ghidra/Ghidra/Features/Decompiler/src/decompile/cpp/varnode.hh
2020-01-26 22:39:18 -05:00

377 lines
28 KiB
C++

/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/// \file varnode.hh
/// \brief The Varnode and VarnodeBank classes
#ifndef __CPUI_VARNODE__
#define __CPUI_VARNODE__
#include "pcoderaw.hh"
#include "cover.hh"
class HighVariable;
class Varnode; // Forward declaration
class VarnodeBank;
class Merge;
class Funcdata;
class SymbolEntry;
class ValueSet;
/// \brief Compare two Varnode pointers by location then definition
struct VarnodeCompareLocDef {
bool operator()(const Varnode *a,const Varnode *b) const; ///< Functional comparison operator
};
/// \brief Compare two Varnode pointers by definition then location
struct VarnodeCompareDefLoc {
bool operator()(const Varnode *a,const Varnode *b) const; ///< Functional comparison operator
};
/// A set of Varnodes sorted by location (then by definition)
typedef set<Varnode *,VarnodeCompareLocDef> VarnodeLocSet;
/// A set of Varnodes sorted by definition (then location)
typedef set<Varnode *,VarnodeCompareDefLoc> VarnodeDefSet;
/// \brief A low-level variable or contiguous set of bytes described by an Address and a size
///
/// A Varnode is the fundemental \e variable in the p-code language model. A Varnode
/// represents anything that holds data, including registers, stack locations,
/// global RAM locations, and constants. It is described most simply as a storage
/// location for some number of bytes, and is identified by
/// - an Address (an AddrSpace and an offset into that space) and
/// - a size in bytes
///
/// In its raw form, the Varnode is referred to as \b free, and this pair uniquely identifies
/// the Varnode, as determined by its comparison operators. In terms of the
/// Static Single Assignment (SSA) form for the decompiler analysis, the Varnode class also
/// represents a node in the tree. In this case the Varnode is not free, and
/// each individual write to a storage location, as per SSA form, creates a unique Varnode, which
/// is represented by a separate instance, so there may be multiple Varnode instances
/// with the same Address and size.
class Varnode {
public:
/// There are a large number of boolean attributes that can be placed on a Varnode.
/// Some are calculated and maintained by the friend classes Funcdata and VarnodeBank,
/// and others can be set and cleared publicly by separate subsystems.
enum varnode_flags {
mark = 0x01, ///< Prevents infinite loops
constant = 0x02, ///< The varnode is constant
annotation = 0x04, ///< This varnode is an annotation and has no dataflow
input = 0x08, ///< This varnode has no ancestor
written = 0x10, ///< This varnode has a defining op (def is nonzero)
insert = 0x20, ///< This varnode has been inserted in a tree
///< This means the varnode is the output of an op \e or
///< The output is a constant \e or the output is an input
implied = 0x40, ///< This varnode is a temporary variable
explict = 0x80, ///< This varnode \e CANNOT be a temporary variable
typelock = 0x100, ///< The Dataype of the Varnode is locked
namelock = 0x200, ///< The Name of the Varnode is locked
nolocalalias = 0x400, ///< There are no aliases pointing to this varnode
volatil = 0x800, ///< This varnode's value is volatile
spacebase_placeholder = 0x1000, ///< This varnode is inserted artificially to track a register
///< value at a specific point in the code
externref = 0x2000, ///< Varnode address is specially mapped by the loader
readonly = 0x4000, ///< Varnode is stored at a readonly location
persist = 0x8000, ///< Persists after (and before) function
addrtied = 0x10000, ///< High-level variable is tied to address
unaffected = 0x20000, ///< Input which is unaffected by the function
spacebase = 0x40000, ///< This is a base register for an address space
indirectonly = 0x80000, ///< If all uses of illegalinput varnode are inputs to INDIRECT
directwrite = 0x100000, ///< (could be) Directly affected by a valid input
addrforce = 0x200000, ///< Varnode is used to force variable into an address
mapped = 0x400000, ///< Varnode has a database entry associated with it
indirect_creation = 0x800000, ///< The value in this Varnode is created indirectly
return_address = 0x1000000, ///< Is the varnode storage for a return address
coverdirty = 0x2000000, ///< Cover is not upto date
