ghidra/Ghidra/Features/Decompiler/src/decompile/cpp/architecture.cc
Luke Serné 8303061629 Many typo's
These were found using the command below searching for duplicated words,
and manually going through the results to remove the false positives and
reword the true positives. Sometimes I removed the doubled word and
sometimes I replaced the duplicated word.

The grep command:
grep -nIEr '\b([a-zA-Z]+)[[:space:]*]+\1\b' ./Ghidra
2025-04-19 18:06:41 +02:00

1570 lines
54 KiB
C++

/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Set up decompiler for specific architectures
#include "coreaction.hh"
#include "flow.hh"
#ifdef CPUI_RULECOMPILE
#include "rulecompile.hh"
#endif
#ifdef CPUI_STATISTICS
#include <cmath>
#endif
namespace ghidra {
#ifdef CPUI_STATISTICS
using std::sqrt;
#endif
vector<ArchitectureCapability *> ArchitectureCapability::thelist;
const uint4 ArchitectureCapability::majorversion = 6;
const uint4 ArchitectureCapability::minorversion = 1;
AttributeId ATTRIB_ADDRESS = AttributeId("address",148);
AttributeId ATTRIB_ADJUSTVMA = AttributeId("adjustvma",103);
AttributeId ATTRIB_ENABLE = AttributeId("enable",104);
AttributeId ATTRIB_GROUP = AttributeId("group",105);
AttributeId ATTRIB_GROWTH = AttributeId("growth",106);
AttributeId ATTRIB_KEY = AttributeId("key",107);
AttributeId ATTRIB_LOADERSYMBOLS = AttributeId("loadersymbols",108);
AttributeId ATTRIB_PARENT = AttributeId("parent",109);
AttributeId ATTRIB_REGISTER = AttributeId("register",110);
AttributeId ATTRIB_REVERSEJUSTIFY = AttributeId("reversejustify",111);
AttributeId ATTRIB_SIGNEXT = AttributeId("signext",112);
AttributeId ATTRIB_STYLE = AttributeId("style",113);
ElementId ELEM_ADDRESS_SHIFT_AMOUNT = ElementId("address_shift_amount",130);
ElementId ELEM_AGGRESSIVETRIM = ElementId("aggressivetrim",131);
ElementId ELEM_COMPILER_SPEC = ElementId("compiler_spec",132);
ElementId ELEM_DATA_SPACE = ElementId("data_space",133);
ElementId ELEM_DEFAULT_MEMORY_BLOCKS = ElementId("default_memory_blocks",134);
ElementId ELEM_DEFAULT_PROTO = ElementId("default_proto",135);
ElementId ELEM_DEFAULT_SYMBOLS = ElementId("default_symbols",136);
ElementId ELEM_EVAL_CALLED_PROTOTYPE = ElementId("eval_called_prototype",137);
ElementId ELEM_EVAL_CURRENT_PROTOTYPE = ElementId("eval_current_prototype",138);
ElementId ELEM_EXPERIMENTAL_RULES = ElementId("experimental_rules",139);
ElementId ELEM_FLOWOVERRIDELIST = ElementId("flowoverridelist",140);
ElementId ELEM_FUNCPTR = ElementId("funcptr",141);
ElementId ELEM_GLOBAL = ElementId("global",142);
ElementId ELEM_INCIDENTALCOPY = ElementId("incidentalcopy",143);
ElementId ELEM_INFERPTRBOUNDS = ElementId("inferptrbounds",144);
ElementId ELEM_MODELALIAS = ElementId("modelalias",145);
ElementId ELEM_NOHIGHPTR = ElementId("nohighptr",146);
ElementId ELEM_PROCESSOR_SPEC = ElementId("processor_spec",147);
ElementId ELEM_PROGRAMCOUNTER = ElementId("programcounter",148);
ElementId ELEM_PROPERTIES = ElementId("properties",149);
ElementId ELEM_PROPERTY = ElementId("property",150);
ElementId ELEM_READONLY = ElementId("readonly",151);
ElementId ELEM_REGISTER_DATA = ElementId("register_data",152);
ElementId ELEM_RULE = ElementId("rule",153);
ElementId ELEM_SAVE_STATE = ElementId("save_state",154);
ElementId ELEM_SEGMENTED_ADDRESS = ElementId("segmented_address",155);
ElementId ELEM_SPACEBASE = ElementId("spacebase",156);
ElementId ELEM_SPECEXTENSIONS = ElementId("specextensions",157);
ElementId ELEM_STACKPOINTER = ElementId("stackpointer",158);
ElementId ELEM_VOLATILE = ElementId("volatile",159);
/// This builds a list of just the ArchitectureCapability extensions
void ArchitectureCapability::initialize(void)
{
thelist.push_back(this);
}
/// Given a specific file, find an ArchitectureCapability that can handle it.
/// \param filename is the path to the file
/// \return an ArchitectureCapability that can handle it or NULL
ArchitectureCapability *ArchitectureCapability::findCapability(const string &filename)
{
for(uint4 i=0;i<thelist.size();++i) {
ArchitectureCapability *capa = thelist[i];
if (capa->isFileMatch(filename))
return capa;
}
return (ArchitectureCapability *)0;
}
/// Given a parsed XML document, find an ArchitectureCapability that can handle it.
/// \param doc is the parsed XML document
/// \return an ArchitectureCapability that can handle it or NULL
ArchitectureCapability *ArchitectureCapability::findCapability(Document *doc)
{
for(uint4 i=0;i<thelist.size();++i) {
ArchitectureCapability *capa = thelist[i];
if (capa->isXmlMatch(doc))
return capa;
}
return (ArchitectureCapability *)0;
}
/// Return the ArchitectureCapability object with the matching name
/// \param name is the name to match
/// \return the ArchitectureCapability or null if no match is found
ArchitectureCapability *ArchitectureCapability::getCapability(const string &name)
{
for(int4 i=0;i<thelist.size();++i) {
ArchitectureCapability *res = thelist[i];
if (res->getName() == name)
return res;
}
return (ArchitectureCapability *)0;
}
/// Modify order that extensions are searched, to effect which gets a chance
/// to run first.
