ghidra/Ghidra/Features/Base/ghidra_scripts/MultiInstructionMemReference.java
2019-03-26 13:46:51 -04:00

249 lines
8.4 KiB
Java

/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Figures out computed memory references at the current cursor location or at the instruction at the
// start of each range in an address set.
// Place the cursor on a register or constant operand, and run the script. Also, if a
// register has a value set at the beginning of a function, that register value is assumed
// to be a constant.
//
// For ease of use, attach this to a key-binding to create the reference in one keystroke.
//
// This script is very useful on the ARM, PowerPC and most RISC based processors that
// use multiple instructions to build up memory references, where the reference was
// missed by auto-analysis. It is also useful for references that weren't created
// because of complex base address + offset calculations.
//
// It is very easy to use this script in conjunction with any type of search. For
// example on the ARM, MOVT is used to build up and address. Search the program text
// for all mnemonics MOVT and then select the ones that are creating a reference, make
// a selection in the listing from the search, and then execute this function. It is
// best if you have already assigned a key binding. You can also choose single items
// from the search table and press the key bound to this script.
//
// NOTE: Any values loaded from memory are assumed to be constant.
// If a reference does not make sense on an operand, then it is added to the mnemonic.
//
//@category Analysis
import java.math.BigInteger;
import ghidra.app.script.GhidraScript;
import ghidra.program.model.address.*;
import ghidra.program.model.block.CodeBlock;
import ghidra.program.model.block.PartitionCodeSubModel;
import ghidra.program.model.lang.*;
import ghidra.program.model.listing.Function;
import ghidra.program.model.listing.Instruction;
import ghidra.program.model.symbol.RefType;
import ghidra.program.model.symbol.SourceType;
import ghidra.program.util.*;
import ghidra.util.exception.CancelledException;
import ghidra.util.task.TaskMonitor;
public class MultiInstructionMemReference extends GhidraScript {
Address memReferenceLocation = null;
private Address curInstrloc;
@Override
public void run() throws Exception {
long numInstructions = currentProgram.getListing().getNumInstructions();
monitor.initialize((int) (numInstructions));
monitor.setMessage("Multi-Instruction Reference Markup");
int currentOpIndex = 0;
Address start = currentLocation.getAddress();
if ((currentSelection == null || currentSelection.isEmpty()) &&
currentLocation instanceof OperandFieldLocation) {
currentOpIndex = ((OperandFieldLocation) currentLocation).getOperandIndex();
}
// set up the address set to restrict processing
AddressSet refLocationsSet = new AddressSet(currentSelection);
if (refLocationsSet.isEmpty()) {
refLocationsSet.addRange(start, start);
}
findMemRefAtOperand(currentOpIndex, refLocationsSet);
}
@SuppressWarnings("unused")
private boolean isSingleInstructions(AddressSet restrictedSet) {
if (restrictedSet.isEmpty()) {
return false;
}
AddressRangeIterator riter = restrictedSet.getAddressRanges();
restrictedSet = new AddressSet(restrictedSet);
while (riter.hasNext()) {
AddressRange addressRange = riter.next();
Instruction instr =
currentProgram.getListing().getInstructionAt(addressRange.getMinAddress());
if (instr != null) {
addressRange = new AddressRangeImpl(instr.getMinAddress(), instr.getMaxAddress());
}
restrictedSet.delete(addressRange);
}
return restrictedSet.isEmpty();
}
private void findMemRefAtOperand(final int opIndex, AddressSetView set) {
// follow all flows building up context
// use context to fill out addresses on certain instructions
ContextEvaluator eval = new ContextEvaluatorAdapter() {
@Override
public boolean evaluateContext(VarnodeContext context, Instruction instr) {
// TODO: could look at instructions like LEA, that are an address to create a reference to something.
if (instr.getMinAddress().equals(curInstrloc)) {
if (checkInstructionMatch(opIndex, context, instr)) {
return true;
}
// if instruction is in delayslot, assume reference is good.
if (instr.getDelaySlotDepth() > 0) {
instr = instr.getNext();
return checkInstructionMatch(opIndex, context, instr);
}
}
return false;
}
private boolean checkInstructionMatch(final int opIdx, VarnodeContext context,
Instruction instr) {
int firstIndex = opIdx;
if (instr.getRegister(firstIndex) == null) {
firstIndex = 0;
}
for (int index = firstIndex; index < instr.getNumOperands(); index++) {
Object[] opObjects = instr.getOpObjects(index);
for (int indexOpObj = 0; indexOpObj < opObjects.length; indexOpObj++) {
if (!(opObjects[indexOpObj] instanceof Register)) {
continue;
}
Register reg = (Register) opObjects[indexOpObj];
RegisterValue rval = context.getRegisterValue(reg);
if (rval == null) {
continue;
}
BigInteger uval = rval.getUnsignedValue();
if (uval == null) {
continue;
}
long offset = uval.longValue();
AddressSpace space = instr.getMinAddress().getAddressSpace();
Address addr = space.getTruncatedAddress(offset, true);
// assume that they want the reference, don't worry it isn't in memory
makeReference(instr, index, addr, monitor);
return false;
}
}
return false;
}
@Override
public boolean allowAccess(VarnodeContext context, Address addr) {
// allow values to be read from writable memory
return true;
}
};
try {
AddressRangeIterator riter = set.getAddressRanges();
while (riter.hasNext() && !monitor.isCancelled()) {
AddressRange addressRange = riter.next();
curInstrloc = addressRange.getMinAddress();
AddressSet body = null;
Address start = curInstrloc;
Function curFunc =
currentProgram.getFunctionManager().getFunctionContaining(curInstrloc);
if (curFunc != null) {
start = curFunc.getEntryPoint();
body = new AddressSet(curFunc.getBody());
}
else {
body = new AddressSet(curInstrloc);
PartitionCodeSubModel model = new PartitionCodeSubModel(currentProgram);
CodeBlock block = model.getFirstCodeBlockContaining(curInstrloc, monitor);
if (block != null) {
start = block.getFirstStartAddress();
body.add(block);
}
}
// if the instruction attempting to markup is in the delayslot, backup an instruction
Instruction instr = currentProgram.getListing().getInstructionAt(curInstrloc);
if (instr != null && instr.isInDelaySlot()) {
instr = instr.getPrevious();
if (instr != null) {
curInstrloc = instr.getMinAddress();
}
}
SymbolicPropogator symEval = new SymbolicPropogator(currentProgram);
symEval.setParamRefCheck(false);
symEval.setReturnRefCheck(false);
symEval.setStoredRefCheck(false);
symEval.flowConstants(start, body, eval, true, monitor);
}
}
catch (CancelledException e) {
}
}
/**
* @param instruction
* @param space
* @param scalar
* @param nextInstr
* @param addend
* @param taskMonitor
*/
private void makeReference(Instruction instruction, int opIndex, Address addr,
TaskMonitor taskMonitor) {
if (instruction.getPrototype().hasDelaySlots()) {
instruction = instruction.getNext();
if (instruction == null) {
return;
}
}
if (opIndex == -1) {
for (int i = 0; i < instruction.getNumOperands(); i++) {
int opType = instruction.getOperandType(i);
// markup the program counter for any flow
if ((opType & OperandType.DYNAMIC) != 0) {
opIndex = i;
break;
}
}
}
if (opIndex == -1) {
opIndex = instruction.getNumOperands() - 1;
}
if (opIndex == -1) {
instruction.addMnemonicReference(addr, RefType.DATA, SourceType.ANALYSIS);
}
else {
instruction.addOperandReference(opIndex, addr, RefType.DATA, SourceType.ANALYSIS);
}
}
}