precislo = 0x4000000, ///< Is this Varnode the low part of a double precision value
precishi = 0x8000000, ///< Is this Varnode the high part of a double precision value
indirectstorage = 0x10000000, ///< Is this Varnode storing a pointer to the actual symbol
hiddenretparm = 0x20000000, ///< Does this varnode point to the return value storage location
incidental_copy = 0x40000000, ///< Do copies of this varnode happen as a side-effect
auto_live = 0x80000000 ///< Is this varnode automatically considered live, never removed as dead-code
};
/// Additional boolean properties on a Varnode
enum addl_flags {
activeheritage = 0x01, ///< The varnode is actively being heritaged
writemask = 0x02, ///< Should not be considered a write in heritage calculation
vacconsume = 0x04, ///< Vacuous consume
lisconsume = 0x08, ///< In consume worklist
ptrcheck = 0x10, ///< The Varnode value is \e NOT a pointer
ptrflow = 0x20, ///< If this varnode flows to or from a pointer
unsignedprint = 0x40, ///< Constant that must be explicitly printed as unsigned
stack_store = 0x80, ///< Created by an explicit STORE
locked_input = 0x100 ///< Input that exists even if its unused
};
private:
mutable uint4 flags; ///< The collection of boolean attributes for this Varnode
int4 size; ///< Size of the Varnode in bytes
uint4 create_index; ///< A unique one-up index assigned to Varnode at its creation
int2 mergegroup; ///< Which group of forced merges does this Varnode belong to
uint2 addlflags; ///< Additional flags
Address loc; ///< Storage location (or constant value) of the Varnode
// Heritage fields
PcodeOp *def; ///< The defining operation of this Varnode
HighVariable *high; ///< High-level variable of which this is an instantiation
SymbolEntry *mapentry; ///< cached SymbolEntry associated with Varnode
Datatype *type; ///< Datatype associated with this varnode
VarnodeLocSet::iterator lociter; ///< Iterator into VarnodeBank sorted by location
VarnodeDefSet::iterator defiter; ///< Iterator into VarnodeBank sorted by definition
list<PcodeOp *> descend; ///< List of every op using this varnode as input
mutable Cover *cover; ///< Addresses covered by the def->use of this Varnode
mutable union {
Datatype *dataType; ///< Temporary data-type associated with \b this for use in type propagate algorithm
ValueSet *valueSet; ///< Value set associated with \b this when performing Value Set Analysis
} temp; ///< Temporary storage for analysis algorithms
uintb consumed; ///< What parts of this varnode are used
uintb nzm; ///< Which bits do we know are zero
friend class VarnodeBank;
friend class Merge;
friend class Funcdata;
void updateCover(void) const; ///< Internal function for update coverage information
void calcCover(void) const; ///< Turn on the Cover object for this Varnode
void clearCover(void) const; ///< Turn off any coverage information
void setFlags(uint4 fl) const; ///< Internal method for setting boolean attributes
void clearFlags(uint4 fl) const; ///< Internal method for clearing boolean attributes
void setUnaffected(void) { setFlags(Varnode::unaffected); } ///< Mark Varnode as \e unaffected
// These functions should be only private things used by VarnodeBank
void setInput(void) { setFlags(Varnode::input|Varnode::coverdirty); } ///< Mark Varnode as \e input
void setDef(PcodeOp *op); ///< Set the defining PcodeOp of this Varnode
void addDescend(PcodeOp *op); ///< Add a descendant (reading) PcodeOp to this Varnode's list
void eraseDescend(PcodeOp *op); ///< Erase a descendant (reading) PcodeOp from this Varnode's list
void destroyDescend(void); ///< Clear all descendant (reading) PcodeOps
public:
// only to be used by HighVariable
void setHigh(HighVariable *tv,int2 mg) { high = tv; mergegroup = mg; } ///< Set the HighVariable owning this Varnode
const Address &getAddr(void) const { return (const Address &) loc; } ///< Get the storage Address
AddrSpace *getSpace(void) const { return loc.getSpace(); } ///< Get the AddrSpace storing this Varnode
uintb getOffset(void) const { return loc.getOffset(); } ///< Get the offset (within its AddrSpace) where this is stored
int4 getSize(void) const { return size; } ///< Get the number of bytes this Varnode stores
int2 getMergeGroup(void) const { return mergegroup; } ///< Get the \e forced \e merge group of this Varnode