/// Right now all we need to do is make sure the raw architecture comes last
void ArchitectureCapability::sortCapabilities(void)
{
uint4 i;
for(i=0;i<thelist.size();++i) {
if (thelist[i]->getName() == "raw") break;
}
if (i==thelist.size()) return;
ArchitectureCapability *capa = thelist[i];
for(uint4 j=i+1;j<thelist.size();++j)
thelist[j-1] = thelist[j];
thelist[ thelist.size()-1 ] = capa;
}
/// Set most sub-components to null pointers. Provide reasonable defaults
/// for the configurable options
Architecture::Architecture(void)
{
// endian = -1;
resetDefaultsInternal();
min_funcsymbol_size = 1;
aggressive_ext_trim = false;
funcptr_align = 0;
defaultfp = (ProtoModel *)0;
defaultReturnAddr.space = (AddrSpace *)0;
evalfp_current = (ProtoModel *)0;
evalfp_called = (ProtoModel *)0;
types = (TypeFactory *)0;
translate = (Translate *)0;
loader = (LoadImage *)0;
pcodeinjectlib = (PcodeInjectLibrary *)0;
commentdb = (CommentDatabase *)0;
stringManager = (StringManager *)0;
cpool = (ConstantPool *)0;
symboltab = (Database *)0;
context = (ContextDatabase *)0;
print = PrintLanguageCapability::getDefault()->buildLanguage(this);
printlist.push_back(print);
options = new OptionDatabase(this);
loadersymbols_parsed = false;
#ifdef CPUI_STATISTICS
stats = new Statistics();
#endif
#ifdef OPACTION_DEBUG
debugstream = (ostream *)0;
#endif
}
/// Release resources for all sub-components
Architecture::~Architecture(void)
{ // Delete anything that was allocated
vector<TypeOp *>::iterator iter;
TypeOp *t_op;
for(iter=inst.begin();iter!=inst.end();++iter) {
t_op = *iter;
if (t_op != (TypeOp *)0)
delete t_op;
}
for(int4 i=0;i<extra_pool_rules.size();++i)
delete extra_pool_rules[i];
if (symboltab != (Database *)0)
delete symboltab;
for(int4 i=0;i<(int4)printlist.size();++i)
delete printlist[i];
delete options;
#ifdef CPUI_STATISTICS
delete stats;
#endif
map<string,ProtoModel *>::const_iterator piter;
for(piter=protoModels.begin();piter!=protoModels.end();++piter)
delete (*piter).second;
if (types != (TypeFactory *)0)
delete types;
if (translate != (Translate *)0)
delete translate;
if (loader != (LoadImage *)0)
delete loader;
if (pcodeinjectlib != (PcodeInjectLibrary *)0)
delete pcodeinjectlib;
if (commentdb != (CommentDatabase *)0)
delete commentdb;
if (stringManager != (StringManager *)0)
delete stringManager;
if (cpool != (ConstantPool *)0)
delete cpool;
if (context != (ContextDatabase *)0)
delete context;
}
/// The Architecture maintains the set of prototype models that can
/// be applied for this particular executable. Retrieve one by name.
/// If the model doesn't exist, null is returned.
/// \param nm is the name
/// \return the matching model or null
ProtoModel *Architecture::getModel(const string &nm) const
{
map<string,ProtoModel *>::const_iterator iter;
iter = protoModels.find(nm);
if (iter==protoModels.end())
return (ProtoModel *)0;
return (*iter).second;
}
/// \param nm is the name of the model
/// \return \b true if this Architecture supports a model with that name
bool Architecture::hasModel(const string &nm) const
{ // Does this architecture have a prototype model of this name
map<string,ProtoModel *>::const_iterator iter;
iter = protoModels.find(nm);
return (iter != protoModels.end());
}
/// Get the address space associated with the indicated
/// \e spacebase register. I.e. if the location of the
/// \e stack \e pointer is passed in, this routine would return
/// a pointer to the \b stack space. An exception is thrown
/// if no corresponding space is found.
/// \param loc is the location of the \e spacebase register
/// \param size is the size of the register in bytes
/// \return a pointer to the address space
AddrSpace *Architecture::getSpaceBySpacebase(const Address &loc,int4 size) const
{
AddrSpace *id;
int4 sz = numSpaces();
for(int4 i=0;i<sz;++i) {
id = getSpace(i);
if (id == (AddrSpace *)0) continue;
int4 numspace = id->numSpacebase();
for(int4 j=0;j<numspace;++j) {
const VarnodeData &point(id->getSpacebase(j));
if (point.size != size) continue;
if (point.space != loc.getSpace()) continue;
if (point.offset != loc.getOffset()) continue;
return id;
}
}
throw LowlevelError("Unable to find entry for spacebase register");
}
/// Look-up the laned register record associated with a specific storage location. Currently, the
/// record is only associated with the \e size of the storage, not its address. If there is no
/// associated record, null is returned.
/// \param loc is the starting address of the storage location
/// \param size is the size of the storage in bytes
/// \return the matching LanedRegister record or null
const LanedRegister *Architecture::getLanedRegister(const Address &loc,int4 size) const
{
int4 min = 0;
int4 max = lanerecords.size() - 1;
while(min <= max) {
int4 mid = (min + max) / 2;
int4 sz = lanerecords[mid].getWholeSize();
if (sz < size)
min = mid + 1;
else if (size < sz)
max = mid - 1;
else
return &lanerecords[mid];
}
return (const LanedRegister *)0;
}
/// Return a size intended for comparison with a Varnode size to immediately determine if
/// the Varnode is a potential laned register. If there are no laned registers for the architecture,
/// -1 is returned.
/// \return the size in bytes of the smallest laned register or -1.
int4 Architecture::getMinimumLanedRegisterSize(void) const
{
if (lanerecords.empty())
return -1;
return lanerecords[0].getWholeSize();
}
/// The default model is used whenever an explicit model is not known
/// or can't be determined.
/// \param model is the ProtoModel object to make the default
void Architecture::setDefaultModel(ProtoModel *model)
{
if (defaultfp != (ProtoModel *)0)
defaultfp->setPrintInDecl(true);
model->setPrintInDecl(false);
defaultfp = model;
}
/// Throw out the syntax tree, (unlocked) symbols, comments, and other derived information
/// about a single function.
/// \param fd is the function to clear
void Architecture::clearAnalysis(Funcdata *fd)
{
fd->clear(); // Clear stuff internal to function
// Clear out any analysis generated comments
commentdb->clearType(fd->getAddress(),Comment::warning|Comment::warningheader);
}
/// Symbols do not necessarily need to be available for the decompiler.
/// This routine loads all the \e load \e image knows about into the symbol table
/// \param delim is the delimiter separating namespaces from symbol base names
void Architecture::readLoaderSymbols(const string &delim)
{
if (loadersymbols_parsed) return; // already read
loader->openSymbols();
loadersymbols_parsed = true;
LoadImageFunc record;
while(loader->getNextSymbol(record)) {
string basename;
Scope *scope = symboltab->findCreateScopeFromSymbolName(record.name, delim, basename, (Scope *)0);
scope->addFunction(record.address,basename);
}
loader->closeSymbols();
}
/// For all registered p-code opcodes, return the corresponding OpBehavior object.
/// The object pointers are provided in a list indexed by OpCode.
/// \param behave is the list to be populated
void Architecture::collectBehaviors(vector<OpBehavior *> &behave) const
{
behave.resize(inst.size(), (OpBehavior *)0);
for(int4 i=0;i<inst.size();++i) {
TypeOp *op = inst[i];
if (op == (TypeOp *)0) continue;
behave[i] = op->getBehavior();
}
}
/// This method searches for a user-defined segment op registered
/// for the given space.
