies before performing the action
/// \param action is the action that will be applied
/// \param res is the resource list to which \b this rule will be applied
ModelRule::ModelRule(const DatatypeFilter &typeFilter,const AssignAction &action,const ParamListStandard *res)
{
filter = typeFilter.clone();
qualifier = (QualifierFilter *)0;
assign = action.clone(res);
}
ModelRule::~ModelRule(void)
{
if (filter != (DatatypeFilter *)0)
delete filter;
if (qualifier != (QualifierFilter *)0)
delete qualifier;
if (assign != (AssignAction *)0)
delete assign;
for(int4 i=0;i<sideeffects.size();++i)
delete sideeffects[i];
}
/// \brief Assign an address and other details for a specific parameter or for return storage in context
///
/// The Address is only assigned if the data-type filter and the optional qualifier filter
/// pass, otherwise a \b fail response is returned.
/// If the filters pass, the Address is assigned based on the AssignAction specific to
/// \b this rule, and the action's response code is returned.
/// \param dt is the data-type of the parameter or return value
/// \param proto is the high-level description of the function prototype
/// \param pos is the position of the parameter (pos>=0) or return storage (pos=-1)
/// \param tlist is a data-type factory for (possibly) transforming the data-type
/// \param status is the resource consumption array
/// \param res will hold the resulting description of the parameter
/// \return the response code
uint4 ModelRule::assignAddress(Datatype *dt,const PrototypePieces &proto,int4 pos,TypeFactory &tlist,
vector<int4> &status,ParameterPieces &res) const
{
if (!filter->filter(dt)) {
return AssignAction::fail;
}
if (qualifier != (QualifierFilter *)0 && !qualifier->filter(proto,pos)) {
return AssignAction::fail;
}
uint4 response = assign->assignAddress(dt,proto,pos,tlist,status,res);
if (response != AssignAction::fail) {
for(int4 i=0;i<sideeffects.size();++i) {
sideeffects[i]->assignAddress(dt,proto,pos,tlist,status,res);
}
}
return response;
}
/// \param decoder is the stream decoder
/// \param res is the parameter resource list owning \b this rule
void ModelRule::decode(Decoder &decoder,const ParamListStandard *res)
{
vector<QualifierFilter *> qualifiers;
uint4 elemId = decoder.openElement(ELEM_RULE);
filter = DatatypeFilter::decodeFilter(decoder);
for(;;) {
QualifierFilter *qual = QualifierFilter::decodeFilter(decoder);
if (qual == (QualifierFilter *)0)
break;
qualifiers.push_back(qual);
}
if (qualifiers.size() == 0)
qualifier = (QualifierFilter *)0;
else if (qualifiers.size() == 1) {
qualifier = qualifiers[0];
qualifiers.clear();
}
else {
qualifier = new AndFilter(qualifiers);
}
assign = AssignAction::decodeAction(decoder, res);
while(decoder.peekElement() != 0) {
sideeffects.push_back(AssignAction::decodeSideeffect(decoder,res));
}
decoder.closeElement(elemId);
}
} // End namespace ghidra