PcodeOp *getDef(void) { return def; } ///< Get the defining PcodeOp of this Varnode
const PcodeOp *getDef(void) const { return (const PcodeOp *) def; } ///< Get the defining PcodeOp
HighVariable *getHigh(void) const; ///< Get the high-level variable associated with this Varnode
SymbolEntry *getSymbolEntry(void) const { return mapentry; } ///< Get symbol and scope information associated with this Varnode
uint4 getFlags(void) const { return flags; } ///< Get all the boolean attributes
Datatype *getType(void) const { return type; } ///< Get the Datatype associated with this Varnode
void setTempType(Datatype *t) const { temp.dataType = t; } ///< Set the temporary Datatype
Datatype *getTempType(void) const { return temp.dataType; } ///< Get the temporary Datatype (used during type propagation)
void setValueSet(ValueSet *v) const { temp.valueSet = v; } ///< Set the temporary ValueSet record
ValueSet *getValueSet(void) const { return temp.valueSet; } ///< Get the temporary ValueSet record
uint4 getCreateIndex(void) const { return create_index; } ///< Get the creation index
Cover *getCover(void) const { updateCover(); return cover; } ///< Get Varnode coverage information
list<PcodeOp *>::const_iterator beginDescend(void) const { return descend.begin(); } ///< Get iterator to list of syntax tree descendants (reads)
list<PcodeOp *>::const_iterator endDescend(void) const { return descend.end(); } ///< Get the end iterator to list of descendants
uintb getConsume(void) const { return consumed; } ///< Get mask of consumed bits
void setConsume(uintb val) { consumed = val; } ///< Set the mask of consumed bits (used by dead-code algorithm)
bool isConsumeList(void) const { return ((addlflags&Varnode::lisconsume)!=0); } ///< Get marker used by dead-code algorithm
bool isConsumeVacuous(void) const { return ((addlflags&Varnode::vacconsume)!=0); } ///< Get marker used by dead-code algorithm
void setConsumeList(void) { addlflags |= Varnode::lisconsume; } ///< Set marker used by dead-code algorithm
void setConsumeVacuous(void) { addlflags |= Varnode::vacconsume; } ///< Set marker used by dead-code algorithm
void clearConsumeList(void) { addlflags &= ~Varnode::lisconsume; } ///< Clear marker used by dead-code algorithm
void clearConsumeVacuous(void) { addlflags &= ~Varnode::vacconsume; } ///< Clear marker used by dead-code algorithm
PcodeOp *loneDescend(void) const; ///< Return unique reading PcodeOp, or \b null if there are zero or more than 1
Address getUsePoint(const Funcdata &fd) const; ///< Get Address when this Varnode first comes into scope
int4 printRawNoMarkup(ostream &s) const; ///< Print a simple identifier for the Varnode
void printRaw(ostream &s) const; ///< Print a simple identifier plus additional info identifying Varnode with SSA form
void printCover(ostream &s) const; ///< Print raw coverage info about the Varnode
void printInfo(ostream &s) const; ///< Print raw attribute info about the Varnode
Varnode(int4 s,const Address &m,Datatype *dt); ///< Construct a \e free Varnode
bool operator<(const Varnode &op2) const; ///< Comparison operator on Varnode
bool operator==(const Varnode &op2) const; ///< Equality operator
bool operator!=(const Varnode &op2) const { return !operator==(op2); } ///< Inequality operator
~Varnode(void); ///< Destructor
bool intersects(const Varnode &op) const; ///< Return \b true if the storage locations intersect
bool intersects(const Address &op2loc,int4 op2size) const; ///< Check intersection against an Address range
int4 contains(const Varnode &op) const; ///< Return info about the containment of \e op in \b this
int4 characterizeOverlap(const Varnode &op) const; ///< Return 0, 1, or 2 for "no overlap", "partial overlap", "identical storage"
int4 overlap(const Varnode &op) const; ///< Return relative point of overlap between two Varnodes
int4 overlap(const Address &op2loc,int4 op2size) const; ///< Return relative point of overlap with Address range
uintb getNZMask(void) const { return nzm; } ///< Get the mask of bits within \b this that are known to be zero
int4 termOrder(const Varnode *op) const; ///< Compare two Varnodes based on their term order
void printRawHeritage(ostream &s,int4 depth) const; ///< Print a simple SSA subtree rooted at \b this
bool isAnnotation(void) const { return ((flags&Varnode::annotation)!=0); } ///< Is \b this an annotation?