/// \param spc is the address space to check
/// \return the SegmentOp object or null
SegmentOp *Architecture::getSegmentOp(AddrSpace *spc) const
{
if (spc->getIndex() >= userops.numSegmentOps()) return (SegmentOp *)0;
SegmentOp *segdef = userops.getSegmentOp(spc->getIndex());
if (segdef == (SegmentOp *)0) return (SegmentOp *)0;
if (segdef->getResolve().space != (AddrSpace *)0)
return segdef;
return (SegmentOp *)0;
}
/// Establish details of the prototype for a given function symbol
/// \param pieces holds the raw prototype information and the symbol name
void Architecture::setPrototype(const PrototypePieces &pieces)
{
string basename;
Scope *scope = symboltab->resolveScopeFromSymbolName(pieces.name, "::", basename, (Scope *)0);
if (scope == (Scope *)0)
throw ParseError("Unknown namespace: " + pieces.name);
Funcdata *fd = scope->queryFunction( basename );
if (fd == (Funcdata *)0)
throw ParseError("Unknown function name: " + pieces.name);
fd->getFuncProto().setPieces(pieces);
}
/// The decompiler supports one or more output languages (C, Java). This method
/// does the main work of selecting one of the supported languages.
/// In addition to selecting the main PrintLanguage object, this triggers
/// configuration of the cast strategy and p-code op behaviors.
/// \param nm is the name of the language
void Architecture::setPrintLanguage(const string &nm)
{
for(int4 i=0;i<(int4)printlist.size();++i) {
if (printlist[i]->getName() == nm) {
print = printlist[i];
print->adjustTypeOperators();
return;
}
}
PrintLanguageCapability *capa = PrintLanguageCapability::findCapability(nm);
if (capa == (PrintLanguageCapability *)0)
throw LowlevelError("Unknown print language: "+nm);
bool printMarkup = print->emitsMarkup(); // Copy settings for current print language
ostream *t = print->getOutputStream();
print = capa->buildLanguage(this);
print->setOutputStream(t); // Restore settings from previous language
print->initializeFromArchitecture();
if (printMarkup)
print->setMarkup(true);
printlist.push_back(print);
print->adjustTypeOperators();
return;
}
/// Set all IPTR_PROCESSOR and IPTR_SPACEBASE spaces to be global
void Architecture::globalify(void)
{
Scope *scope = symboltab->getGlobalScope();
int4 nm = numSpaces();
for(int4 i=0;i<nm;++i) {
AddrSpace *spc = getSpace(i);
if (spc == (AddrSpace *)0) continue;
if ((spc->getType() != IPTR_PROCESSOR)&&(spc->getType() != IPTR_SPACEBASE)) continue;
symboltab->addRange(scope,spc,(uintb)0,spc->getHighest());
}
}
/// Insert a series of out-of-band flow overrides based on a \<flowoverridelist> element.
/// \param decoder is the stream decoder
void Architecture::decodeFlowOverride(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_FLOWOVERRIDELIST);
for(;;) {
uint4 subId = decoder.openElement();
if (subId != ELEM_FLOW) break;
string flowType = decoder.readString(ATTRIB_TYPE);
Address funcaddr = Address::decode(decoder);
Address overaddr = Address::decode(decoder);
Funcdata *fd = symboltab->getGlobalScope()->queryFunction(funcaddr);
if (fd != (Funcdata *)0)
fd->getOverride().insertFlowOverride(overaddr,Override::stringToType(flowType));
decoder.closeElement(subId);
}
decoder.closeElement(elemId);
}
/// Write the current state of all types, symbols, functions, etc. to a stream.
/// \param encoder is the stream encoder
void Architecture::encode(Encoder &encoder) const
{
encoder.openElement(ELEM_SAVE_STATE);
encoder.writeBool(ATTRIB_LOADERSYMBOLS, loadersymbols_parsed);
types->encode(encoder);
symboltab->encode(encoder);
context->encode(encoder);
commentdb->encode(encoder);
stringManager->encode(encoder);
if (!cpool->empty())
cpool->encode(encoder);
encoder.closeElement(ELEM_SAVE_STATE);
}
/// Read in all the sub-component state from a \<save_state> XML tag
/// When adding stuff to this BEWARE: The spec file has already initialized stuff
/// \param store is document store containing the parsed root tag
void Architecture::restoreXml(DocumentStorage &store)
{
const Element *el = store.getTag(ELEM_SAVE_STATE.getName());
if (el == (const Element *)0)
throw LowlevelError("Could not find save_state tag");
XmlDecode decoder(this,el);
uint4 elemId = decoder.openElement(ELEM_SAVE_STATE);
loadersymbols_parsed = false;
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_LOADERSYMBOLS)
loadersymbols_parsed = decoder.readBool();
}
for(;;) {
uint4 subId = decoder.peekElement();
if (subId == 0) break;
if (subId == ELEM_TYPEGRP)
types->decode(decoder);
else if (subId == ELEM_DB)
symboltab->decode(decoder);
else if (subId == ELEM_CONTEXT_POINTS)
context->decode(decoder);
else if (subId == ELEM_COMMENTDB)
commentdb->decode(decoder);
else if (subId == ELEM_STRINGMANAGE)
stringManager->decode(decoder);
else if (subId == ELEM_CONSTANTPOOL)
cpool->decode(decoder,*types);
else if (subId == ELEM_OPTIONSLIST)
options->decode(decoder);
else if (subId == ELEM_FLOWOVERRIDELIST)
decodeFlowOverride(decoder);
else if (subId == ELEM_INJECTDEBUG)
pcodeinjectlib->decodeDebug(decoder);
else
throw LowlevelError("XML error restoring architecture");
}
decoder.closeElement(elemId);
}
/// If no better name is available, this method can be used to generate
/// a function name based on its address
/// \param addr is the address of the function
/// \param name will hold the constructed name
void Architecture::nameFunction(const Address &addr,string &name) const
{
ostringstream defname;
defname << "func_";
addr.printRaw(defname);
name = defname.str();
}
/// \brief Create a new address space associated with a pointer register
///
/// This process sets up a \e register \e relative"space for this architecture.
/// If indicated, this space takes on the role of the \e formal stack space.
/// Should only be called once during initialization.