bool isImplied(void) const { return ((flags&Varnode::implied)!=0); } ///< Is \b this an implied variable?
bool isExplicit(void) const { return ((flags&Varnode::explict)!=0); } ///< Is \b this an explicitly printed variable?
bool isConstant(void) const { return ((flags&Varnode::constant)!=0); } ///< Is \b this a constant?
bool isFree(void) const { return ((flags&(Varnode::written|Varnode::input))==0); } ///< Is \b this free, not in SSA form?
bool isInput(void) const { return ((flags&Varnode::input)!=0); } ///< Is \b this an SSA input node?
bool isIllegalInput(void) const { return ((flags&(Varnode::input|Varnode::directwrite))==Varnode::input); } ///< Is \b this an abnormal input to the function?
bool isIndirectOnly(void) const { return ((flags&Varnode::indirectonly)!=0); } ///< Is \b this read only by INDIRECT operations?
bool isExternalRef(void) const { return ((flags&Varnode::externref)!=0); } ///< Is \b this storage location mapped by the loader to an external location?
bool hasActionProperty(void) const { return ((flags&(Varnode::readonly|Varnode::volatil))!=0); } ///< Will this Varnode be replaced dynamically?
bool isReadOnly(void) const { return ((flags&Varnode::readonly)!=0); } ///< Is \b this a read-only storage location?
bool isVolatile(void) const { return ((flags&Varnode::volatil)!=0); } ///< Is \b this a volatile storage location?
bool isPersist(void) const { return ((flags&Varnode::persist)!=0); } ///< Does \b this storage location persist beyond the end of the function?
bool isDirectWrite(void) const { return ((flags&Varnode::directwrite)!=0); } ///< Is \b this value affected by a legitimate function input
/// Are all Varnodes at this storage location components of the same high-level variable?
bool isAddrTied(void) const { return ((flags&(Varnode::addrtied|Varnode::insert))==(Varnode::addrtied|Varnode::insert)); }
bool isAddrForce(void) const { return ((flags&Varnode::addrforce)!=0); } ///< Is \b this value forced into a particular storage location?
bool isAutoLive(void) const { return ((flags&Varnode::auto_live)!=0); } ///< Is \b this varnode exempt from dead-code removal?
bool isMapped(void) const { return ((flags&Varnode::mapped)!=0); } ///< Is there or should be formal symbol information associated with \b this?
bool isUnaffected(void) const { return ((flags&Varnode::unaffected)!=0); } ///< Is \b this a value that is supposed to be preserved across the function?
bool isSpacebase(void) const { return ((flags&Varnode::spacebase)!=0); } ///< Is this location used to store the base point for a virtual address space?
bool isReturnAddress(void) const { return ((flags&Varnode::return_address)!=0); } ///< Is this storage for a calls return address?
bool isPtrCheck(void) const { return ((addlflags&Varnode::ptrcheck)!=0); } ///< Has \b this been checked as a constant pointer to a mapped symbol?
bool isPtrFlow(void) const { return ((addlflags&Varnode::ptrflow)!=0); } ///< Does this varnode flow to or from a known pointer
bool isSpacebasePlaceholder(void) const { return ((flags&Varnode::spacebase_placeholder)!=0); } ///< Is \b this used specifically to track stackpointer values?
bool hasNoLocalAlias(void) const { return ((flags&Varnode::nolocalalias)!=0); } ///< Are there (not) any local pointers that might affect \b this?
bool isMark(void) const { return ((flags&Varnode::mark)!=0); } ///< Has \b this been visited by the current algorithm?