/// \param basespace is the address space underlying the stack
/// \param nm is the name of the new space
/// \param ptrdata is the register location acting as a pointer into the new space
/// \param truncSize is the (possibly truncated) size of the register that fits the space
/// \param isreversejustified is \b true if small variables are justified opposite of endianness
/// \param stackGrowth is \b true if a stack implemented in this space grows in the negative direction
/// \param isFormal is the indicator for the \b formal stack space
void Architecture::addSpacebase(AddrSpace *basespace,const string &nm,const VarnodeData &ptrdata,
int4 truncSize,bool isreversejustified,bool stackGrowth,bool isFormal)
{
int4 ind = numSpaces();
SpacebaseSpace *spc = new SpacebaseSpace(this,translate,nm,ind,truncSize,basespace,ptrdata.space->getDelay()+1,isFormal);
if (isreversejustified)
setReverseJustified(spc);
insertSpace(spc);
addSpacebasePointer(spc,ptrdata,truncSize,stackGrowth);
}
/// This routine is used by the initialization process to add
/// address ranges to which there is never an (indirect) pointer
/// Should only be called during initialization
/// \param rng is the new range with no aliases to be added
void Architecture::addNoHighPtr(const Range &rng)
{
nohighptr.insertRange(rng.getSpace(),rng.getFirst(),rng.getLast());
}
/// This builds the \e universal Action for function transformation
/// and instantiates the "decompile" root Action
/// \param store may hold configuration information
void Architecture::buildAction(DocumentStorage &store)
{
parseExtraRules(store); // Look for any additional rules
allacts.universalAction(this);
allacts.resetDefaults();
}
/// Create the database object, which currently doesn't not depend on any configuration
/// data. Then create the root (global) scope and attach it to the database.
/// \param store is the storage for any configuration data
/// \return the global Scope object
Scope *Architecture::buildDatabase(DocumentStorage &store)
{
symboltab = new Database(this,true);
Scope *globscope = new ScopeInternal(0,"",this);
symboltab->attachScope(globscope,(Scope *)0);
return globscope;
}
/// This registers the OpBehavior objects for all known p-code OpCodes.
/// The Translate and TypeFactory object should already be built.
/// \param store may hold configuration information
void Architecture::buildInstructions(DocumentStorage &store)
{
TypeOp::registerInstructions(inst,types,translate);
}
void Architecture::postSpecFile(void)
{
cacheAddrSpaceProperties();
}
/// Once the processor is known, the Translate object can be built and
/// fully initialized. Processor and compiler specific configuration is performed
/// \param store will hold parsed configuration information
void Architecture::restoreFromSpec(DocumentStorage &store)
{
Translate *newtrans = buildTranslator(store); // Once language is described we can build translator
newtrans->initialize(store);
translate = newtrans;
modifySpaces(newtrans); // Give architecture chance to modify spaces, before copying
copySpaces(newtrans);
insertSpace( new FspecSpace(this,translate,numSpaces()));
insertSpace( new IopSpace(this,translate,numSpaces()));
insertSpace( new JoinSpace(this,translate,numSpaces()));
userops.initialize(this);
if (translate->getAlignment() <= 8)
min_funcsymbol_size = translate->getAlignment();
pcodeinjectlib = buildPcodeInjectLibrary();
parseProcessorConfig(store);
newtrans->setDefaultFloatFormats(); // If no explicit formats registered, put in defaults
parseCompilerConfig(store);
// Action stuff will go here
buildAction(store);
}
/// If any address space supports near pointers and segment operators,
/// setup SegmentedResolver objects that can be used to recover full pointers in context.
void Architecture::initializeSegments(void)
{
int4 sz = userops.numSegmentOps();
for(int4 i=0;i<sz;++i) {
SegmentOp *sop = userops.getSegmentOp(i);
if (sop == (SegmentOp *)0) continue;
SegmentedResolver *rsolv = new SegmentedResolver(this,sop->getSpace(),sop);
insertResolver(sop->getSpace(),rsolv);
}
}
/// Determine the minimum pointer size for the space and whether or not there are near pointers.
/// Set up an ordered list of inferable spaces (where constant pointers can be infered).
/// Inferable spaces include the default space and anything explicitly listed
/// in the cspec \<global> tag that is not a register space. An initial list of potential spaces is
/// passed in that needs to be ordered, filtered, and deduplicated.
void Architecture::cacheAddrSpaceProperties(void)
{
vector<AddrSpace *> copyList = inferPtrSpaces;
copyList.push_back(getDefaultCodeSpace()); // Make sure the default code space is present
copyList.push_back(getDefaultDataSpace()); // Make sure the default data space is present
inferPtrSpaces.clear();
sort(copyList.begin(),copyList.end(),AddrSpace::compareByIndex);
AddrSpace *lastSpace = (AddrSpace *)0;
for(int4 i=0;i<copyList.size();++i) {
AddrSpace *spc = copyList[i];
if (spc == lastSpace) continue;
lastSpace = spc;
if (spc->getDelay() == 0) continue; // Don't put in a register space
if (spc->getType() == IPTR_SPACEBASE) continue;
if (spc->isOtherSpace()) continue;
if (spc->isOverlay()) continue;
inferPtrSpaces.push_back(spc);
}
int4 defPos = -1;
for(int4 i=0;i<inferPtrSpaces.size();++i) {
AddrSpace *spc = inferPtrSpaces[i];
if (spc == getDefaultDataSpace()) // Make the default for inferring pointers the data space
defPos = i;
SegmentOp *segOp = getSegmentOp(spc);
if (segOp != (SegmentOp *)0) {
int4 val = segOp->getInnerSize();
markNearPointers(spc, val);
}
}
if (defPos > 0) { // Make sure the default space comes first
AddrSpace *tmp = inferPtrSpaces[0];
inferPtrSpaces[0] = inferPtrSpaces[defPos];
inferPtrSpaces[defPos] = tmp;
}
}
/// Recover information out of a \<rule> element and build the new Rule object.
/// \param decoder is the stream decoder
void Architecture::decodeDynamicRule(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_RULE);
string rulename,groupname;
bool enabled = false;
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_NAME)
rulename = decoder.readString();
else if (attribId == ATTRIB_GROUP)
groupname = decoder.readString();
else if (attribId == ATTRIB_ENABLE)
enabled = decoder.readBool();
else
throw LowlevelError("Dynamic rule tag contains illegal attribute");
}
if (rulename.size()==0)
throw LowlevelError("Dynamic rule has no name");
if (groupname.size()==0)
throw LowlevelError("Dynamic rule has no group");
if (!enabled) return;
#ifdef CPUI_RULECOMPILE
Rule *dynrule = RuleGeneric::build(rulename,groupname,el->getContent());
extra_pool_rules.push_back(dynrule);
#else
throw LowlevelError("Dynamic rules have not been enabled for this decompiler");
#endif
decoder.closeElement(elemId);
}
/// This handles the \<prototype> and \<resolveprototype> elements. It builds the
/// ProtoModel object based on the tag and makes it available generally to the decompiler.
/// \param decoder is the stream decoder
/// \return the new ProtoModel object
ProtoModel *Architecture::decodeProto(Decoder &decoder)
{
ProtoModel *res;
uint4 elemId = decoder.peekElement();
if (elemId == ELEM_PROTOTYPE)
res = new ProtoModel(this);
else if (elemId == ELEM_RESOLVEPROTOTYPE)
res = new ProtoModelMerged(this);
else
throw LowlevelError("Expecting <prototype> or <resolveprototype> tag");
res->decode(decoder);
ProtoModel *other = getModel(res->getName());
if (other != (ProtoModel *)0) {
string errMsg = "Duplicate ProtoModel name: " + res->getName();
delete res;
throw LowlevelError(errMsg);
}
protoModels[res->getName()] = res;
return res;
}
/// This decodes the \<eval_called_prototype> and \<eval_current_prototype> elements.
/// This determines which prototype model to assume when recovering the prototype
/// for a \e called function and the \e current function respectively.
/// \param decoder is the stream decoder
void Architecture::decodeProtoEval(Decoder &decoder)
{
uint4 elemId = decoder.openElement();
string modelName = decoder.readString(ATTRIB_NAME);
ProtoModel *res = getModel(modelName);
if (res == (ProtoModel *)0)
throw LowlevelError("Unknown prototype model name: "+modelName);
if (elemId == ELEM_EVAL_CALLED_PROTOTYPE) {
if (evalfp_called != (ProtoModel *)0)
throw LowlevelError("Duplicate <eval_called_prototype> tag");
evalfp_called = res;
}
else {
if (evalfp_current != (ProtoModel *)0)
throw LowlevelError("Duplicate <eval_current_prototype> tag");
evalfp_current = res;
}
decoder.closeElement(elemId);
}
/// There should be exactly one \<default_proto> element that specifies what the
/// default prototype model is. This builds the ProtoModel object and sets it
/// as the default.
/// \param decoder is the stream decoder
void Architecture::decodeDefaultProto(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_DEFAULT_PROTO);
while(decoder.peekElement() != 0) {
if (defaultfp != (ProtoModel *)0)
throw LowlevelError("More than one default prototype model");
ProtoModel *model = decodeProto(decoder);
setDefaultModel(model);
}
decoder.closeElement(elemId);
}
/// Parse a \<global> element for child \<range> elements that will be added to the global scope.
/// Ranges are stored in partial form so that elements can be parsed before all address spaces exist.
/// \param decoder is the stream decoder
/// \param rangeProps is where the partially parsed ranges are stored
void Architecture::decodeGlobal(Decoder &decoder,vector<RangeProperties> &rangeProps)
{
uint4 elemId = decoder.openElement(ELEM_GLOBAL);
while(decoder.peekElement() != 0) {
rangeProps.emplace_back();
rangeProps.back().decode(decoder);
}
decoder.closeElement(elemId);
}
/// Add a memory range parse from a \<global> tag to the global scope.
/// Varnodes in this region will be assumed to be global variables.
/// \param props is information about a specific range
void Architecture::addToGlobalScope(const RangeProperties &props)
{
Scope *scope = symboltab->getGlobalScope();
Range range(props,this);
AddrSpace *spc = range.getSpace();
inferPtrSpaces.push_back(spc);
symboltab->addRange(scope,spc,range.getFirst(),range.getLast());
if (range.getSpace()->isOverlayBase()) { // If the address space is overlayed
// We need to duplicate the range being marked as global into the overlay space(s)
int4 num = numSpaces();
for(int4 i=0;i<num;++i) {
AddrSpace *ospc = getSpace(i);
if (ospc == (AddrSpace *)0 || !ospc->isOverlay()) continue;
if (ospc->getContain() != range.getSpace()) continue;
symboltab->addRange(scope,ospc,range.getFirst(),range.getLast());
}
}
}
//explictly add the OTHER space and any overlays to the global scope
void Architecture::addOtherSpace(void)
{
Scope *scope = symboltab->getGlobalScope();
AddrSpace *otherSpace = getSpaceByName(OtherSpace::NAME);
symboltab->addRange(scope,otherSpace,0,otherSpace->getHighest());
if (otherSpace->isOverlayBase()) {
int4 num = numSpaces();
for(int4 i=0;i<num;++i){
AddrSpace *ospc = getSpace(i);
if (!ospc->isOverlay()) continue;
if (ospc->getContain() != otherSpace) continue;
symboltab->addRange(scope,ospc,0,otherSpace->getHighest());
}
}
}
/// This applies info from a \<readonly> element marking a specific region
/// of the executable as \e read-only.
/// \param decoder is the stream decoder
void Architecture::decodeReadOnly(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_READONLY);
while(decoder.peekElement() != 0) {
Range range;
range.decode(decoder);
symboltab->setPropertyRange(Varnode::readonly,range);
}
decoder.closeElement(elemId);
}
/// This applies info from a \<volatile> element marking specific regions
/// of the executable as holding \e volatile memory or registers.
/// \param decoder is the stream decoder
void Architecture::decodeVolatile(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_VOLATILE);
userops.decodeVolatile(decoder,this);
while(decoder.peekElement() != 0) {
Range range;
range.decode(decoder); // Tag itself is range
symboltab->setPropertyRange(Varnode::volatil,range);
}
decoder.closeElement(elemId);
}
/// This applies info from \<returnaddress> element and sets the default
/// storage location for the \e return \e address of a function.
/// \param decoder is the stream decoder
void Architecture::decodeReturnAddress(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_RETURNADDRESS);
uint4 subId = decoder.peekElement();
if (subId != 0) {
if (defaultReturnAddr.space != (AddrSpace *)0)
throw LowlevelError("Multiple <returnaddress> tags in .cspec");
defaultReturnAddr.decode(decoder);
}
decoder.closeElement(elemId);
}
/// Apply information from an \<incidentalcopy> element, which marks a set of addresses
/// as being copied to incidentally. This allows the decompiler to ignore certain side-effects.
/// \param decoder is the stream decoder
void Architecture::decodeIncidentalCopy(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_INCIDENTALCOPY);
while(decoder.peekElement() != 0) {
VarnodeData vdata;
vdata.decode(decoder);
Range range( vdata.space, vdata.offset, vdata.offset+vdata.size-1);
symboltab->setPropertyRange(Varnode::incidental_copy,range);
}
decoder.closeElement(elemId);
}
/// Read \<register> elements to collect specific properties associated with the register storage.