bool isActiveHeritage(void) const { return ((addlflags&Varnode::activeheritage)!=0); } ///< Is \b this currently being traced by the Heritage algorithm?
bool isStackStore(void) const { return ((addlflags&Varnode::stack_store)!=0); } ///< Was this originally produced by an explicit STORE
bool isLockedInput(void) const { return ((addlflags&Varnode::locked_input)!=0); } ///< Is always an input, even if unused
/// Is \b this just a special placeholder representing INDIRECT creation?
bool isIndirectZero(void) const { return ((flags&(Varnode::indirect_creation|Varnode::constant))==(Varnode::indirect_creation|Varnode::constant)); }
/// Is this Varnode \b created indirectly by a CALL operation?
bool isExtraOut(void) const { return ((flags&(Varnode::indirect_creation|Varnode::addrtied))==Varnode::indirect_creation); }
bool isPrecisLo(void) const { return ((flags&Varnode::precislo)!=0); } ///< Is \b this the low portion of a double precision value?
bool isPrecisHi(void) const { return ((flags&Varnode::precishi)!=0); } ///< Is \b this the high portion of a double precision value?
bool isIncidentalCopy(void) const { return ((flags&Varnode::incidental_copy)!=0); } ///< Does this varnode get copied as a side-effect
bool isWriteMask(void) const { return ((addlflags&Varnode::writemask)!=0); } ///< Is \b this (not) considered a true write location when calculating SSA form?
bool isUnsignedPrint(void) const { return ((addlflags&Varnode::unsignedprint)!=0); } ///< Must \b this be printed as unsigned
bool isWritten(void) const { return ((flags&Varnode::written)!=0); } ///< Does \b this have a defining write operation?
/// Does \b this have Cover information?
bool hasCover(void) const {
return ((flags&(Varnode::constant|Varnode::annotation|Varnode::insert))==Varnode::insert); }
bool hasNoDescend(void) const { return descend.empty(); } ///< Return \b true if nothing reads this Varnode
/// Return \b true if \b this is a constant with value \b val
bool constantMatch(uintb val) const {
if (!isConstant()) return false;
return (loc.getOffset() == val);
}
int4 isConstantExtended(uintb &val) const; ///< Is \b this an (extended) constant
/// Return \b true if this Varnode is linked into the SSA tree
bool isHeritageKnown(void) const { return ((flags&(Varnode::insert|Varnode::constant|Varnode::annotation))!=0); }
bool isTypeLock(void) const { return ((flags&Varnode::typelock)!=0); } ///< Does \b this have a locked Datatype?
bool isNameLock(void) const { return ((flags&Varnode::namelock)!=0); } ///< Does \b this have a locked name?
void setActiveHeritage(void) { addlflags |= Varnode::activeheritage; } ///< Mark \b this as currently being linked into the SSA tree
void clearActiveHeritage(void) { addlflags &= ~Varnode::activeheritage; } ///< Mark \b this as not (actively) being linked into the SSA tree
void setMark(void) const { flags |= Varnode::mark; } ///< Mark this Varnode for breadcrumb algorithms
void clearMark(void) const { flags &= ~Varnode::mark; } ///< Clear the mark on this Varnode
void setDirectWrite(void) { flags |= Varnode::directwrite; } ///< Mark \b this as directly affected by a legal input
void clearDirectWrite(void) { flags &= ~Varnode::directwrite; } ///< Mark \b this as not directly affected by a legal input
void setAddrForce(void) { setFlags(Varnode::addrforce | Varnode::auto_live); } ///< Mark as forcing a value into \b this particular storage location
void clearAddrForce(void) { clearFlags(Varnode::addrforce | Varnode::auto_live); } ///< Clear the forcing attribute
void setAutoLive(void) { flags |= Varnode::auto_live; } ///< Mark varnode as exempt from dead-code removal
void clearAutoLive(void) { flags &= ~Varnode::auto_live; } ///< Clear exemption for dead-code removal