/// \param decoder is the stream decoder
void Architecture::decodeRegisterData(Decoder &decoder)
{
vector<uint4> maskList;
uint4 elemId = decoder.openElement(ELEM_REGISTER_DATA);
while(decoder.peekElement() != 0) {
uint4 subId = decoder.openElement(ELEM_REGISTER);
bool isVolatile = false;
string laneSizes;
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_VECTOR_LANE_SIZES) {
laneSizes = decoder.readString();
}
else if (attribId == ATTRIB_VOLATILE) {
isVolatile = decoder.readBool();
}
}
if (!laneSizes.empty() || isVolatile) {
decoder.rewindAttributes();
VarnodeData storage;
storage.space = (AddrSpace *)0;
storage.decodeFromAttributes(decoder);
if (!laneSizes.empty()) {
LanedRegister lanedRegister;
lanedRegister.parseSizes(storage.size,laneSizes);
int4 sizeIndex = lanedRegister.getWholeSize();
while (maskList.size() <= sizeIndex)
maskList.push_back(0);
maskList[sizeIndex] |= lanedRegister.getSizeBitMask();
}
if (isVolatile) {
Range range( storage.space, storage.offset, storage.offset+storage.size-1);
symboltab->setPropertyRange(Varnode::volatil,range);
}
}
decoder.closeElement(subId);
}
decoder.closeElement(elemId);
lanerecords.clear();
for(int4 i=0;i<maskList.size();++i) {
if (maskList[i] == 0) continue;
lanerecords.push_back(LanedRegister(i,maskList[i]));
}
}
/// Create a stack space and a stack-pointer register from a \<stackpointer> element
/// \param decoder is the stream decoder
void Architecture::decodeStackPointer(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_STACKPOINTER);
string registerName;
bool stackGrowth = true; // Default stack growth is in negative direction
bool isreversejustify = false;
AddrSpace *basespace = (AddrSpace *)0;
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_REVERSEJUSTIFY)
isreversejustify = decoder.readBool();
else if (attribId == ATTRIB_GROWTH)
stackGrowth = decoder.readString() == "negative";
else if (attribId == ATTRIB_SPACE)
basespace = decoder.readSpace();
else if (attribId == ATTRIB_REGISTER)
registerName = decoder.readString();
}
if (basespace == (AddrSpace *)0)
throw LowlevelError(ELEM_STACKPOINTER.getName() + " element missing \"space\" attribute");
VarnodeData point = translate->getRegister(registerName);
decoder.closeElement(elemId);
// If creating a stackpointer to a truncated space, make sure to truncate the stackpointer
int4 truncSize = point.size;
if (basespace->isTruncated() && (point.size > basespace->getAddrSize())) {
truncSize = basespace->getAddrSize();
}
addSpacebase(basespace,"stack",point,truncSize,isreversejustify,stackGrowth,true); // Create the "official" stackpointer
}
/// Manually alter the dead-code delay for a specific address space,
/// based on a \<deadcodedelay> element.
/// \param decoder is the stream decoder
void Architecture::decodeDeadcodeDelay(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_DEADCODEDELAY);
AddrSpace *spc = decoder.readSpace(ATTRIB_SPACE);
int4 delay = decoder.readSignedInteger(ATTRIB_DELAY);
if (delay >= 0)
setDeadcodeDelay(spc,delay);
else
throw LowlevelError("Bad <deadcodedelay> tag");
decoder.closeElement(elemId);
}
/// Alter the range of addresses for which a pointer is allowed to be inferred.
void Architecture::decodeInferPtrBounds(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_INFERPTRBOUNDS);
while(decoder.peekElement() != 0) {
Range range;
range.decode(decoder);
setInferPtrBounds(range);
}
decoder.closeElement(elemId);
}
/// Pull information from a \<funcptr> element. Turn on alignment analysis of
/// function pointers, some architectures have aligned function pointers
/// and encode extra information in the unused bits.
/// \param decoder is the stream decoder
void Architecture::decodeFuncPtrAlign(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_FUNCPTR);
int4 align = decoder.readSignedInteger(ATTRIB_ALIGN);
decoder.closeElement(elemId);
if (align == 0) {
funcptr_align = 0; // No alignment
return;
}
int4 bits = 0;
while((align&1)==0) { // Find position of first 1 bit
bits += 1;
align >>= 1;
}
funcptr_align = bits;
}
/// Designate a new index register and create a new address space associated with it,
/// based on a \<spacebase> element.
/// \param decoder is the stream decoder
void Architecture::decodeSpacebase(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_SPACEBASE);
string nameString = decoder.readString(ATTRIB_NAME);
string registerName = decoder.readString(ATTRIB_REGISTER);
AddrSpace *basespace = decoder.readSpace(ATTRIB_SPACE);
decoder.closeElement(elemId);
const VarnodeData &point(translate->getRegister(registerName));
addSpacebase(basespace,nameString,point,point.size,false,false,false);
}
/// Configure memory based on a \<nohighptr> element. Mark specific address ranges
/// to indicate the decompiler will not encounter pointers (aliases) into the range.
/// \param decoder is the stream decoder
void Architecture::decodeNoHighPtr(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_NOHIGHPTR);
while(decoder.peekElement() != 0) { // Iterate over every range tag in the list
Range range;
range.decode(decoder);
addNoHighPtr(range);
}
decoder.closeElement(elemId);
}
/// Configure registers based on a \<prefersplit> element. Mark specific varnodes that
/// the decompiler should automatically split when it first sees them.
/// \param decoder is the stream decoder
void Architecture::decodePreferSplit(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_PREFERSPLIT);
string style = decoder.readString(ATTRIB_STYLE);
if (style != "inhalf")
throw LowlevelError("Unknown prefersplit style: "+style);
while(decoder.peekElement() != 0) {
splitrecords.emplace_back();
PreferSplitRecord &record( splitrecords.back() );
record.storage.decode( decoder );
record.splitoffset = record.storage.size/2;
}
decoder.closeElement(elemId);
}
/// Configure, based on the \<aggressivetrim> element, how aggressively the
/// decompiler will remove extension operations.
/// \param decoder is the stream decoder
void Architecture::decodeAggressiveTrim(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_AGGRESSIVETRIM);
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_SIGNEXT) {
aggressive_ext_trim = decoder.readBool();
}
}
decoder.closeElement(elemId);
}
/// Clone the named ProtoModel, attaching it to another name.
/// \param aliasName is the new name to assign
/// \param parentName is the name of the parent model
void Architecture::createModelAlias(const string &aliasName,const string &parentName)
{
map<string,ProtoModel *>::const_iterator iter = protoModels.find(parentName);
if (iter == protoModels.end())
throw LowlevelError("Requesting non-existent prototype model: "+parentName);
ProtoModel *model = (*iter).second;
if (model->isMerged())
throw LowlevelError("Cannot make alias of merged model: "+parentName);
if (model->getAliasParent() != (const ProtoModel *)0)
throw LowlevelError("Cannot make alias of an alias: "+parentName);
iter = protoModels.find(aliasName);
if (iter != protoModels.end())
throw LowlevelError("Duplicate ProtoModel name: "+aliasName);
protoModels[aliasName] = new ProtoModel(aliasName,*model);
}
/// A new UnknownProtoModel, which clones its behavior from the default model, is created and associated with the
/// unrecognized name. Subsequent queries of the name return this new model.
/// \param modelName is the unrecognized name
/// \return the new \e unknown prototype model associated with the name
ProtoModel *Architecture::createUnknownModel(const string &modelName)
{
UnknownProtoModel *model = new UnknownProtoModel(modelName,defaultfp);
protoModels[modelName] = model;
if (modelName == "unknown") // "unknown" is a reserved/internal name
model->setPrintInDecl(false); // don't print it in declarations
return model;
}
/// This looks for the \<processor_spec> tag and sets configuration
/// parameters based on it.
/// \param store is the document store holding the tag
void Architecture::parseProcessorConfig(DocumentStorage &store)
{
const Element *el = store.getTag("processor_spec");
if (el == (const Element *)0)
throw LowlevelError("No processor configuration tag found");
XmlDecode decoder(this,el);
uint4 elemId = decoder.openElement(ELEM_PROCESSOR_SPEC);
for(;;) {
uint4 subId = decoder.peekElement();
if (subId == 0) break;
if (subId == ELEM_PROGRAMCOUNTER) {
decoder.openElement();
decoder.closeElementSkipping(subId);
}
else if (subId == ELEM_VOLATILE)
decodeVolatile(decoder);
else if (subId == ELEM_INCIDENTALCOPY)
decodeIncidentalCopy(decoder);
else if (subId == ELEM_CONTEXT_DATA)
context->decodeFromSpec(decoder);
else if (subId == ELEM_JUMPASSIST)
userops.decodeJumpAssist(decoder, this);
else if (subId == ELEM_SEGMENTOP)
userops.decodeSegmentOp(decoder,this);
else if (subId == ELEM_REGISTER_DATA) {
decodeRegisterData(decoder);
}
else if (subId == ELEM_DATA_SPACE) {
uint4 elemId = decoder.openElement();
AddrSpace *spc = decoder.readSpace(ATTRIB_SPACE);
decoder.closeElement(elemId);
setDefaultDataSpace(spc->getIndex());
}
else if (subId == ELEM_INFERPTRBOUNDS) {
decodeInferPtrBounds(decoder);
}
else if (subId == ELEM_SEGMENTED_ADDRESS) {
decoder.openElement();
decoder.closeElementSkipping(subId);
}
else if (subId == ELEM_DEFAULT_SYMBOLS) {
decoder.openElement();
store.registerTag(decoder.getCurrentXmlElement());
decoder.closeElementSkipping(subId);
}
else if (subId == ELEM_DEFAULT_MEMORY_BLOCKS) {
decoder.openElement();
decoder.closeElementSkipping(subId);
}
else if (subId == ELEM_ADDRESS_SHIFT_AMOUNT) {
decoder.openElement();
decoder.closeElementSkipping(subId);
}
else if (subId == ELEM_PROPERTIES) {
decoder.openElement();
decoder.closeElementSkipping(subId);
}
else
throw LowlevelError("Unknown element in <processor_spec>");
}
decoder.closeElement(elemId);
}
/// This looks for the \<compiler_spec> tag and sets configuration parameters based on it.
/// \param store is the document store holding the tag
void Architecture::parseCompilerConfig(DocumentStorage &store)
{
vector<RangeProperties> globalRanges;
const Element *el = store.getTag("compiler_spec");
if (el == (const Element *)0)
throw LowlevelError("No compiler configuration tag found");
XmlDecode decoder(this,el);
uint4 elemId = decoder.openElement(ELEM_COMPILER_SPEC);
for(;;) {
uint4 subId = decoder.peekElement();
if (subId == 0) break;
if (subId == ELEM_DEFAULT_PROTO)
decodeDefaultProto(decoder);
else if (subId == ELEM_PROTOTYPE)
decodeProto(decoder);
else if (subId == ELEM_STACKPOINTER)
decodeStackPointer(decoder);
else if (subId == ELEM_RETURNADDRESS)
decodeReturnAddress(decoder);
else if (subId == ELEM_SPACEBASE)
decodeSpacebase(decoder);
else if (subId == ELEM_NOHIGHPTR)
decodeNoHighPtr(decoder);
else if (subId == ELEM_PREFERSPLIT)
decodePreferSplit(decoder);
else if (subId == ELEM_AGGRESSIVETRIM)
decodeAggressiveTrim(decoder);
else if (subId == ELEM_DATA_ORGANIZATION)
types->decodeDataOrganization(decoder);
else if (subId == ELEM_ENUM)
types->parseEnumConfig(decoder);
else if (subId == ELEM_GLOBAL)
decodeGlobal(decoder, globalRanges);
else if (subId == ELEM_SEGMENTOP)
userops.decodeSegmentOp(decoder,this);
else if (subId == ELEM_READONLY)
decodeReadOnly(decoder);
else if (subId == ELEM_CONTEXT_DATA)
context->decodeFromSpec(decoder);
else if (subId == ELEM_RESOLVEPROTOTYPE)
decodeProto(decoder);
else if (subId == ELEM_EVAL_CALLED_PROTOTYPE)
decodeProtoEval(decoder);
else if (subId == ELEM_EVAL_CURRENT_PROTOTYPE)
decodeProtoEval(decoder);
else if (subId == ELEM_CALLFIXUP) {
pcodeinjectlib->decodeInject(archid+" : compiler spec", "", InjectPayload::CALLFIXUP_TYPE, decoder);
}
else if (subId == ELEM_CALLOTHERFIXUP) {
userops.decodeCallOtherFixup(decoder,this);
}
else if (subId == ELEM_FUNCPTR)
decodeFuncPtrAlign(decoder);
else if (subId == ELEM_DEADCODEDELAY)
decodeDeadcodeDelay(decoder);
else if (subId == ELEM_INFERPTRBOUNDS)
decodeInferPtrBounds(decoder);
else if (subId == ELEM_MODELALIAS) {
uint4 elemId = decoder.openElement();
string aliasName = decoder.readString(ATTRIB_NAME);
string parentName = decoder.readString(ATTRIB_PARENT);
decoder.closeElement(elemId);
createModelAlias(aliasName, parentName);
}
}
decoder.closeElement(elemId);
el = store.getTag("specextensions"); // Look for any user-defined configuration document
if (el != (const Element *)0) {
XmlDecode decoderExt(this,el);
elemId = decoderExt.openElement(ELEM_SPECEXTENSIONS);
for(;;) {
uint4 subId = decoderExt.peekElement();
if (subId == 0) break;
if (subId == ELEM_PROTOTYPE)
decodeProto(decoderExt);
else if (subId == ELEM_CALLFIXUP) {
pcodeinjectlib->decodeInject(archid+" : compiler spec", "",InjectPayload::CALLFIXUP_TYPE, decoder);
}
else if (subId == ELEM_CALLOTHERFIXUP) {
userops.decodeCallOtherFixup(decoder,this);
}
else if (subId == ELEM_GLOBAL)
decodeGlobal(decoder,globalRanges);
}
decoderExt.closeElement(elemId);
}
// <global> tags instantiate the base symbol table
// They need to know about all spaces, so it must come
// after parsing of <stackpointer> and <spacebase>
for(int4 i=0;i<globalRanges.size();++i)
addToGlobalScope(globalRanges[i]);
addOtherSpace();
if (defaultfp == (ProtoModel *)0) {
if (protoModels.size() > 0)
setDefaultModel((*protoModels.begin()).second);
else
throw LowlevelError("No default prototype specified");
}
// We must have a __thiscall calling convention
map<string,ProtoModel *>::iterator miter = protoModels.find("__thiscall");
if (miter == protoModels.end()) { // If __thiscall doesn't exist we clone it off of the default
createModelAlias("__thiscall",defaultfp->getName());
}
initializeSegments();
PreferSplitManager::initialize(splitrecords);
types->setupSizes(); // If no data_organization was registered, set up default values
}
/// Look for the \<experimental_rules> tag and create any dynamic Rule objects it specifies.