void setImplied(void) { setFlags(Varnode::implied); } ///< Mark \b this as an \e implied variable in the final C source
void clearImplied(void) { clearFlags(Varnode::implied); } ///< Clear the \e implied mark on this Varnode
void setExplicit(void) { setFlags(Varnode::explict); } ///< Mark \b this as an \e explicit variable in the final C source
void clearExplicit(void) { clearFlags(Varnode::explict); } ///< Clear the \e explicit mark on this Varnode
void setReturnAddress(void) { flags |= Varnode::return_address; } ///< Mark as storage location for a return address
void clearReturnAddress(void) { flags &= ~Varnode::return_address; } ///< Clear return address attribute
void setPtrCheck(void) { addlflags |= Varnode::ptrcheck; } ///< Set \b this as checked for a constant symbol reference
void clearPtrCheck(void) { addlflags &= ~Varnode::ptrcheck; } ///< Clear the pointer check mark on this Varnode
void setPtrFlow(void) { addlflags |= Varnode::ptrflow; } ///< Set \b this as flowing to or from pointer
void clearPtrFlow(void) { addlflags &= ~Varnode::ptrflow; } ///< Indicate that this varnode is not flowing to or from pointer
void setSpacebasePlaceholder(void) { setFlags(Varnode::spacebase_placeholder); } ///< Mark \b this as a special Varnode for tracking stackpointer values
void clearSpacebasePlaceholder(void) { clearFlags(Varnode::spacebase_placeholder); } ///< Clear the stackpointer tracking mark
void setPrecisLo(void) { setFlags(Varnode::precislo); } ///< Mark \b this as the low portion of a double precision value
void clearPrecisLo(void) { clearFlags(Varnode::precislo); } ///< Clear the mark indicating a double precision portion
void setPrecisHi(void) { setFlags(Varnode::precishi); } ///< Mark \b this as the high portion of a double precision value
void clearPrecisHi(void) { clearFlags(Varnode::precishi); } ///< Clear the mark indicating a double precision portion
void setWriteMask(void) { addlflags |= Varnode::writemask; } ///< Mark \b this as not a true \e write when computing SSA form
void clearWriteMask(void) { addlflags &= ~Varnode::writemask; } ///< Clear the mark indicating \b this is not a true write
void setUnsignedPrint(void) { addlflags |= Varnode::unsignedprint; } ///< Force \b this to be printed as unsigned
bool updateType(Datatype *ct,bool lock,bool override); ///< (Possibly) set the Datatype given various restrictions
void setStackStore(void) { addlflags |= Varnode::stack_store; } ///< Mark as produced by explicit CPUI_STORE
void setLockedInput(void) { addlflags |= Varnode::locked_input; } ///< Mark as existing input, even if unused
void copySymbol(const Varnode *vn); ///< Copy symbol info from \b vn
void copySymbolIfValid(const Varnode *vn); ///< Copy symbol info from \b vn if constant value matches
Datatype *getLocalType(void) const; ///< Calculate type of Varnode based on local information
bool copyShadow(const Varnode *op2) const; ///< Are \b this and \b op2 copied from the same source?
void saveXml(ostream &s) const; ///< Save a description of \b this as an XML tag
static bool comparePointers(const Varnode *a,const Varnode *b) { return (*a < *b); } ///< Compare Varnodes as pointers
// static Varnode *restoreXml(const Element *el,Funcdata &fd,bool coderef);
};
/// \brief A container for Varnode objects from a specific function
///
/// The API allows the creation, deletion, search, and iteration of
/// Varnode objects from one function. The class maintains two ordering
/// for efficiency:
/// - Sorting based on storage location (\b loc)
/// - Sorting based on point of definition (\b def)
/// The class maintains a \e last \e offset counter for allocation
/// temporary Varnode objects in the \e unique space. Constants are created
/// by passing a constant address to the create() method.
class VarnodeBank {
AddrSpaceManager *manage; ///< Underlying address space manager
AddrSpace *uniq_space; ///< Space to allocate unique varnodes from
uintm uniqbase; ///< Base for unique addresses
uintm uniqid; ///< Counter for generating unique offsets
uint4 create_index; ///< Number of varnodes created
VarnodeLocSet loc_tree; ///< Varnodes sorted by location then def
VarnodeDefSet def_tree; ///< Varnodes sorted by def then location
mutable Varnode searchvn; ///< Template varnode for searching trees
Varnode *xref(Varnode *vn); ///< Insert a Varnode into the sorted lists
public:
VarnodeBank(AddrSpaceManager *m,AddrSpace *uspace,uintm ubase); ///< Construct the container
void clear(void); ///< Clear out all Varnodes and reset counters
~VarnodeBank(void) { clear(); } ///< Destructor
int4 numVarnodes(void) const { return loc_tree.size(); } ///< Get number of Varnodes \b this contains
Varnode *create(int4 s,const Address &m,Datatype *ct); ///< Create a \e free Varnode object
Varnode *createDef(int4 s,const Address &m,Datatype *ct,PcodeOp *op); ///< Create a Varnode as the output of a PcodeOp
Varnode *createUnique(int4 s,Datatype *ct); ///< Create a temporary varnode
Varnode *createDefUnique(int4 s,Datatype *ct,PcodeOp *op); ///< Create a temporary Varnode as output of a PcodeOp
void destroy(Varnode *vn); ///< Remove a Varnode from the container
Varnode *setInput(Varnode *vn); ///< Mark a Varnode as an input to the function
Varnode *setDef(Varnode *vn,PcodeOp *op); ///< Change Varnode to be defined by the given PcodeOp
void makeFree(Varnode *vn); ///< Convert a Varnode to be \e free
void replace(Varnode *oldvn,Varnode *newvn); ///< Replace every read of one Varnode with another
Varnode *find(int4 s,const Address &loc,const Address &pc,uintm uniq=~((uintm)0)) const; ///< Find a Varnode
Varnode *findInput(int4 s,const Address &loc) const; ///< Find an input Varnode
Varnode *findCoveredInput(int4 s,const Address &loc) const; ///< Find an input Varnode contained within this range
Varnode *findCoveringInput(int4 s,const Address &loc) const; ///< Find an input Varnode covering a range
uint4 getCreateIndex(void) const { return create_index; } ///< Get the next creation index to be assigned
VarnodeLocSet::const_iterator beginLoc(void) const { return loc_tree.begin(); } ///< Beginning of location list
VarnodeLocSet::const_iterator endLoc(void) const { return loc_tree.end(); } ///< End of location list
VarnodeLocSet::const_iterator beginLoc(AddrSpace *spaceid) const;
VarnodeLocSet::const_iterator endLoc(AddrSpace *spaceid) const;
VarnodeLocSet::const_iterator beginLoc(const Address &addr) const;
VarnodeLocSet::const_iterator endLoc(const Address &addr) const;
VarnodeLocSet::const_iterator beginLoc(int4 s,const Address &addr) const;
VarnodeLocSet::const_iterator endLoc(int4 s,const Address &addr) const;
VarnodeLocSet::const_iterator beginLoc(int4 s,const Address &addr,uint4 fl) const;
VarnodeLocSet::const_iterator endLoc(int4 s,const Address &addr,uint4 fl) const;
VarnodeLocSet::const_iterator beginLoc(int4 s,const Address &addr,const Address &pc,uintm uniq) const;
VarnodeLocSet::const_iterator endLoc(int4 s,const Address &addr,const Address &pc,uintm uniq) const;
VarnodeDefSet::const_iterator beginDef(void) const { return def_tree.begin(); } ///< Beginning of Varnodes sorted by definition
VarnodeDefSet::const_iterator endDef(void) const { return def_tree.end(); } ///< End of Varnodes sorted by definition
VarnodeDefSet::const_iterator beginDef(uint4 fl) const;
VarnodeDefSet::const_iterator endDef(uint4 fl) const;
VarnodeDefSet::const_iterator beginDef(uint4 fl,const Address &addr) const;
VarnodeDefSet::const_iterator endDef(uint4 fl,const Address &addr) const;
#ifdef VARBANK_DEBUG
void verifyIntegrity(void) const; ///< Verify the integrity of the container
#endif
};
bool contiguous_test(Varnode *vn1,Varnode *vn2); ///< Test if Varnodes are pieces of a whole
Varnode *findContiguousWhole(Funcdata &data,Varnode *vn1,
Varnode *vn2); ///< Retrieve the whole Varnode given pieces
#endif