/// \param store is the document store containing the tag
void Architecture::parseExtraRules(DocumentStorage &store)
{
const Element *expertag = store.getTag("experimental_rules");
if (expertag != (const Element *)0) {
XmlDecode decoder(this,expertag);
uint4 elemId = decoder.openElement(ELEM_EXPERIMENTAL_RULES);
while(decoder.peekElement() != 0)
decodeDynamicRule( decoder );
decoder.closeElement(elemId);
}
}
/// The LoadImage may have access information about the executables
/// sections. Query for any read-only ranges and
/// store this information in the property database
void Architecture::fillinReadOnlyFromLoader(void)
{
RangeList rangelist;
loader->getReadonly(rangelist); // Get read only ranges
set<Range>::const_iterator iter,eiter;
iter = rangelist.begin();
eiter = rangelist.end();
while(iter != eiter) {
symboltab->setPropertyRange(Varnode::readonly,*iter);
++iter;
}
}
/// Create the LoadImage and load the executable to be analyzed.
/// Using this and possibly other initialization information, create
/// all the sub-components necessary for a complete Architecture
/// The DocumentStore may hold previously gleaned configuration information
/// and is used to read in other configuration files while initializing.
/// \param store is the XML document store
void Architecture::init(DocumentStorage &store)
{
buildLoader(store); // Loader is built first
resolveArchitecture();
buildSpecFile(store);
buildContext(store);
buildTypegrp(store);
buildCommentDB(store);
buildStringManager(store);
buildConstantPool(store);
buildDatabase(store);
restoreFromSpec(store);
buildCoreTypes(store);
print->initializeFromArchitecture();
symboltab->adjustCaches(); // In case the specs created additional address spaces
buildSymbols(store);
postSpecFile(); // Let subclasses do things after translate is ready
buildInstructions(store); // Must be called after translate is built
fillinReadOnlyFromLoader();
}
void Architecture::resetDefaultsInternal(void)
{
trim_recurse_max = 5;
max_implied_ref = 2; // 2 is best, in specific cases a higher number might be good
max_term_duplication = 2; // 2 and 3 (4) are reasonable
max_basetype_size = 10; // Needs to be 8 or bigger
flowoptions = FlowInfo::error_toomanyinstructions;
max_instructions = 100000;
infer_pointers = true;
analyze_for_loops = true;
readonlypropagate = false;
nan_ignore_all = false;
nan_ignore_compare = true; // Ignore only NaN operations associated with floating-point comparisons by default
alias_block_level = 2; // Block structs and arrays by default, but not more primitive data-types
split_datatype_config = OptionSplitDatatypes::option_struct | OptionSplitDatatypes::option_array
| OptionSplitDatatypes::option_pointer;
max_jumptable_size = 1024;
}
/// Reset options that can be modified by the OptionDatabase. This includes
/// options specific to this class and options under PrintLanguage and ActionDatabase
void Architecture::resetDefaults(void)
{
resetDefaultsInternal();
allacts.resetDefaults();
for(int4 i=0;i<printlist.size();++i)
printlist[i]->resetDefaults();
}
Address SegmentedResolver::resolve(uintb val,int4 sz,const Address &point,uintb &fullEncoding)
{
int4 innersz = segop->getInnerSize();
if (sz >= 0 && sz <= innersz) { // If -sz- matches the inner size, consider the value a "near" pointer
// In this case the address offset is not fully specified
// we check if the rest is stored in a context variable
// (as with near pointers)
if (segop->getResolve().space != (AddrSpace *)0) {
uintb base = glb->context->getTrackedValue(segop->getResolve(),point);
fullEncoding = (base << 8 * innersz) + (val & calc_mask(innersz));
vector<uintb> seginput;
seginput.push_back(base);
seginput.push_back(val);
val = segop->execute(seginput);
return Address(spc,AddrSpace::addressToByte(val,spc->getWordSize()));
}
}
else { // For anything else, consider it a "far" pointer
fullEncoding = val;
int4 outersz = segop->getBaseSize();
uintb base = (val >> 8*innersz) & calc_mask(outersz);
val = val & calc_mask(innersz);
vector<uintb> seginput;
seginput.push_back(base);
seginput.push_back(val);
val = segop->execute(seginput);
return Address(spc,AddrSpace::addressToByte(val,spc->getWordSize()));
}
return Address(); // Return invalid address
}
#ifdef CPUI_STATISTICS
Statistics::Statistics(void)
{
numfunc = 0;
// numvar = 0;
// coversum = 0;
// coversumsq = 0;
castcount = 0;
lastcastcount = 0;
castcountsq = 0;
}
Statistics::~Statistics(void)
{
}
// void Statistics::process_cover(const Funcdata &data)
// {
// if (data.getBasicBlocks().getSize() < 100) return;
// VarnodeLocSet::const_iterator iter;
// for(iter=data.beginLoc();iter!=data.endLoc();++iter) {
// Varnode *vn = *iter;
// if (!vn->hasCover()) continue;
// Cover *cover = vn->getCover();
// if (cover == (Cover *)0) continue;
// numvar += 1;
// int4 size = cover->getSize();
// int4 count = 0;
// for(int4 i=0;i<size;++i) {
// if (!cover->getCoverBlock(i).empty())
// count += 1;
// }
// coversum += count; // Number of non-empty covers
// coversumsq += ((uintb)count)*((uintb)count);
// }
// }
/// Calculate number of casts seen since last function, update variance
/// \param data is the function being analyzed
void Statistics::process_cast(const Funcdata &data)
{
uintb perfunc = castcount - lastcastcount;
lastcastcount = castcount;
castcountsq += perfunc*perfunc;
}
/// Gather various statistics for a single function and accumulate in global counts
/// \param data is the function being analyzed
void Statistics::process(const Funcdata &data)
{
numfunc += 1;
// process_cover(data);
process_cast(data);
}
/// Complete calculations on running sums then print them to a stream
/// \param s is the output stream
void Statistics::printResults(ostream &s)
{
s << "Number of functions: " << dec << numfunc << endl;
// s << "Number of variables: " << dec << numvar << endl;
// double average = ((double)coversum)/numvar;
// double variance = ((double)coversumsq)/numvar;
// double stddev = sqrt(variance);
// s << "Average number of non-empty covers: " << average << endl;
// s << "Standard deviation: " << stddev << endl;
double average = ((double)castcount)/numfunc;
double variance = ((double)castcountsq)/numfunc;
variance -= average*average;
double stddev = sqrt(variance);
s << "Total functions = " << dec << numfunc << endl;
s << "Total casts = " << dec << castcount << endl;
s << "Average casts per function = " << average << endl;
s << " Standard deviation = " << stddev << endl;
}
#endif
} // End namespace ghidra